CS 555: DISTRIBUTED SYSTEMS FALL 2025
Department of Computer Science URL: http://www.cs.colostate.edu/~csx55
Colorado State University Professor: Shrideep Pallickara

PROGRAMMING ASSIGNMENT 2

DISTRIBUTED LOAD BALANCING OF COMPUTATIONAL TASKS USING THREAD POOLS
Version 1.0

Due DATE: Wednesday, October 8, 2025 @ 5:00 pm

1 Objective

The objective of this assignment is to get you comfortable with threads and synchronization
mechanisms. Another objective of this assignment is to introduce the role that data structures, locking
mechanisms, and synchronization play in designing concurrent programs.

Generative AI Use and Consequences

Use of Al tools such as ChatGPT, Claude, Github Co-Pilot, or anything of their kind to
write or “improve” your code or written work at *any* stage is prohibited; this includes
the ideation phase. It is your responsibility to ensure that you don’t have the GitHub
Co-Pilot extension installed in your IDE; assignment solutions generated by Co-Pilot
aren’t written by you. Turning in code or an essay written by generative Al tools will be
treated as turning in work created by someone else, namely an act of plagiarism and/or
cheating. At a minimum, this will result in a 100% deduction (i.e., you will receive a
-10/10). To ensure fairness and maintain integrity, grading will also include code
reviews, interviews, and on-the-spot code modifications.

Ultimately, you will get out of the class what you put in. Simply copying and pasting
code from generative Al tools is not only unethical, it robs you of the chance to learn.
Here are four reasons why these generative Al tools undercuts your own education:

1. They take away the struggle that leads to understanding. They rob you of the
ability to think and learn the concepts for yourself. Solving problems yourself is
how concepts stick. If the AI does the work, what's left for you to learn?

2. You will struggle with the in-classroom quizzes and exams where you will not
have access to these tools.

3. Yes, Al tools will become an important part of a software engineer's workflow.
But to use them effectively later, you first need solid expertise in the subject
matter; and, that only comes from practicing without them.

4. These tools are prone to generating imperfect or even incorrect solutions, so
trusting them blindly can lead to bad consequences.

2 Grading

This assignment will account for 10 points towards your cumulative course grade. The components of
this assignment, and the points breakdown are listed in the remainder of the text. This assignment is
to be done individually. The lowest score that you can get for this assignment is 0. The deductions will
not result in a negative score.

Page 1 of 7



CS 555: DISTRIBUTED SYSTEMS FALL 2025

Department of Computer Science URL: http://www.cs.colostate.edu/~csx55
Colorado State University Professor: Shrideep Pallickara
3 Setting

There are a set of N computational nodes in the system. These nodes are arranged in a ring topology.
You are free to reuse code you developed in HW1 for the registry node and for setting up the overlay
(in this case a ring topology). Each node produces a random number of tasks; the system is collectively
responsible for ensuring that the tasks are completed, and that every node has performed “about” the
same amount of work

-

~

N\
\
)
4
> N\
/

P2 )

o

TN

‘\ /
N S

Figure 1: Computatior‘{'a/l/nodes organized in a ring topology.

4 Components

There are two primary components in the system: the singular registry and multiple computational
nodes. The registry helps with the construction of the overlay for the computational nodes. The registry
is also where information about the execution of tasks at each node is collated and printed out. You
have the freedom to design your own wire formats to facilitate communications between elements in
the system.

4.1 The Registry

There is exactly one registry in the system. The registry provides the following functions:

A. Allows computing nodes to register themselves. This is performed when a computing node starts
up for the first time.

B. Enables the construction of the overlay by orchestrating connections that a computing node
initiates with other computing nodes in the system. Based on its knowledge of the computing
nodes (through function A) the registry informs messaging nodes about the other computing
nodes that they should connect to.

Page 2 of 7



CS 555: DISTRIBUTED SYSTEMS FALL 2025
Department of Computer Science URL: http://www.cs.colostate.edu/~csx55
Colorado State University Professor: Shrideep Pallickara

4.2 The Computational Nodes

Each node performs a set of computational rounds. In each round, every node generates a set of tasks
and adds them to its task queue. The number of tasks that that a node generates is based on a random
number generator that is constrained to produce a number between 1-1000; consequently, each node
is likely to produce a different number of tasks in each round.

Each node performs the following set of actions.
1. Relies on a random number generator to create between 1-1000 tasks.
2. Once the node completes its set of generated tasks, it starts a new round by repeating step 1.
3. Each node is expected to complete a configurable number of rounds (number-of-rounds).
4. Since each node generates a different random number, there will be skews in the number of
generated tasks. Alleviating these imbalances is one of the primary goals of this assignment.
5. Leverages the task queue and the thread pool.
a. Tasks are managed in a task queue. New tasks are added to the tail of the queue and
retrieved from the head of the queue.
b. Threads within the thread pool retrieve tasks one at a time. A particular thread retrieves
a new task from the task queue only if the current task was successfully completed by
that thread. If the thread pool size is 8; the number of tasks that execute concurrently
can be 8.

5 Key Elements

5.1 Thread Pools

Each computational node will encapsulate a thread pool. Broadly a thread pool encapsulates a fixed set
of threads. Threads within the thread pool are initialized exactly once. In particular, the thread pool will
create a set of threads at start-up, and these threads will be used for the entire life cycle of the node.

Individual threads within the thread pool remain in the run state (i.e., they never exit their run()
method) till such time that the process is ready to terminate. For the purposes of this assignment, the
number of threads in the thread pool can be anywhere between 2 to 16.

Tasks that must executed at a node must be added to the task queue. All threads within the thread pool
have access to the task queue. Tasks retrievals must be FIFO i.e., tasks would be added to the tail of
the queue and retrieved from the head of the queue. Each task must be executed by one of the threads
within the thread pool.

The task queue is backed by a data structure of your choosing. A key requirement is that your task
queue must include synchronization and/or locking mechanisms to facilitate concurrent, thread-safe
retrieval and completion of tasks. Incorrect synchronization primitives will result in disappearing/missed
tasks (that will manifest as incorrect results) or stalls (programs may take an inordinately long time to
wrap up the computations).

Thread pool sizes must be configurable during startup. As the number of threads in the thread pool
increase you should see a commensurate increase in task throughput. Note that as you increase the
number of threads beyond a certain threshold, the execution times will actually increase as context-
switching overheads start to dominate. But you should be seeing a clear increase in task throughput as
the number of threads in your thread pool increases from 2 to 16.

Page 3 of 7



CS 555: DISTRIBUTED SYSTEMS FALL 2025

Department of Computer Science URL: http://www.cs.colostate.edu/~csx55
Colorado State University Professor: Shrideep Pallickara
5.2 Task

The computation performed by each task is similar to how mining is performed in some cryptocurrencies.
Note that since the task's purpose is to induce computation load, we provided the code that does this.

Mining bitcoins refers to the activity of adding valid blocks to the blockchain. This involves finding a
nonce that, when combined with the block, produces a hash smaller than the difficulty target. SHA256
is a one-way cryptographic hashing function used in bitcoin. SHA256 takes a byte array of any size as
input and produces an output byte array of 32 bytes (256 bits).

In the code that we have provided, the difficulty target is expressed as the number of leading zeros of
the hash, and the block is constituted by the Task object. The mine method () finds a nonce so that
SHA256(task.getBytes()) has at least 17 leading zeros. Finding the nonce becomes exponentially harder
as the number of leading zeros increases, thus it constitutes the proof of work. Verifying the
correctness of a block is fast because it requires a single computation of SHA256.

5.3 Load Migration

This assignment requires nodes to coordinate among themselves to load balance tasks. Note that since
each node generates a random number of tasks, task skews are very likely. Depending on the
distribution of tasks, the nodes should initiate pair-wise load balancing maneuvers to balance workload.

After a node generates a set of tasks, it sends a message around this ring (in the clockwise direction)
identifying the number of tasks that it has generated. Each node uses this information to track the total
number of tasks within the system.

1. Given that there are N nodes in the system, this allows each node to independently compute
the total number of tasks in the system. Also, each node is able to estimate the work (number
of tasks) that it should complete in a load balanced system.

2. Each node uses this information to reapportion workloads in a pair-wise fashion. Consider two
nodes A (lightly loaded) and B (heavily loaded). A might either pull tasks from B; alternatively,
B might push some tasks to A.

3. One of the goals of this assignment is to damp oscillatory behavior. That is, we cannot have
workloads migrating back-and-forth between nodes. One way to accomplish this is that tasks
that have migrated to another node are no longer eligible to be migrated to some other node as
part of rebalancing maneuvers. Another refinement to achieve better load-balancing is to
perform task migrations - be it a push or a pull - in small batches (minimum of 10 tasks).

Page 4 of 7



CS 555: DISTRIBUTED SYSTEMS FALL 2025
Department of Computer Science URL: http://www.cs.colostate.edu/~csx55
Colorado State University Professor: Shrideep Pallickara

5.4 Outputs
The registry node should be used to retrieve task completion statistics from each node. Here is an
example of output with 10 nodes and 100 rounds.

Number of Number of pulled Number of pushedNumber of Percent of total

generated tasks ftasks tasks completed tasks tasks performed
Node1 52989 21650 23510 51129 10.09917652
Node2 50218 23590 23110 50698 10.01404392
Node3 51949 22220 23100 51069 10.08732512
Node4 52257 22470 23800 50927 10.05927679
Node5 51557 22300 23140 50717 10.01779686
Node6 49142 22130 21170 50102 9.896319941
Node7 18545 22750 21000 50295 9.934441967
Node8 49483 22720 21790 50413 9.957749734
Node9 15173 25660 20620 50213 9.918245044
Node10 pH4956 20460 24710 50706 10.0156241
Total 506269 225950 225950 506269 100

e Number of generated tasks: This contains information about the number of tasks that were
generated by each node across the specified rounds.

e Number of pulled tasks: This corresponds to the total humber of tasks pulled by the node i.e.,
the total humber of completed tasks that did not “originate” at the node in question.

e Number of pushed tasks: This corresponds to the number of tasks that were offloaded by this
node to some other node.

e Number of completed tasks: This corresponds to the total number of tasks that were completed
at any given node.

e Percent of total tasks performed: This identifies the percentage of all tasks that were completed
at the node in question.

Note that several relationships hold across these variables. For example, the number of completed tasks
is equal to the number of generated tasks plus the humber of pulled tasks minus the number of pushed
tasks.

All the mined tasks should also be printed by the node on which they are mined (do not print them on
the Registry). Each task should be printed on a separate line. Use the toString() method of the Task
class. We will use this during grading to verify correctness, recency (i.e., nothing was hardcoded), and
the IP addresses where your blocks were generated. The total number of printed tasks should be equal
to the total number of completed tasks that is reported in the table.

Note that like in HW1, the table must be printed in space-separated form. The header of the table
is not required. The first column must contain <ip>:<port> for each node. For example, if Nodel has
ip=192.168.1.10 and port=5001, then the first row of the table must be:

192.168.1.10:5001 52989 21650 23510 51129 10.09917652

Page 5 of 7



CS 555: DISTRIBUTED SYSTEMS FALL 2025
Department of Computer Science URL: http://www.cs.colostate.edu/~csx55
Colorado State University Professor: Shrideep Pallickara

6 Parameters and Program Execution

Here are the arguments that will be specified during program execution.

java csx55.threads.Registry portNum
Commands issued at the registry:
setup-overlay thread-pool-size

start number-of-rounds

java csx55. threads.ComputeNode registry-host registry-portNum

thread-pool-size | This parameter refers to the thread pool size and represents the number of
threads that will be created upon start up. Once started, the threads must never
exit their run () method till such time that the entire computation has been
completed.

number-of-rounds | This corresponds to the number of rounds of task generation performed by each
node in the system

7 Points distribution:

2 point Initialization of the ring topology overlay. This means that the registry and computational
nodes have exchanged messages that facilitates creation of the overlay.

2 points Correct, non-stalling execution of program in a multi-threaded environment.

2 points Load balancing of the workloads. Each node should have roughly equal number (within
10% of the average) of computational tasks that were performed.

2 points Program executes correctly with thread pools of different sizes.

2 points Program executes commensurately faster with 10 threads within each pool than it does
for 1 thread.

Threads in a thread-pool must be created only once. There is a -1 point penalty for violating this rule.

8 Third-party libraries and restrictions:

The assignment must be implemented using the core packages in Java. However, you cannot use thread
pool implementations that are available in the Java language library. You are not allowed to use any
external jar files. You can discuss the project with your peers at the architectural level, but the project
implementation is an individual effort.

Page 6 of 7



CS 555: DISTRIBUTED SYSTEMS FALL 2025
Department of Computer Science URL: http://www.cs.colostate.edu/~csx55
Colorado State University Professor: Shrideep Pallickara

9 Milestones:

You have 4 weeks to complete this assignment. The weekly milestones below correspond to what you
should be able to complete at the end of every week.

MiLesToNE 1 [WEEK 1]: The ring topology is fully set up and includes support for configuration of a thread
pool of specific size is complete.

MiLESTONE 2 [WEEK 2]: Robust prototype implementation of the thread pool is complete, and individual
task executions are completed and confined to a single thread.

MiLesTONE 3 [WEEK 3]: Identification of load skews across different nodes is complete. Preliminary support
for load balancing maneuvers via a pairwise pull or push is complete. Checks to see if the system load
exhibits oscillatory behavior is complete.

MiLEsSTONE 4 [WEEK 4]: Iron out any wrinkles that may preclude you from always getting the correct
outputs.

10 What to Submit

Use using CANVAs to submit a single .tar file that contains:
e all the Java files related to the assignment (please document your code)
e thebuild.gradle file you use to build your assignment
e a README.txt file containing a manifest of your files and any information you feel the GTA needs
to grade your program.

Filename Convention: You may call your support classes anything you like. All classes should reside
in a package called ecsx55. threads. The archive file should be named as <FirstName>-<LastName>-
HW2.tar. For example, if you are Cameron Doe then the tar file should be named Cameron-Doe-HW?2.tar.

11 Change History

Version | Date Change
1.0 9/10/2025 First public release of the assignment.

Page 7 of 7



