CS 555: DISTRIBUTED SYSTEMS FALL 2025
Department of Computer Science URL: http://www.cs.colostate.edu/~csx55
Colorado State University Professor: Shrideep Pallickara

Homework 3
IMPLEMENTING THE PASTRY PEER TO PEER NETWORK
VERSION 1.1

Due DATE: Wednesday October 29%, 2025 @ 8:00 pm

OBJECTIVE

The objective of this assignment is to build a simple peer to peer network where individual peers have
16-bit identifiers. This assignment has several sub-items associated with it: this relates to constructing
the logical overlay and traversing the network efficiently to store and retrieve content. This
assignment will be modified to clarify any questions that arise, but the crux of this assignment will not
change.

All communications in this assignment are based on TCP. The assignment must be implemented in
Java and no external jar files or libraries are allowed. You must develop all functionality yourself. This
assignment may be modified to clarify any questions (and the version number incremented), but the
crux of the assignment and the distribution of points will not change. You are required to work alone
on this assignment. Use of GenAl tools is expressly prohibited; see the textbox below. This
assignment will account for 10 points towards your cumulative course grade. There are several
components to this assignment, and the points-breakdown is listed in the remainder of the text. This
assignment is to be done individually.

Generative Al Use and Consequences

Use of Al tools such as ChatGPT, Claude, Github Co-Pilot, or anything of their kind to
write or “improve” your code or written work at *any* stage is prohibited; this
includes the ideation phase. It is your responsibility to ensure that you don’t have the
GitHub Co-Pilot extension installed in your IDE; assignment solutions generated by
Co-Pilot aren’t written by you. Turning in code or an essay written by generative Al
tools will be treated as turning in work created by someone else, namely an act of
plagiarism and/or cheating. At a minimum, this will result in a 100% deduction (i.e.,
you will receive a -10/10). To ensure fairness and maintain integrity, grading will
also include code reviews, interviews, and on-the-spot code modifications.

Ultimately, you will get out of the class what you put in. Simply copying and pasting
code from generative Al tools is not only unethical, it robs you of the chance to learn.
Here are four reasons why these generative Al tools undercuts your own education:

1. They take away the struggle that leads to understanding. They rob you of the
ability to think and learn the concepts for yourself. Solving problems yourself
is how concepts stick. If the Al does the work, what's left for you to learn?

2. You will struggle with the in-classroom quizzes and exams where you will not
have access to these tools.

3. Yes, Al tools will become an important part of a software engineer's workflow.
But to use them effectively later, you first need solid expertise in the subject
matter; and, that only comes from practicing without them.

4. These tools are prone to generating imperfect or even incorrect solutions, so
trusting them blindly can lead to bad consequences.

Page 1 of 9

CS 555: DISTRIBUTED SYSTEMS FALL 2025
Department of Computer Science URL: http://www.cs.colostate.edu/~csx55
Colorado State University Professor: Shrideep Pallickara

Peer Identifiers

Each peer has a 16-bit identifier i.e. the total number of peers in the system can be about 64,000. The
system should support specification (at the command line) of an identifier during startup of peer. Note
the identifiers should be based on hexadecimals; they hexadecimal identifiers harnessed during
routing. I have attached my Java code for converting a Hex String into a byte[] and vice-versa in the
appendix portion of this assignment. Use this also for printing out the entries in the routing table and
so forth. This feature of assigning identifiers statically to nodes will be used during the scoring
process.

1 The Discovery Node

There will also be a discovery node in the system that maintains information about the list of peers in
the system. Every time a peer joins or exits the system it notifies this discovery node. The registration
information includes information about the peer such as:

e Its 16-bit identifier

e The {host:port} information (please use TCP for communications)
You are not required to handle collisions in the ID space. We will used unique IDs when testing your
submissions.

The discovery node has been introduced here to simplify the process of discovering the first peer that
will be the entry point into the system. The discovery node is ONLY responsible for returning ONE
random node from the set of registered nodes

If the discovery node is used for anything else there will be a 9 point deduction. An example of
misusing the discovery node is to use it to give a new node information about all nodes in the system:
such a misuse will defeat the purpose of this assignment.

2 Protocol for Routing Content in the P2P Network

The primary functionality provided by the DHT is the lookup operation. A /lookup(key) operation
identifies the node with the numerically closest identifier to the key. The routing algorithm for the DHT
involves two data structures that assist in routing: (1) Leaf Set and (2) Routing table.

Routing can be done using just the Leaf Set; though the routing solution converges in this case, the
solution is inefficient. The best routing solution combines both the Leaf Set and the Routing Table.
Your implementation should support the solution that combines the Leaf Set and the
Routing Table. The description that follows in the remainder of the assignment is based on the
Pastry algorithm as described in our recommended text.

2.1 Leaf Set

At a given peer, this data structure is responsible for tracking the 2/ neighbors of that peer; [to the
right of the peer and [/ to its left. The DHT ID space can be thought of as being organized as a ring: 0O-
(2%6-1). The neighbors refer to peers whose identifiers are numerically closest to the peer in question.
So, if there is a set of peers in the system with IDs: 53, 65, 69, 73, 83, 92. Then the Leaf Set at 69,
when [=2, is {53, 65, 73, and 83}.

Page 2 of 9

CS 555: DISTRIBUTED SYSTEMS FALL 2025
Department of Computer Science URL: http://www.cs.colostate.edu/~csx55
Colorado State University Professor: Shrideep Pallickara

The simplest routing solution using the Leaf Set involves taking hops (of size >0 and <= /) to reach
the destination. At each peer, you will choose a hop that gets you close to the destination; so, in most
cases, you will be taking / hops at each peer as you try to get closer to the destination, before using a
hop of size 1. For a system with N peers, it will require about N/2/ hops to deliver a message using
only the Leaf Set (as can be seen, this is very inefficient).

For the purposes of this assignment /=1 i.e. your Leaf Set at each peer involves 2 (numerically)
closest peers one with ID greater and one with ID lower than the peer.

2.2 The Routing Table

The routing table maintains information about several peers in the system. All peer identifiers in the
DHT are viewed as hexadecimal values. The routing table classifies peer identifiers based on their
hexadecimal prefixes. The table has as many rows as there are hexadecimal digits in the peer
identifier. Thus, in our case, with 16-bit identifiers, there will be 16/4 = 4 rows. Any row in this table
contains 16 entries: 1 for each possible value of the nth hexadecimal digit. The routing table excludes
entries/values that correspond to local peer’s identifier. As can be seen the routing table (depicted in
Figure 1) at a peer, has increased density of coverage for peers with IDs that are numerically closer to
its own. The “n” in the cells refers to node handles; each cell contains the IP address and identifier of
one peer that matches the prefix criteria. Note that some of the cells may be empty since the Routing
Table may not be fully populated.

Identifier Prefixes and corresponding node handles n

2 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65
0 1 2 3 4 5 6 7 8 9 A B C D E F
n n n n n n n n n n n n n n n

3 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65
A0 Al A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
n n n n n n n n n n n n n n n

Figure 1: Example routing table at a node with identifier 65A1. Each cell contains the IP address and identifier of
one peer that matches the prefix criteria. Note that some of the cells may be empty.

The routing solution that uses the Routing Table and the Leaf Set provides the best routing
characteristics. Specifically, the algorithm routes requests to any node in O(log N) messages.

Let’s say that you receive a message from a peer A with the intended destination of D. You will begin
by comparing the hexadecimal representations for peers A and D from left-to-right to discover, p,
their longest common prefix. You will then consult the routing table at A using the p (that we just

Page 3 of 9

CS 555: DISTRIBUTED SYSTEMS FALL 2025
Department of Computer Science URL: http://www.cs.colostate.edu/~csx55
Colorado State University Professor: Shrideep Pallickara

computed) as the row offset. The first non-matching digit in D is used as the column offset, to access
the required element in the table. The table construction should ensure that this cell contains the
address of the peer that has (p +1) prefixes in common with D.

Another check that is performed is if D is in the leaf set of A. If it is, the routing converges and after
routing to the destination D no further steps need to be performed.

2.3 Addition of a New Peer and Construction of the Routing Table

New nodes use a joining protocol. This protocol allows a new peer to acquire its routing table and leaf
set contents; this protocol also includes notifying other nodes of changes that they must make to their
tables.

Let’s say that a new peer joins the system and this new node’s identifier is X. This new node contacts
it's entry-point node A using the Discovery Node. Node X sends a special join request message to A
and gives X as its destination. This node A dispatches the join message via the DHT to an existing
node with an identifier that is numerically closest to X; we will call this the destination node Z.

The join message is routed through the network: A, Z and intermediate nodes (B, C, ...). This results
in the transmission of relevant parts of their routing tables and leaf sets to X. @ X examines and
constructs its own routing table and leaf set from the: entry point peer, intermediate peers, and the
destination peer.

In the original protocol, the node that serves as the entry (A) has network proximity to the new node
X. We will be running our assignment in a local cluster, so this technically moot in our case. However,
similar to the original algorithm, we will assume that the first row of A’s table is a good initial choice
for X i.e. A and X will have the same first row. Note: the Routing Tables uses 0-based row indexing
i.e. the indices start at 0.

A’s table is not relevant for the second row because the GUIDs for X and A may not share the 1st
digit. But the routing algorithm ensures that X and B’s GUID do share the first hexadecimal digit. So
the second row of B’s routing table B; is a suitable initial value for X;. Similarly, C; is suitable for X>
and so on.

Since Z’s identifier is numerically closest to X’s. X's ideal leaf set will differ from Z’'s by just one
member. This is eventually optimized through interaction with the neighbors.

Once X has constructed the its leaf set and routing table, X sends its contents to all nodes identified in
the leaf set and the routing table. The nodes that receive these updates, adjust their own tables to
incorporate the node.

3 Storing data items

You must use complete routing solution (encompassing the routing table and the leaf set) to store
data items at the appropriate node. A data item with a key k will be stored at the peer with the closest
numerical identifier (in the case of ties choose the peer with the higher identifier). The data item that
will be given to you will include images, text, and other types. To support this feature, you will

Page 4 of 9

CS 555: DISTRIBUTED SYSTEMS FALL 2025
Department of Computer Science URL: http://www.cs.colostate.edu/~csx55
Colorado State University Professor: Shrideep Pallickara

develop a StoreData program that accepts as input the file that needs to be stored. This StoreData
program contacts a random peer (you can contact the Discovery node to retrieve this information).
The StoreData program will first compute the 16-bit digest (appendix A) for the file hame and then
use this hash to lookup the peer where it should be stored: you will be contacting the aforementioned
random peer to initiate this lookup; the node that gets back to you will be the node that is most
suitable to store your data. The file is then transferred to that suitable peer, which is responsible for
storing the file in the /tmp/<peer-id> directory of the machine that it is running on.

4 Diagnostics

To make sure that things are progressing correctly this assignment requires that several diagnostic
information be printed on the console. These include:
1. The routing table and the leaf set at a node
2. The list of files managed by the node: This would be stored in the /tmp directory of the
machine on which the peer is running
3. Print out a message every time you route a query: This message should indicate the hop
number that it corresponds to in the routing path. So, if a lookup() operation has bounced off
of 3 nodes, and is now received at a node ... it should print a hop count of 4.
a. We will use this information to reconstruct the path which the lookup/successor
operations took.
b. In the absence of this hop information, all that would need to be done is to sort the
peer ids appropriately to simulate the correct path.

5 Third-party libraries and restrictions:

You are not allowed to download any other code from anywhere on the Internet. You are also not
allowed to use RPC or distributed object frameworks to develop this functionality (there is a 10 point
deduction for this). You should not build GUIs for this application; in the context of this assignment
GUI-building is an auxiliary path (there is a 10 point deduction for building a GUI). You can discuss
the project with your peers at the architectural level, but the project implementation is an individual
effort.

6 Testing Scenario

Your submission will be tested with between 10-20 nodes possibly on different machines. The port
number on which your peer runs and listens to for communications should be configurable.

7 Programs, Commands, and Points

You must implement the following three programs with the corresponding commands. Follow the given
formats. In the commands, all strings formatted as <example> are replaced with the corresponding
value. For example, <port> can be replaced with the value 12345.

Discover Node

Page 5 of 9

CS 555: DISTRIBUTED SYSTEMS FALL 2025
Department of Computer Science URL: http://www.cs.colostate.edu/~csx55
Colorado State University Professor: Shrideep Pallickara

This program keeps track of the peers in the ring and returns a random peer to new nodes.

Start:
java csx55.pastry.node.Discover <port>

Commands and example outputs:
list-nodes

12.34.56.78:4821, a3f2
201.122.8.199:17345, 4c9b
77.88.99.11:8020, 1d7e
153.6.240.4:6550, 9b01

Note that the command prints ips, ports, and ids of every node currently in the ring. 1pt

Peer Node

This program is a peer in the ring.

Start:

Jjava csx55.pastry.node.Peer <discover-host> <discover-port> <id>

The id is specified in hexadecimal
Commands and example outputs:

id
47ab

This prints the id of the node. 1pt

leaf-set
23.45.67.89:3344, 1a2b
198.51.100.23:5500, bf3c

This prints the leaf-set for the node. This includes ip, port, and id for each of the two entries. The leaf-
set is sorted by id. 1pt

routing-table
0-:,1-110.50.67.25:57414,2-:,3-130.207.99.82:60275,4-62.182.9.150:12939,5-:,6-97.104.137.136:27330,7-
155.146.28.146:7495,8-238.201.43.107:31197,9-30.122.170.145:58399,a-79.117.55.241:12060,b-:,c-
164.35.113.175:16229,d-244.177.7.40:19705,e-245.109.105.22:39855,f-41.117.89.52:45487
60-:,61-:,62-:,63-:,64-:,65-:,66-:,67-:,68-:,69-:,6a-:,6b-:,6¢c-:,6d-97.104.137.136:27330,6e-:,6f-:
6d0-97.104.137.136:27330,6d1-:,6d2-:,6d3-:,6d4-:,6d5-:,6d6-:,6d7-:,6d8-:,6d9-:,6da-:,6db-:,6dc-:,6dd-:,6de-
:,6df-:
6d00-:,6d01-:,6d02-:,6d03-:,6d04-97.104.137.136:27330,6d05-:,6d06-:,6d07-:,6d08-:,6d09-:,6d0a-:,6d0b-
:,6d0c-:,6d0d-:,6d0e-:,6d0f-:

This prints the full routing table for the node. Follow section 2.2. The routing table is comprised of 4
rows. Rows are separated by the new line character. Each row contains 16 cells, cells are comma-

separated, each cell contains <id>-<ip>:<port>. Leave ip and port empty if there are no values. 1 pt
list-files

Page 6 of 9

CS 555: DISTRIBUTED SYSTEMS FALL 2025
Department of Computer Science URL: http://www.cs.colostate.edu/~csx55
Colorado State University Professor: Shrideep Pallickara

test.png, 9c2b
file.txt, 9c65

This lists all files currently stored on this node. 1 pt

exit

This command triggers an exit from the ring and kills the peer node. 1pt

DataStorage Program
The DataStorage program executes one store/retrieve operation and then terminates immediately.

Start command:
java csx55.pastry.node.Data <discover-host> <discover-port> <mode> <path>

There are two possible modes, store and retrieve.

Example of storing a file:

java csx55.pastry.node.Data denver 12345 store ./images/test.png

The image is located at ./images/test.png, but only the name test.png is used for the item key to
store the image. The image must be stored by the correct peer node. The peer node must store it
inside a folder <peer-id>/.

The output of this program must be the list of ids of all nodes on the route followed by the id of the
item being stored.

For example:

la3f

2b4c

3eld

7f0a

9c2b

In this case the route is 1a3f -> 2b4c -> 3eld -> 7f0a and the id of the image is 9c2b. 2pt

Example of downloading a file:

java csx55.pastry.node.Data denver 12345 retrieve ./downloads/test.png

The images must be downloaded to ./downloads/test.png, but only the name test.png is used for the
item key to retrieve the image.

The output of this program is the same as the output for storing a file. 2pt

Restrictions
e Programs should not be launched from an IDE such as Eclipse.
e Java object serialization should not be used when storing files in the file system.

General Recommendations
e It is recommended to use java.util.logging for printing logs instead of using standard
system output.

Page 7 of 9

CS 555: DISTRIBUTED SYSTEMS FALL 2025
Department of Computer Science URL: http://www.cs.colostate.edu/~csx55
Colorado State University Professor: Shrideep Pallickara

e It is encouraged to create scripts to automate tasks such as compiling source code and
launching programs.

e When you are launching processes on 25 machines, please do not login to each one manually
... use a script instead.

8 What to Submit

Use CANvAs to submit a single .tar file that contains:

« all the Java files related to the assignment (please document your code)

ethe build.gradle file you use to build your assignment

» a README.txt file containing a manifest of your files and any information you feel the TAs needs to
grade your program.

Software versioning: Java 11 and Gradle version 8.3

This environment is provided on CS lab machines using module load in Bash:
module load courses/cs455
module load courses/cs555

Filename Convention: The class names for your peer node and discover nodes should be as
specified in Section 7. You may call your support classes anything you like. All classes should reside in
a package called csx55.pastry. The archive file should be named as
<FirstName>_<LastName>_HW3.tar. For example, if you are Cameron Doe then the tar file should be
named Cameron-Doe-HW3.tar.

9 Version Change History

Version | Date Change
1.1 10/2/2025 Example outputs have been expanded.
1.0 10/1/2025 First release of the assignment with Appendix A and Appendix B.

Page 8 of 9

CS 555: DISTRIBUTED SYSTEMS FALL 2025

Department of Computer Science URL: http://www.cs.colostate.edu/~csx55

Colorado State University Professor: Shrideep Pallickara
Appendix A

/ * %

* This method converts a set of bytes into a Hexadecimal representation.
*/
public String convertBytesToHex (byte[] buf) {

StringBuffer strBuf = new StringBuffer();

for (int i = 0; i < buf.length; i++) {
int byteValue = (int) buf[i] & Oxff;
if (byteValue <= 15) {
strBuf.append ("0");
}
strBuf.append (Integer.toString (bytevalue, 16));
}

return strBuf.toString();

/**
* This method converts a specified hexadecimal String into a set of bytes.
*/
public byte[] convertHexToBytes (String hexString) {
int size = hexString.length();
byte[] buf = new bytel[size / 2];

int 3 = 0;
for (int 1 = 0; 1 < size; i++) {
String a = hexString.substring(i, i + 2);

int valA = Integer.parselnt(a, 16);
i++;

buf[j] = (byte) valA;
J++;
}

return buf;

/**
* This method computes the 16-bit digest of a file name.
*/

public static byte[] hashl6(String fileName) {
int h = fileName.hashCode() & OxFFFF;
byte[] result = new byte[2];
result[0] = (byte) ((h >>> 8) & OxFF);
result[l] = (byte) (h & OxFF);
return result;

Page 9 of 9

