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The lore of  Ahmdahl’s law

Within each program lurks

     a serial soul and a parallel spirit

one runs alone

     the other splits and swarms

The parallel can be broken

     scattered on separate cores

The serial flies solo, immune to the rush 

     needing its jolly time

But as you heap on cores

    the serial swells and comes to the fore

Its shadow the same as before

    but bigger in the grand design

Damping speedup 

    dulling efficiency

teaching the law

    what cannot be split, commands it all
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Frequently asked questions from the last class survey

 ConcurrentHashMap 

 Is 16 generally a good degree of concurrency?

 Because it is using lock striping, when a thread is accessing an element, it is only acquiring 

one lock, correct?

 What happens if there is a concurrent modification?

 Is a weakly consistent iterator like a deepCopy?

 But is it thread-safe? Focus seems to be primarily on performance?

 If you have a Collections.unmodifiable wrapper, do I need to worry 
about ConcurrentModification?

 Is MutablePoint being used in a thread-safe manner because we make 
copies?
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Topics covered in this lecture

 Wrap-up of synchronizers

 Threads in Distributed Servers

 Server design issues
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Latches

 Latch acts as a gate

 Until latch reaches terminal state; gate is closed and no threads can pass

 In the terminal state: gate opens and allows all threads to pass

 Once the latch reaches terminal state?

 Cannot change state again

 Remains open forever
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When to use latches

 Ensure that a computation does not proceed until all resources that it 

needs are initialized

 Service does not start until other services that it depends on have 

started

 Waiting until all parties in an activity are ready to proceed

 Multiplayer gaming
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CountDownLatch

 Allows one or more threads to wait for a set of events to occur

 Latch state has a counter initialized to a positive number

 This is the number of events to wait for

 countDown() decrements the counter indicating that an event has 

occurred

 await() method waits for the counter to reach 0



DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.8

U
si

ng
 C

o
un

tD
o
w

nL
a
tc

h
public class TestHarness {

   public long timeTasks(int nThreads, final Runnable task) 

     throws InterruptedException {

     final CountDownLatch startGate = new CountDownLatch(1);

     final CountDownLatch endGate=new CountDownLatch(nThreads);

     for (int i=0; i < nThreads; i++) {

       Thread t = new Thread() {

         public void run() {

           try {

            startGate.await();

            task.run();

           } finally {

              endGate.countDown();

           }

        }           

       };

      t.start();

     }

   long start = System.nanoTime();

   startGate.countDown();

   endGate.await();

   long end = System.nanoTime();

   return end-start;

}
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Semaphores

 Counting semaphores control the number of activities that can:

 Access a certain resource

 Perform a given action

 Used to implement resource pools or impose bounds on a collection
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Semaphores

 Manage a set of virtual permits

 Initial number passed to the constructor

 Activities acquire and release permits

 If no permits are available?

 acquire blocks until one is available

 The release method returns a permit to the semaphore



DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.11

Semaphores are useful for implementing resource 

pools

 Block if the pool is empty

 Unblock if the pool is non-empty

 Initialize a semaphore to the pool size

 acquire a permit before trying to fetch a resource from pool

 release the permit after putting the resource back in pool

 acquire blocks until the pool is non-empty
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Binary semaphores

 Semaphore with an initial count of 1

 Can be used as a mutex with non-reentrant locking semantics

 Whoever holds the sole permit holds the mutex
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public BoundedHashSet<T> {

   private final Set<T> set;

   private final Semaphore sem;

   public BoundedHashSet(int bound) {

     this.set = Collections.synchronizedSet(new HashSet<T>());

     sem = new Semaphore(bound);

   }

   public boolean add(T o) throws InterruptedException {

     sem.acquire();

     boolean wasAdded = false;

     try {

       wasAdded = set.add(o);

       return wasAdded;

     } finally {

         if (!wasAdded) sem.release();

     } 

   }

   public boolean remove(Object o) {

     boolean wasRemoved = set.remove(o);

     if (wasRemoved) sem.release();

     return wasRemoved;

  }

}
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Barriers

 Barriers are similar to latches in that they block a group of threads till 

an event has occurred

 All threads must come together at barrier point at the same time to 

proceed

 Latches wait for events, barriers wait for other threads



DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.15

Barriers and dinner …

 Family rendezvous protocol

 Everyone meet at Panera @ 6:00 pm;

 Once you get there, stay there … till everyone shows up

 Then we’ll figure out what we do next
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Barriers

 Often used in simulations where work to calculate one step can be 

done in parallel

 But all work associated with a given step must complete before advancing to 

the next step

 All threads complete step k, before moving on to step k+1
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CyclicBarrier

 Allows a fixed number of parties to rendezvous at a fixed point

 Useful in parallel iterative algorithms

 Break problem into fixed number of independent subproblems

 Creation of a CyclicBarrier

 Runnable  cyclicBarrierAction = ... ;

CyclicBarrier cyclicBarrier = 

                  new CyclicBarrier(2,  cyclicbarrierAction);
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class Solver {

   final int N;     final CyclicBarrier barrier;

   class Worker implements Runnable {

     int myRow;

     Worker(int row) { myRow = row; }

     public void run() {

       while (!done()) {

         processRow(myRow);

         try {

           barrier.await();

          } catch (BrokenBarrierException ex) {

           ...

         }

       }

     }

   }

   public Solver(float[][] matrix) {

     data = matrix;     N = matrix.length;

     barrier = new CyclicBarrier(N, new Runnable() { public void run() {

                                                        mergeRows(...);  } });

     for (int i = 0; i < N; ++i)

       new Thread(new Worker(i)).start(); //DO NOT START THREAD in constructor. 

     waitUntilDone();

   }

 }

Source: From the Java API
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Exchanger

 Another type of barrier

 Two-party barrier

 Parties exchange data at the barrier point

 Useful when asymmetric activities are performed

 Producer-consumer problem

 When 2 threads exchange objects via Exchanger

 Safe publication of objects to other party
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Thread Safety: Summary                         [1/4]

 It’s all about mutable, shared state

 The less mutable state there is, the easier it is to ensure thread-safety

 Make fields final unless they need to be mutable

 Immutable objects are automatically thread-safe

 Encapsulation makes it practical to manage complexity
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Thread Safety: Summary                         [2/4]

 Guard each mutable variable with a lock

 Guard all variables in an invariant with the same lock

 Hold locks for the duration of compound actions
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Thread Safety: Summary                         [3/4]

 Program that accesses mutable variables from multiple threads without 

synchronization?

 Broken program

 Include thread-safety in the design process

 Document if your class is not thread-safe

 Document your synchronization policy
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Thread Safety: Summary                         [4/4]

 Rather than scattering access to shared state throughout your 

programs and attempting ad hoc reasoning about interleaved access

 

 Structure program to facilitate reasoning about concurrency

 Use a set of standard synchronization primitives to control access to shared 

state
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PERFORMANCE

Is this the real life? Is this just fantasy?

Caught in a landslide, no escape from reality

Open your eyes, look up to the skies and see

Bohemian Rhapsody; Freddie Mercury; Queen
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Measures of performance

 Service time

 Latency

 Throughput

 Capacity

 Efficiency

 Scalability

How fast?

How much?
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Performance and Scalability

 Tuning for performance

 Do same work with less effort

 Caching, choice of algorithms O(n2) to O(nlogn) 

 Scalability

 Find ways to parallelize problem

 Do more work with more resources

How fast?

How much?
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HOW FAST and HOW MUCH

 Are separate and can (at times) be at odds with each other

 To scale or for better hardware utilization

 We often end up increasing the amount of work for each task

 Divide tasks into multiple pipelined tasks

◼ Orchestration overhead
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The quest for performance

 What do you mean by faster?

 Under what conditions?

 Small or large datasets

 Perform measurements to substantiate arguments

 How often do these conditions arise?

 What are the hidden costs?

 Development/maintenance risks

 Tradeoffs

 Ripple effects of decision
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Avoid premature optimizations

 First make it right, then fast

 Measure, don’t guess

 Quest for performance is one of the biggest source of bugs
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How much can we speed things up?

 Harvesting crops

 The more the number of workers

 The faster the crop can be harvested

 But some things are fundamentally serial

 Adding additional workers does not make the crop grow faster
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The right tool for the right job: Everything is not a 

nail 

 Make sure that problem is amenable to parallel decomposition

 Most programs have a mix of parallelizable and serial 

portions
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Amdahl’s law describes how much a program can be 

theoretically sped up

 F : Fraction of components that must be executed serially

 N : Number of available processors

   

Speedup £
1

F +
(1- F)

N

   

Utilization =
Speedup

N
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As N approaches infinity; maximum speedup 

converges to 1/F

 With 50% serial code

 Maximum speedup is 2

 With 10% serial code

 Maximum speedup is 10

 With N= 10

◼ Speedup = 5.3 at 53% utilization

 With N= 100

◼ Speedup = 9.2 at 9% utilization

What cannot be parallelized (i.e., the serial 

component) only grows in importance! 

The serial part never shrinks; 

      add more processors, and it only looms larger.
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Speedups for different parallelization portions

Source: http://en.wikipedia.org/wiki/Amdahl's_law
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Know what to speed up

Image from: http://en.wikipedia.org/wiki/Amdahl's_law
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Threads in distributed systems: 

Multithreaded clients

 Hide communication latencies

 Initiate communications

 Immediately do something else

 Web browsers

 As soon as main HTML page is fetched

◼ Display it

 Activate threads to retrieve other data types

Interleave

Identical

Code
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Several connections can be opened simultaneously 

 To the same server

 If the server is overloaded; things get even slower

 To replicated servers

 Data transfer in parallel

 Much faster rendering of content
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Multithreaded Servers

 Simplifies server code

 Easier to develop servers that exploit parallelism

 E.g.: Handling concurrent connections

 Each connection managed by a different thread

 Multiple connections handled by a pool of threads
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IMPROVEMENTS WITH THREADS
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Client and Server with Threads

DISK I/O

Client

Requests

Request 

Queue

Server may have

up to N threads

Server
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Server side processing

 Server has queue of requests received from clients

 Server also has a pool of one or more threads

 Each thread repeatedly removes requests & processes it

 Each thread applies the same methods to process the requests

 Each request takes 2 ms of processing PLUS 8 ms of I/O (when server reads 

from disk i.e., no caching)
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Maximum server throughput with 1 thread

 The turnaround time for handling any request is 2+8 = 10 ms

 The server can handle 100 requests per second

 Any new requests that arrive while the thread is handling a request?

 These will be queued
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Server throughput with 2 threads

 We assume that the threads are independently schedulable

 One thread can be scheduled while the other is blocked for I/O

 Thread T2 can process a second request when thread T1 is blocked, and vice 

versa

 This increases throughput … but both threads may be blocked for I/O on the 

single disk drive

 If all I/O requests are serialized and take 8 ms each?

 Maximum throughput is 1000/8 = 125 requests/second
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Server throughput with disk block caching

 Server keeps data that it reads in buffers

 When a server thread tries to retrieve data

 It first examines the cache and avoids disk accesses if it finds data element 
there

 If the hit rate is 75%?

 The mean I/O time per-request reduces to 
      (0.75 x 0 + 0.25 x 8) = 2 milliseconds

 Maximum theoretical throughput?

 Becomes 500 requests per second
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But there are costs associated with caching

 Average processor time for a request increases

 This is because it takes time to search for cached data for every operation

 Let us assume that this is now 2.5 milliseconds

 The server can now handle 1000/2.5 requests per second i.e., 400
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Let’s look at caching plus multiple threads

 Each request takes about 2.5 (processing) + 2 (I/O)

 Total time per request is now 4.5 mSecs when disk accesses are serialized

 Each thread can do 1000/4.5 requests per second i.e., 222 requests/second

 With two threads?

 444 requests/second

 With three threads?

 500 requests (bound by the I/O time)
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Worker pool architecture

 Server creates a fixed pool of worker threads to process requests

 Pool is initialized when server starts up

 Incoming requests are placed into a queue

 Workers retrieve requests (work units) from the queue and process them
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Managing priorities in the worker pool?

 Introduce multiple queues

 Worker threads scan queues in the order of descending priority
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Disadvantages of the worker pool model

 Number of worker threads is fixed

 So, threads in the pool may be too few to adequately cope with the rate of 

requests

 Need to account for coordinated accesses to the shared queue
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Thread-per-request architecture

 Worker thread is spawned for each incoming request

 Worker thread destroys itself after processing request

 Advantages:

 Threads do not contend for the shared work-queue

 Throughput is potentially maximized

 Disadvantage

 Overhead for thread creation and destruction operations
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Thread-per-connection architecture 

 Associates a thread per connection

 New worker thread created when a client makes a connection

 Destroyed when client closes the connection

 Client may make many requests over the connection
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Thread-per-object architecture

 Associate a thread with each remote object

 A separate thread receives requests and queues them

 But there is a queue per-object
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Thread-per-connection & Thread-per-object

 Advantages

 Server benefits from lower thread management overheads compared to 

thread-per-request

 Disadvantages

 Clients may be delayed when a worker thread has several outstanding 

requests, but another thread has no work to perform
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The contents of this slide-set are based on the 

following references

 Distributed Systems: Principles and Paradigms. Andrew S. Tanenbaum and Maarten Van 

der Steen. 2nd Edition. Prentice Hall. ISBN: 0132392275/978-0132392273. 

[Chapter 6, 2]

 Distributed Systems: Concepts and Design. George Coulouris, Jean Dollimore, Tim 

Kindberg, Gordon Blair. 5th Edition. Addison Wesley. ISBN: 978-0132143011. 

[Chapter 7, 14]
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