CS 555: DISTRIBUTED SYSTEMS FALL 2025
Department of Computer Science URL: http://www.cs.colostate.edu/~csx55
Colorado State University Professor: Shrideep Pallickara

PROGRAMMING ASSIGNMENT 4

BUILDING A DISTRIBUTED, REPLICATED, AND FAULT TOLERANT FILE SYSTEM:
CONTRASTING REPLICATION AND ERASURE CODING

Version 1.1
Due DATE: Wednesday November 19, 2025 @ 8:00 pm

OBJECTIVE
The objective of this assignment is to build a distributed, failure-resilient file system. The fault tolerance
for files is achieved using two techniques: replication and erasure coding. As part of this assignment,
you should identify the trade-off space involving these techniques. For example, your analysis could
contrast storage efficiency, CPU overheads, and memory utilization. This assignment has several sub-
items associated with it. There are 3 programs that you need to develop.
A Chunk Server responsible for managing file chunks. There will be one instance of the chunk
server running on each machine.
1. A controller node for managing information about chunk servers and chunks within the system.
There will be only 1 instance of the controller node.
2. Aclient which is responsible for storing, retrieving, and appending files in the system. The client
is responsible for splitting a file into chunks and assembling the file back using chunks during
retrieval.
All communications in this assignment are based on TCP. The assignment must be implemented in Java
and the external jar files that you can use are listed towards the end of the assignment. You must
develop all functionality yourself. This assignment may be modified to clarify any questions (and the
version number incremented), but the crux of the assignment and the distribution of points will not
change. This assignment will account for 10 points towards your cumulative course grade. There are
several components to this assignment, and the points-breakdown is listed in the remainder of the text.
This assignment is to be done individually.

Generative Al Use and Consequences

Use of Al tools such as ChatGPT, Claude, Github Co-Pilot, or anything of their kind to write

or “improve” your code or written work at *any* stage is prohibited; this includes the

ideation phase. It is your responsibility to ensure that you don’t have the GitHub Co-Pilot

extension installed in your IDE; assignment solutions generated by Co-Pilot aren’t written

by you. Turning in code or an essay written by generative Al tools will be treated as

turning in work created by someone else, namely an act of plagiarism and/or cheating.

At @ minimum, this will result in a 100% deduction (i.e., you will receive a -10/10).

To ensure fairness and maintain integrity, grading will also include code reviews,

interviews, and on-the-spot code modifications.

Ultimately, you will get out of the class what you put in. Simply copying and pasting code
from generative Al tools is not only unethical, it robs you of the chance to learn. Here are
four reasons why these generative Al tools undercuts your own education:

1. They take away the struggle that leads to understanding. They rob you of the
ability to think and learn the concepts for yourself. Solving problems yourself is
how concepts stick. If the AI does the work, what's left for you to learn?

2. You will struggle with the in-classroom quizzes and exams where you will not have
access to these tools.

3. Yes, Al tools will become an important part of a software engineer's workflow. But
to use them effectively later, you first need solid expertise in the subject matter;
and, that only comes from practicing without them.

4. These tools are prone to generating imperfect or even incorrect solutions, so
trusting them blindly can lead to bad consequences.

Page 1 of 10

CS 555: DISTRIBUTED SYSTEMS FALL 2025
Department of Computer Science URL: http://www.cs.colostate.edu/~csx55
Colorado State University Professor: Shrideep Pallickara

1 Fault Tolerant File System Design
In our discussions, we first start with fault tolerance using replication and then describe how the fault
tolerance functionality achieved using replication can be achieved using erasure coding.

1.1 Fault Tolerance Using Replication

In this file system, portions (or chunks) of a file are dispersed over the set of available machines. There
are multiple chunk servers in the system: on each machine there can be at most one chunk server that
is responsible for managing chunks belonging to different files. A chunk server stores these chunks on
its local disk (in most cases, this will be /tmp).

Every file that will be stored in this file system will be split into 64KB chunks. These chunks need to be
distributed on a set of available chunk servers. Each 64KB chunk keeps track of its own integrity, by
maintaining checksums for 8KB slices of the chunk. The message digest algorithm to be used for
computing this checksum is SHA-1: this returns a 160-bit digest for a set of bytes. In Java, you can use
MessageDigest.getInstance ("SHA-1"); Individual chunks will be stored as regular files on the host
file system.

File writes/reads will be done via the chunk servers that hold portions of the file. The chunk server adds
integrity information to individual chunks before writing them to disk. Reads done by the chunk server
will check for integrity of the chunk slices and will send only the content to the client (the integrity
information is not sent).

o1 2 . oN
—_— — —_— CS— Chunk Server

—Chunks of a file scattered
on different machines

Controller | |

Figure 1: A file will be split into chunks and dispersed on multiple machines.

Each chunk being stored to a file needs to have metadata associated with it. If the file name is
/user/bob/experiment/SimFile.data, chunk 2 of this file will be stored by a chunk server as
/tmp/<your netlID>/chunk-server/user/bob/experiment/SimFile.data_ chunk2. This is an example
of the metadata being encoded in the name of the file. There will be other metadata associated with the
chunk: this additional information should not be encoded in the filename; this includes -

e Versioning Information: Multiple writes to the chunk will increment the version number

associated with the chunk.
e Sequencing Information: There will be a sequence number associated with each chunk.
e Timestamp: The time that it was last updated.

Page 2 of 10

CS 555: DISTRIBUTED SYSTEMS FALL 2025
Department of Computer Science URL: http://www.cs.colostate.edu/~csx55
Colorado State University Professor: Shrideep Pallickara

Chunk Server and the Controller Node
Each chunk server will maintain a list of the files that it manages. For each file, the chunk server will
maintain information about the chunks that it holds.

There will be one controller node in the system. This node is responsible for tracking information about
the chunks held by various chunk servers in the system. It achieves this via heartbeats that are
periodically exchanged between the controller and chunk servers. The controller is also responsible for
tracking live chunk servers in the system. The controller does not store anything on disk, all information
about the chunk servers and the chunks that they hold are maintained in memory.

CS1 CS2 CSN

—Chunks and replicas
Controller

Figure 2: Distribution of chunks of a file and their corresponding replicas.

Heartbeats
The Controller Node will run on a preset host/port. A chunk server will regularly send heartbeats to the
controller node. These heartbeats will be split into two
1. A major heartbeat every 60 seconds
2. A Minor heartbeat every 15 seconds
At the 2 minute mark ONLY the major heartbeat should be sent out.

The major heartbeat will include metadata information about ALL the chunks maintained at the chunk
server. The minor heartbeat will include information about any newly added chunks. Additionally, when
a chunk server detects file corruption, it will report this to the Controller Node.

All heartbeats will include information about the total number of chunks and free-space available at the
chunk server. Free space information should be one of the metrics used for distribution of chunks on
the set of available commodity machines. Each chunk server should assume to have 1GB of space at

the beginning, so the free space is equal to 1GB - <space-used-so-far>.

The Controller is responsible for detecting chunk server failures when it does not receive heartbeats.

Page 3 of 10

CS 555: DISTRIBUTED SYSTEMS FALL 2025
Department of Computer Science URL: http://www.cs.colostate.edu/~csx55
Colorado State University Professor: Shrideep Pallickara

Replication of files

Each file should have a replication level of 3; this means that every chunk within the file should be
replicated at least 3 times. When a client contacts the Controller node to write a file, the Controller will
return a list of 3 chunk servers to which a chunk (64KB) can be written. The client then contacts these
chunk servers to store the file. Rather than write to each chunk server directly, if there are 3 chunk
servers A, B and C that were returned by the controller, the client will only write to chunk server A,
which is responsible for forwarding the chunk to B, which in turn is responsible for forwarding it C.
Propagating chunks in this fashion has the advantage of utilizing the bandwidths more efficiently. After
the first 64KB chunk of a file has been written, the client (this should be managed transparently by your
API) contacts the Controller to write the next chunk and repeat the process. A given chunk server cannot
hold more than one replica of a given chunk.

Chunk data will be sent to the chunk servers and not the controller. The controller is only responsible
for pointing the client to the chunk servers: chunk data should not flow through the controller.

Disperse a file on a set of available chunks servers (1 point)

You will take a file and ensure the storage of chunks of this file on different chunk servers. Each chunk
of the file should be replicated 3 times. This chunk should be available on the local disk (/tmp) of the
chunk server.

Deductions
1. If you use the controller to forward chunk data to the chunk servers (-1 point)
2. If more than 1 replica of a chunk is stored at the same chunk server (-1 point)

The command for the client is:

upload <source> <destination>

Uploads the file in the cluster. <source> is the local path of the file (e.g., ./project/data.txt)
<destination> is the path in the cluster where the file will be stored (e.g., project/data.txt).
<destination> can start with a / character or with the file/folder name, but it should not start with ./
The chunks of this file should be stored in different chunk servers under the path
[tmp/<your netID>/chunk server/project/data.txt chunk<chunk number>

Uploading to the same destination of an existing file, should overwrite the existing file.

After issuing the upload command to the client, the client must print a list of ip addresses and ports
where the chunks are stored in the following format.

<ip>:<port>

<ip>:<port>

<ip>:<port>

<ip>:<port>

In this list, the entries 1-3 indicate where chunk 1 is stored (and replicated). Entries 4-6 indicate where
chunk 2 is stored and so on.

Reading a previously stored file (1 point)

During the testing process, you will have to read the file that was previously scattered over a set of
chunk servers. For reading each 64 KB chunk, the client will contact the Controller and retrieve
information about the chunk server that holds the chunk. Assuming there were no failures, the file read
should match the file that was dispersed. The controller must return a random chunk server out of the
set of chunk server that store the specified chunk.

Page 4 of 10

CS 555: DISTRIBUTED SYSTEMS FALL 2025

Department of Computer Science URL: http://www.cs.colostate.edu/~csx55
Colorado State University Professor: Shrideep Pallickara
Deductions

1. If you use the controller to forward chunk data from the chunk servers (-1 point)
2. If more than 1 replica of a chunk is accessed at the same time. A given read should result in
only 1 copy of a chunk being accessed. (-1 point)

The command for the client is:

download <source> <destination>

Downloads the file from the cluster. <source> is the cluster path of the file (e.g., project/data.txt)
<destination> is the local path where the file will be saved (e.g., ./project/data.txt). <source> can
start with a / character or with the file/folder name, but it should not start with a ./

After issuing the download command to the client, the client must print a list of ip addresses and ports
where the chunks are being retrieved from in the following format.

<ip>:<port>

<ip>:<port>

<ip>:<port>

<ip>:<port>

In this list, entry 1 indicates where chunk 1 was stored, entry 2 indicates where chunk 2 was stored and
so on. Note that, unlike for the upload command, here we are not printing the locations of all 3 replicas
of a chunk, but only the one location of the chunk that was used to download the file.

Tampering with chunks (1 point)

Next, we will go to an individual chunk file managed by your File System and tamper this by modifying
the content of the file. This may be deleting/adding a line or a word to the file: this is done outside the
purview of your chunk server. This should cause the file read to report a data corruption, and the specific
chunk (and slice within it) that was corrupted. In this case the output of the download command should
be:

<ip>:<port> <chunk-number> <slice-number> is corrupted

For each corrupted chunks

Note that chunk numbers and slice numbers both start from 1 (not 0).

Deductions
1. If you use the controller to detect corruptions of a chunk replica (-1 point)

The grader will execute the download command

Error Correction (2 points)
The contents of one of your chunks will be tampered with. A subsequent read of the file should detect
this corruption and initiate a fix of this chunk slice.

If it is detected that a slice of a chunk is corrupted, contact other valid replicas of this chunk and perform
error correction for the chunk slice. Error detections will be performed outside the heartbeat control
message scheme. The control flow is through the Controller, but the data flow is between the chunk
servers.

Page 5 of 10

CS 555: DISTRIBUTED SYSTEMS FALL 2025
Department of Computer Science URL: http://www.cs.colostate.edu/~csx55
Colorado State University Professor: Shrideep Pallickara

In this case the download command should first report all corrupted chunks following the format
described in the previous section (Tampering with chunks), then it should print the location of all the
chunks used to reconstruct the file as described in the Reading a previously stored file section.

Coping with failures of chunk servers (2 points)

We will terminate one/more of the chunk servers. In response to detection of failures of the chunk
servers, the Controller should contact chunk servers that hold legitimate copies of the affected chunks
and have them send these chunks to designated chunk servers. Note: The control flow is through the
Controller, but the data flow is between the chunk servers.

The metadata maintained at the Controller is updated to reflect this. How are reads handled during this
failure?

In this case the download command should first print the list of chunk servers that have failed then it
should download the file and print the normal output. The list of failed chunk servers is in the following
format:

<ip>:<port> has failed

<ip>:<port> has failed

1.2 Fault Tolerance Using Erasure Coding (3 points)

In the previous subsection, fault tolerance was achieved by replicating chunks. The storage requirements
in a replication-based setting increase proportional to the nhumber of replicas. Erasure coding offers an
alternative to achieve the same degree of redundancy without the corresponding increase in storage
costs.

In your scheme with erasure coding, you will take individual chunks, break it into k fragments, expand
and encode with redundant pieces of information, and store across different sets of locations.
Specifically, your chunks will be broken up into k fragments, erasure coded and expanded into n
fragments. These n fragments are then dispersed over the available servers. Note that n must be greater
than k; furthermore, m=n-k is the degree of redundancy since any of the k fragments can be used to
reconstitute the chunk. For the purposes of this assignment, we will work with k=6 and m=3.

Similar to the GPS example that we looked at in class, one way to look at erasure coding is from the
perspective of linear algebra. You have k variables and k+m equations. We will be using Reed-
Solomon as the erasure coding algorithm. The terminology typically used in erasure coding settings
include the following: (1) The first k fragments are often referred to as the primary or data shards, and
(2) the next m fragments are referred to as the parity shards.

The Reed-Solomon encoding/decoding library as well as the following code snippets are adopted from
the open source code implementation available in https://github.com/Backblaze/JavaReedSolomon. The
jar file has been made available on the course website at
http://www.cs.colostate.edu/~csx55/reed-solomon-erasure-coding.jar. The following code
snippet demonstrates how to use the provided library for encoding a given payload using Reed-Solomon
scheme. Code used for some of the data manipulation using Java is omitted for brevity and to focus
more on how to use the encoding and decoding APIs. Please follow the comments closely and implement
the necessary sections. Also this code snippet assumes the number of data shards (k) is 4 and the
number of parity shards (m) is 2.

Page 6 of 10

CS 555: DISTRIBUTED SYSTEMS
Department of Computer Science
Colorado State University

FALL 2025
URL: http://www.cs.colostate.edu/~csx55
Professor: Shrideep Pallickara

public static final int DATA SHARDS = 4;

public static final int PARITY SHARDS = 2;
public static final int TOTAL SHARDS = 6;
public static final int BYTES IN INT = 4;

// file size

int fileSize

(int)

inputFile.length() ;

// total size of the stored data length
fileSize + BYTES IN INT;

of the payload paylod size

int storedSize

// size of a shard. Make sure all the shards are of the same size.
// In order to do this, you can padd 0Os at the end.

// This particular code works for 4 data shards.

// Based on the numer of shards, use a appropriate way to

// decide on shard size.

int shardSize = (storedSize + DATA SHARDS - 1) / DATA SHARDS;

// Create a buffer holding the file size, followed by the contents of

the file
// (and padding if required)
int bufferSize = shardSize * DATA SHARDS;
byte [] allBytes = new byte[bufferSize];

/* You should implement the code for copying the file size,
padding into the byte array in here. */

payload and

// Make the buffers to hold the shards.
byte []1 T[] [TOTAL_SHARDS]

shards

new byte [shardSize];
// Fill in the data shards
for (int 1 = 0; i < DATA SHARDS; i++) {

System.arraycopy (allBytes, i * shardSize, shardSize) ;

shards[i], O,

// Use Reed-Solomon to calculate the parity. Parity codes
// will be stored in the last two positions in 'shards'
ReedSolomon reedSolomon new ReedSolomon (DATA SHARDS,
0,

2-D array.
PARITY SHARDS) ;

reedSolomon.encodeParity (shards, shardSize) ;

// finally store the contents of the 'shards' 2-D array

The corresponding code snippet for decoding and recovering the original file is shown below.

Page 7 of 10

CS 555: DISTRIBUTED SYSTEMS FALL 2025
Department of Computer Science URL: http://www.cs.colostate.edu/~csx55
Colorado State University Professor: Shrideep Pallickara

public static final int DATA SHARDS = 4;
public static final int PARITY SHARDS = 2;
public static final int TOTAL SHARDS = 6;

public static final int BYTES IN INT = 4;

// Read in any of the shards that are present.

// (There should be checking here to make sure the input
// shards are the same size, but there isn't.)

byte [] [] shards = new byte [TOTAL SHARDS] [];

boolean [] shardPresent = new boolean [TOTAL SHARDS];
int shardSize = 0;

int shardCount = 0;

// now read the shards from the persistance store
for (int 1 = 0; i < TOTAL SHARDS; i++) {
// Check if the shard is available.
// If avaialbe, read its content into shards[i]
// set shardPresent[i] = true and increase the shardCount by 1.

// We need at least DATA SHARDS to be able to reconstruct the file.
if (shardCount < DATA SHARDS) {
return;

// Make empty buffers for the missing shards.
for (int 1 = 0; i < TOTAL SHARDS; i++) {
if (!shardPresent[i]) {
shards[i] = new byte [shardSize];

// Use Reed-Solomon to fill in the missing shards
ReedSolomon reedSolomon = new ReedSolomon (DATA SHARDS, PARITY SHARDS) ;
reedSolomon.decodeMissing (shards, shardPresent, 0, shardSize);

In your support for fault tolerance using erasure coding you are allowed to develop your own metadata
schemes. The points distribution for the 3 points for this component are as follows:

1. Successful retrieval and assembly of erasure coded fragments into individual chunks and

reconstruction of the entire file handling corruptions and failures. (3 points)
Commands and output formats are the same as for replication.

Page 8 of 10

CS 555: DISTRIBUTED SYSTEMS FALL 2025
Department of Computer Science URL: http://www.cs.colostate.edu/~csx55
Colorado State University Professor: Shrideep Pallickara

2 Third-party libraries and restrictions:

You are not allowed to use any 3 party libraries other than for the Reed-Solomon Codes. The jar file
for the Reed-Solomon codes will be posted on the course website. You are not allowed to download any
other code from anywhere on the Internet. You are also not allowed to use RPC or distributed object
frameworks to develop this functionality (there is a 10 point deduction for this). You should not build
GUIs for this application; in the context of this assignment, GUI-building is an auxiliary path (there is a
10 point deduction for building a GUI). You can discuss the project with your peers at the architectural
level, but the project implementation is an individual effort.

3 Testing Scenario

Commands to start the controller node (only one command at a time):
java csx55.dfs.replication.Controller portnum

java csx55.dfs.erasure.Controller portnum

Commands to start the chunk server (only one command at a time):
java csx55.dfs.replication.ChunkServer controller-ip controller-port
java csx55.dfs.erasure.ChunkServer controller-ip controller-port

Commands to start the client (only one command at a time):
java csx55.dfs.replication.Client controller-ip controller-port
java csx55.dfs.erasure.Client controller-ip controller-port

We will test “replication” mode first and then “erasure” mode. We will never test “replication” and
“erasure" mode together.

We will test your code with 1 controller node and between 10 and 20 chunk server nodes. We will
stage large files, perform chunk corruptions and see if the system is able to detect, and crucially,
recover from these data corruptions.

4 Rubric:
The auto-grader will assign points in this order
1 point For correctly storing a file.
1 point For correctly retrieving a file.
1 point For reporting a corrupted chunk.
2 points For fixing the corrupted chunk and correctly retrieving the file.
2 points For detecting a failed chunk server, restoring the replication of chunks, and correctly
retrieving the file.
3 points For doing all the above with erasure coding.

Page 9 of 10

CS 555: DISTRIBUTED SYSTEMS FALL 2025
Department of Computer Science URL: http://www.cs.colostate.edu/~csx55
Colorado State University Professor: Shrideep Pallickara

5 What to Submit
Use CANvaAs to submit a single .tar file that contains:

e The src folder containing all the Java files related to the assignment (please document your
code)

e the build.gradle file you use to build your assignment

e A README.txt file containing a description of each file and any information you feel the GTA
needs to grade your program.

Filename Convention: All classes should reside in a package called e¢sx55.dfs. The archive file should
be named as <FirstName>-<LastName>-HW<x>.tar. For example, if you are Cameron Doe then the
tar file should be named Cameron-Doe-HW4.tar.

6 Version Change History

This section will reflect the change history for the assignment. It will list the version number, the date
it was released, and the changes that were made to the preceding version. Changes to the first public
release are made to clarify the assignment; the spirit or the crux of the assignment will not change.

Version | Date Change

1.0 10/22/2025 | First public release of the assignment

1.1 11/11/2025 | Modified the path where ChunkServers should store there chunks. E.g.,
/tmp/chunk server becomes /tmp/<your netID>/chunk server.

Page 10 of 10

