CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS FALL 2025
Department of Computer Science
Colorado State University Professor: Shrideep Pallickara

PROGRAMMING ASSIGNMENT 2

SYNCHRONIZATION AND COORDINATION USING THREAD POOLS
Version 1.1

Due DATE: Wednesday, October 8, 2025 @ 8:00 pm

1 Objective

The objective of this assignment is to get you to be comfortable with threads and synchronization
mechanisms. Another objective of this assignment is to introduce the role that data structures and
locking mechanisms play in designing concurrent programs.

Generative AI Use and Consequences

Use of Al tools such as ChatGPT, Claude, Github Co-Pilot, or anything of their kind to
write or “improve” your code or written work at *any* stage is prohibited; this includes
the ideation phase. It is your responsibility to ensure that you don’t have the GitHub
Co-Pilot extension installed in your IDE; assignment solutions generated by Co-Pilot
aren’t written by you. Turning in code or an essay written by generative Al tools will be
treated as turning in work created by someone else, namely an act of plagiarism and/or
cheating. At a minimum, this will result in a 100% deduction (i.e., you will receive a
-10/10). To ensure fairness and maintain integrity, grading will also include code
reviews, interviews, and on-the-spot code modifications.

Ultimately, you will get out of the class what you put in. Simply copying and pasting
code from generative Al tools is not only unethical, it robs you of the chance to learn.
Here are four reasons why these generative Al tools undercuts your own education:

1. They take away the struggle that leads to understanding. They rob you of the
ability to think and learn the concepts for yourself. Solving problems yourself is
how concepts stick. If the AI does the work, what's left for you to learn?

2. You will struggle with the in-classroom quizzes and exams where you will not
have access to these tools.

3. Yes, Al tools will become an important part of a software engineer's workflow.
But to use them effectively later, you first need solid expertise in the subject
matter; and, that only comes from practicing without them.

4. These tools are prone to generating imperfect or even incorrect solutions, so
trusting them blindly can lead to bad consequences.

Page 1 of 7

CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS FALL 2025
Department of Computer Science
Colorado State University Professor: Shrideep Pallickara

2 Grading

This assignment will account for 10 points towards your cumulative course grade. The components of
this assignment, and the points breakdown is listed in the remainder of the text. This assignment is to
be done individually. The lowest score that you can get for this assignment is 0. The deductions will not
result in a negative score

3 Setting

In this assignment you will be designing a thread pool that manages a set of matrix multiplications. The
matrix multiplications will be expressed as a set of tasks that are managed by a thread pool; a given
task is performed by a single thread within the pool.

Given a set of 4 input matrices, you will be computing two intermediate matrices en route to computing
the final product matrix. Here is a compact representation for the goals of this assignment.

e There are 4 input matrices: A, B, C, and D
e You will be computing 2 intermediate matrices: X and Y. where X=AB and Y=CD
e The final product matrix Z is the product of the two intermediate matrices. Z=XY

4 Some Basics on Matrix Multiplications

We have included some text (source: Wikipedia) to describe the basics of matrix multiplication. Most of
you are probably incredibly familiar with this concept. The text has been included to ensure
completeness of the assignment. Feel free to skip this section if you'd like.

m n

A - B = C

Figure 1: Basic matrix multiplication. For matrix multiplication, the number of columns in the first
matrix must be equal to the number of rows in the second matrix. The result matrix has the number
of rows of the first and the number of columns of the second matrix.

Page 2 of 7

CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS FALL 2025
Department of Computer Science

Colorado State University Professor: Shrideep Pallickara
' b 2 b'.

A

— — — pa—

Figure 2: Graphical depiction graphical depiction of how the cells of the product matrix are computed
from the original matrices: A and B.

If Ais anm X nmatrix and Bis ann X p matrix, the matrix product C = AB (denoted without
multiplication signs or dots) is defined to be the m x p matrix

i ai ai2 s a1p] bll b12 T blp
as1 G -+ Qg bar baa - by
A= . B=
[Am1 Gm2 : Amn | i bni bn2 bnp i

Ci1 Ci2 -+ Cip

C21 C2 -+ Cgp

[Cm1 Cm2 " Cmp |

n
cij = aibyj + aipbyj + -+ + ainby; = E ik brj,
k=1

fori=1,...,mandj=1, ..., p.

Page 3 of 7

CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS FALL 2025
Department of Computer Science

Colorado State University Professor: Shrideep Pallickara
ainby + - +amby anbia + -+ aby o0 anbiyp -+ ainbyy
ag1biy + -+ agbpr @b + -+ agmbpy -0 @by, + -+ apbyy
C =
amlbll +"'+amnbn1 am1b12 +"'+amnbn2 am1b1p+"'+amnbnp

5 Components & Details

As part of this assignment, you will be implementing two components - a thread pool and task queue -
that work in concert with each other to accomplish the objective of computing the products.

5.1 Thread Pool

Broadly a thread pool encapsulates a fixed set of threads. Threads within the thread pool are initialized
exactly once. The individual threads then remain in the run state (i.e. they never exit their run() method)
till such a time that the process is ready to terminate. For the purposes of this assignment, the number
of threads within the thread pool can be anywhere between 1 to 15.

5.2 The Task Queue

Computing the value of each cell within the product matrix should be expressed as a separate task. You
have the freedom to encode how this task should be expressed. However, you must have a
representation of the task that can be unambiguously interpreted by any thread within the pool when it
decides to perform "the task.

The task queue is backed by a data structure of your choosing. A key requirement is that your task
queue must include synchronization and/or locking mechanisms that facilitate concurrent calculation of
the product matrices. Incorrect synchronization primitives will result in data corruption (that manifest
as incorrect results) or stalls (programs may take an inordinately long time to wrap up the
computations). Prolonged execution times are also representative of the case where your lock scope is
far too long.

In particular, you are required to design a synchronization scheme so that the worker thread initiates a
task only when it is ready. The notion of readiness is based either on when the initialization completes
and when the necessary row & column is ready.

One measure of the effectiveness of your synchronization schemes is how well your programs scale as
the number of threads increase. Note that as you increase the number of threads, beyond a certain
number the execution times will actually increase as context-switching overheads start to dominate.

5.3 Initialization of the Input Matrices A, B, C, and D

The input matrices are initialized using a random number generator, which has been given a starting
seed from the command line. Pass the seed into an instance of the java.util.Random class. The input
matrices should be initialized in sequence - A, then B, then C, and then D using the same Random
object. Within each input matrix, the elements must be initialized from the top row (left to right) on to
the bottom rows. The elements in your input matrices are signed integers, so the input matrices can
have a mix of positive and negative values. You should bound this random integer to be within the
range of [-1000, 1000]. You can use “matrix[i][j] = 1000 - random.nextInt(2000);"” inside a double for
loop. This initialization scheme ensures that multiple, successive runs of your program with the same
random seed will result in the same initializations.

Page 4 of 7

CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS FALL 2025
Department of Computer Science
Colorado State University Professor: Shrideep Pallickara

For the purposes of this assignment, we are dealing with square matrices (with equal number of rows
and columns) that can have anywhere from 300 to 3000 rows.

5.4 Correctness Verification

Here’s a quick way to check whether you have correctness errors. A summation of all the elements of

the final matrix, Z should result in the same number if you are executing your thread pool with different
threads (1 or 10) with the same random seed. Use a long to compute the summation.

6 Parameters and Program Execution

Please call the primary program that triggers program execution: MatrixThreads in the package
csx55. threads.

Here are the arguments that will be specified during program execution
java csx55. threads.MatrixThreads thread-pool-size matrix-dimension seed

€.g. java csx55.threads.MatrixThreads 8 3000 31459

thread-pool-size | This parameter refers to the thread pool size and represents the number of
threads that will be created upon start up. Once started, the threads must never
exit their run () method till such time that the entire computation has been
completed.

matrix-dimension | Note that in this assignment we are working only with square matrices i.e.,
matrices where the number of rows and columns are identical. This is why you
only need to specify one value for the matrix dimension. For example, if the
matrix-dimension is 1000, each of your input matrices A, B, C, and D have a
dimensionality of 1000 x 1000 with a million elements.

seed The seed refers to the seed for your random number generator. The random
number generator is used to initialize the elements in your input matrices: A,
B, C, and then D. Each matrix is initialized in row-major format with the first
row being initialized left-to-right (first column to the last column). Initializations
proceed from the top row to the bottom row.

Page 5 of 7

CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS FALL 2025
Department of Computer Science
Colorado State University Professor: Shrideep Pallickara

The output of your matrix multiplications should indicate only the following progress elements:

Example Output:

Dimensionality of the square matrices is: 3000
The thread pool size has been initialized to: 8
Sum of the elements in input matrix A = 3409964
Sum of the elements in input matrix B = 3799344
Sum of the elements in input matrix C = 4095260
Sum of the elements in input matrix D = 626540

Calculation of matrix X (product of A and B) complete — sum of the elements in X is: -37432324759
Time to compute matrix X: 3.440 s

Calculation of matrix Y (product of C and D) complete - sum of the elements in Y is: -79329110607
Time to compute matrix Y: 3.735 s

Calculation of matrix Z (product of X and Y) complete - sum of the elements in Z is: -3449983994057

Time to compute matrix Z is: 3.723 s
Cumulative time to compute matrixes X, Y, and Z using a thread pool of size = 3000 is : 10.898 s

7 Points distribution:

1 point For printing the required (and only the required) diagnostic elements to verify the
program execution.
1 point Initialization of the matrices deterministically using the random number generator.

Multiple runs of the program with the same random seed should produce the set of
initializations for the matrices. (Sums for A, B, C, and D)

2 points Correctness of the results: 1 point for getting the products of AB and CD correct. 1 point
for getting the product matrix Z correct.

2 points Correct, non-stalling execution of program in a multi-threaded environment

2 points Program executes correctly with thread pools of different sizes for the same seed.

2 points Program executes faster with 10 threads than it does for 1 thread.

8 Third-party libraries and restrictions:

The assignment must be implemented using the core packages in Java. However, you cannot use thread
pool implementations that are available in the Java language library. You are not allowed to use any
external jar files. You can discuss the project with your peers at the architectural level, but the project
implementation is an individual effort.

Page 6 of 7

CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS FALL 2025
Department of Computer Science
Colorado State University Professor: Shrideep Pallickara

9 Milestones:

You have 4 weeks to complete this assignment. The weekly milestones below correspond to what you
should be able to complete at the end of every week.

MiLesTONE 1 [WEEK 1]: You should be able create your thread pool. Initialization of the input matrices A,
B, C, and D based on the random number generator is complete.

MiLESTONE 2 [WEEK 2]: Calculation of the matrices with a thread pool size of 1 is complete. This includes
registering tasks in the task-queue and ensuring that each task is performed at least once. Concurrent
bugs will manifest themselves in two ways: program stalls and incorrect results.

MiLesTONE 3 [WEEK 3]: You should be able to contrast the results from thread pools of different sizes.
When you have concurrent program execution, your product matrices would be completed at different
times and the outputs will reflect that. For example, several times you will be seeing product matrix Y
complete before X. You should also be seeing some differences in program execution times when you
size your thread pool differently.

MiLESTONE 4 [WEEK 4]: Iron out any wrinkles that may preclude you from getting the correct (outputs at
all times.

10 What to Submit

Use using CANVAs to submit a single .tar file that contains:
e all the Java files related to the assignment (please document your code)
e thebuild.gradle file you use to build your assignment
e a README.txt file containing a manifest of your files and any information you feel the GTA needs
to grade your program.

Filename Convention: You may call your support classes anything you like. All classes should reside
in a package called csx55. threads. The archive file should be named as <FirstName>-<LastName>-
HW2.tar. For example, if you are Cameron Doe then the tar file should be named Cameron-Doe-HW?2.tar.

11 The Matrix Cup: Optimization Challenge

This challenge is optional and not part of the assignment. DO NOT take part in this challenge until you
have received full marks in the assignment.

The challenge is to come up with the fastest implementation of matrix multiplication. Every time you
submit to Canvas we will keep track of your time, and the live ranking is available at:
https://www.cs.colostate.edu/~csx55/matrix
If your name is on the list, you have one of the fastest implementations. There is no prize, just glory.
Sometimes the fastest code is not the cleanest code. However, you must follow three rules: 1) the
implementation must be in Java, 2) you are not allowed to use external libraries, 3) input and output
formats must be the same as in the assignment. There will be a small celebration in class for the
winner after the assignment deadline. Good luck!

12 Change History

Version | Date Change
1.0 9/10/2025 First public release of the assignment.

Page 7 of 7

