
COMPUTER SCIENCE DEPARTMENT

CSX55: DISTRIBUTED SYSTEMS

[DISTRIBUTED SERVERS]

Shrideep Pallickara

Computer Science

Colorado State University

The lore of Ahmdahl’s law

Within each program lurks

 a serial soul and a parallel spirit

one runs alone

 the other splits and swarms

The parallel can be broken

 scattered on separate cores

The serial flies solo, immune to the rush

 needing its jolly time

But as you heap on cores

 the serial swells and comes to the fore

Its shadow the same as before

 but bigger in the grand design

Damping speedup

 dulling efficiency

teaching the law

 what cannot be split, commands it all

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.2

Frequently asked questions from the last class survey

 ConcurrentHashMap

 Is 16 generally a good degree of concurrency?

 Because it is using lock striping, when a thread is accessing an element, it is only acquiring

one lock, correct?

 What happens if there is a concurrent modification?

 Is a weakly consistent iterator like a deepCopy?

 But is it thread-safe? Focus seems to be primarily on performance?

 If you have a Collections.unmodifiable wrapper, do I need to worry
about ConcurrentModification?

 Is MutablePoint being used in a thread-safe manner because we make
copies?

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.3

Topics covered in this lecture

 Wrap-up of synchronizers

 Threads in Distributed Servers

 Server design issues

COMPUTER SCIENCE DEPARTMENT

LATCHES

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.5

Latches

 Latch acts as a gate

 Until latch reaches terminal state; gate is closed and no threads can pass

 In the terminal state: gate opens and allows all threads to pass

 Once the latch reaches terminal state?

 Cannot change state again

 Remains open forever

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.6

When to use latches

 Ensure that a computation does not proceed until all resources that it

needs are initialized

 Service does not start until other services that it depends on have

started

 Waiting until all parties in an activity are ready to proceed

 Multiplayer gaming

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.7

CountDownLatch

 Allows one or more threads to wait for a set of events to occur

 Latch state has a counter initialized to a positive number

 This is the number of events to wait for

 countDown() decrements the counter indicating that an event has

occurred

 await() method waits for the counter to reach 0

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.8

U
si

ng
 C

o
un

tD
o
w

nL
a
tc

h
public class TestHarness {

 public long timeTasks(int nThreads, final Runnable task)

 throws InterruptedException {

 final CountDownLatch startGate = new CountDownLatch(1);

 final CountDownLatch endGate=new CountDownLatch(nThreads);

 for (int i=0; i < nThreads; i++) {

 Thread t = new Thread() {

 public void run() {

 try {

 startGate.await();

 task.run();

 } finally {

 endGate.countDown();

 }

 }

 };

 t.start();

 }

 long start = System.nanoTime();

 startGate.countDown();

 endGate.await();

 long end = System.nanoTime();

 return end-start;

}

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.9

Semaphores

 Counting semaphores control the number of activities that can:

 Access a certain resource

 Perform a given action

 Used to implement resource pools or impose bounds on a collection

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.10

Semaphores

 Manage a set of virtual permits

 Initial number passed to the constructor

 Activities acquire and release permits

 If no permits are available?

 acquire blocks until one is available

 The release method returns a permit to the semaphore

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.11

Semaphores are useful for implementing resource

pools

 Block if the pool is empty

 Unblock if the pool is non-empty

 Initialize a semaphore to the pool size

 acquire a permit before trying to fetch a resource from pool

 release the permit after putting the resource back in pool

 acquire blocks until the pool is non-empty

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.12

Binary semaphores

 Semaphore with an initial count of 1

 Can be used as a mutex with non-reentrant locking semantics

 Whoever holds the sole permit holds the mutex

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.13

U
si

ng
 S

e
m

a
p
ho

re
s

to

b
o
u
nd

 a
 c

o
ll
e
ct

io
n

public BoundedHashSet<T> {

 private final Set<T> set;

 private final Semaphore sem;

 public BoundedHashSet(int bound) {

 this.set = Collections.synchronizedSet(new HashSet<T>());

 sem = new Semaphore(bound);

 }

 public boolean add(T o) throws InterruptedException {

 sem.acquire();

 boolean wasAdded = false;

 try {

 wasAdded = set.add(o);

 return wasAdded;

 } finally {

 if (!wasAdded) sem.release();

 }

 }

 public boolean remove(Object o) {

 boolean wasRemoved = set.remove(o);

 if (wasRemoved) sem.release();

 return wasRemoved;

 }

}

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.14

Barriers

 Barriers are similar to latches in that they block a group of threads till

an event has occurred

 All threads must come together at barrier point at the same time to

proceed

 Latches wait for events, barriers wait for other threads

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.15

Barriers and dinner …

 Family rendezvous protocol

 Everyone meet at Panera @ 6:00 pm;

 Once you get there, stay there … till everyone shows up

 Then we’ll figure out what we do next

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.16

Barriers

 Often used in simulations where work to calculate one step can be

done in parallel

 But all work associated with a given step must complete before advancing to

the next step

 All threads complete step k, before moving on to step k+1

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.17

CyclicBarrier

 Allows a fixed number of parties to rendezvous at a fixed point

 Useful in parallel iterative algorithms

 Break problem into fixed number of independent subproblems

 Creation of a CyclicBarrier

 Runnable cyclicBarrierAction = ... ;

CyclicBarrier cyclicBarrier =

 new CyclicBarrier(2, cyclicbarrierAction);

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.18

U
si
n
g
 C

y
li
c

B
a

rr
ie

rs
class Solver {

 final int N; final CyclicBarrier barrier;

 class Worker implements Runnable {

 int myRow;

 Worker(int row) { myRow = row; }

 public void run() {

 while (!done()) {

 processRow(myRow);

 try {

 barrier.await();

 } catch (BrokenBarrierException ex) {

 ...

 }

 }

 }

 }

 public Solver(float[][] matrix) {

 data = matrix; N = matrix.length;

 barrier = new CyclicBarrier(N, new Runnable() { public void run() {

 mergeRows(...); } });

 for (int i = 0; i < N; ++i)

 new Thread(new Worker(i)).start(); //DO NOT START THREAD in constructor.

 waitUntilDone();

 }

 }

Source: From the Java API

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.19

Exchanger

 Another type of barrier

 Two-party barrier

 Parties exchange data at the barrier point

 Useful when asymmetric activities are performed

 Producer-consumer problem

 When 2 threads exchange objects via Exchanger

 Safe publication of objects to other party

COMPUTER SCIENCE DEPARTMENT

THREAD SAFETY SUMMARY

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.21

Thread Safety: Summary [1/4]

 It’s all about mutable, shared state

 The less mutable state there is, the easier it is to ensure thread-safety

 Make fields final unless they need to be mutable

 Immutable objects are automatically thread-safe

 Encapsulation makes it practical to manage complexity

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.22

Thread Safety: Summary [2/4]

 Guard each mutable variable with a lock

 Guard all variables in an invariant with the same lock

 Hold locks for the duration of compound actions

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.23

Thread Safety: Summary [3/4]

 Program that accesses mutable variables from multiple threads without

synchronization?

 Broken program

 Include thread-safety in the design process

 Document if your class is not thread-safe

 Document your synchronization policy

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.24

Thread Safety: Summary [4/4]

 Rather than scattering access to shared state throughout your

programs and attempting ad hoc reasoning about interleaved access

 Structure program to facilitate reasoning about concurrency

 Use a set of standard synchronization primitives to control access to shared

state

COMPUTER SCIENCE DEPARTMENT

PERFORMANCE

Is this the real life? Is this just fantasy?

Caught in a landslide, no escape from reality

Open your eyes, look up to the skies and see

Bohemian Rhapsody; Freddie Mercury; Queen

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.26

Measures of performance

 Service time

 Latency

 Throughput

 Capacity

 Efficiency

 Scalability

How fast?

How much?

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.27

Performance and Scalability

 Tuning for performance

 Do same work with less effort

 Caching, choice of algorithms O(n2) to O(nlogn)

 Scalability

 Find ways to parallelize problem

 Do more work with more resources

How fast?

How much?

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.28

HOW FAST and HOW MUCH

 Are separate and can (at times) be at odds with each other

 To scale or for better hardware utilization

 We often end up increasing the amount of work for each task

 Divide tasks into multiple pipelined tasks

◼ Orchestration overhead

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.29

The quest for performance

 What do you mean by faster?

 Under what conditions?

 Small or large datasets

 Perform measurements to substantiate arguments

 How often do these conditions arise?

 What are the hidden costs?

 Development/maintenance risks

 Tradeoffs

 Ripple effects of decision

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.30

Avoid premature optimizations

 First make it right, then fast

 Measure, don’t guess

 Quest for performance is one of the biggest source of bugs

COMPUTER SCIENCE DEPARTMENT

AMDAHL’S LAW

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.32

How much can we speed things up?

 Harvesting crops

 The more the number of workers

 The faster the crop can be harvested

 But some things are fundamentally serial

 Adding additional workers does not make the crop grow faster

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.33

The right tool for the right job: Everything is not a

nail

 Make sure that problem is amenable to parallel decomposition

 Most programs have a mix of parallelizable and serial

portions

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.34

Amdahl’s law describes how much a program can be

theoretically sped up

 F : Fraction of components that must be executed serially

 N : Number of available processors

Speedup £
1

F +
(1- F)

N

Utilization =
Speedup

N

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.35

As N approaches infinity; maximum speedup

converges to 1/F

 With 50% serial code

 Maximum speedup is 2

 With 10% serial code

 Maximum speedup is 10

 With N= 10

◼ Speedup = 5.3 at 53% utilization

 With N= 100

◼ Speedup = 9.2 at 9% utilization

What cannot be parallelized (i.e., the serial

component) only grows in importance!

The serial part never shrinks;

 add more processors, and it only looms larger.

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.36

Speedups for different parallelization portions

Source: http://en.wikipedia.org/wiki/Amdahl's_law

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.37

Know what to speed up

Image from: http://en.wikipedia.org/wiki/Amdahl's_law

COMPUTER SCIENCE DEPARTMENT

THREADS IN DISTRIBUTED SYSTEMS

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.39

Threads in distributed systems:

Multithreaded clients

 Hide communication latencies

 Initiate communications

 Immediately do something else

 Web browsers

 As soon as main HTML page is fetched

◼ Display it

 Activate threads to retrieve other data types

Interleave

Identical

Code

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.40

Several connections can be opened simultaneously

 To the same server

 If the server is overloaded; things get even slower

 To replicated servers

 Data transfer in parallel

 Much faster rendering of content

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.41

Multithreaded Servers

 Simplifies server code

 Easier to develop servers that exploit parallelism

 E.g.: Handling concurrent connections

 Each connection managed by a different thread

 Multiple connections handled by a pool of threads

COMPUTER SCIENCE DEPARTMENT

AN EXAMPLE OF PERFORMANCE

IMPROVEMENTS WITH THREADS

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.43

Client and Server with Threads

DISK I/O

Client

Requests

Request

Queue

Server may have

up to N threads

Server

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.44

Server side processing

 Server has queue of requests received from clients

 Server also has a pool of one or more threads

 Each thread repeatedly removes requests & processes it

 Each thread applies the same methods to process the requests

 Each request takes 2 ms of processing PLUS 8 ms of I/O (when server reads

from disk i.e., no caching)

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.45

Maximum server throughput with 1 thread

 The turnaround time for handling any request is 2+8 = 10 ms

 The server can handle 100 requests per second

 Any new requests that arrive while the thread is handling a request?

 These will be queued

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.46

Server throughput with 2 threads

 We assume that the threads are independently schedulable

 One thread can be scheduled while the other is blocked for I/O

 Thread T2 can process a second request when thread T1 is blocked, and vice

versa

 This increases throughput … but both threads may be blocked for I/O on the

single disk drive

 If all I/O requests are serialized and take 8 ms each?

 Maximum throughput is 1000/8 = 125 requests/second

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.47

Server throughput with disk block caching

 Server keeps data that it reads in buffers

 When a server thread tries to retrieve data

 It first examines the cache and avoids disk accesses if it finds data element
there

 If the hit rate is 75%?

 The mean I/O time per-request reduces to
 (0.75 x 0 + 0.25 x 8) = 2 milliseconds

 Maximum theoretical throughput?

 Becomes 500 requests per second

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.48

But there are costs associated with caching

 Average processor time for a request increases

 This is because it takes time to search for cached data for every operation

 Let us assume that this is now 2.5 milliseconds

 The server can now handle 1000/2.5 requests per second i.e., 400

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.49

Let’s look at caching plus multiple threads

 Each request takes about 2.5 (processing) + 2 (I/O)

 Total time per request is now 4.5 mSecs when disk accesses are serialized

 Each thread can do 1000/4.5 requests per second i.e., 222 requests/second

 With two threads?

 444 requests/second

 With three threads?

 500 requests (bound by the I/O time)

COMPUTER SCIENCE DEPARTMENT

THREADING ARCHITECTURES FOR

SERVERS

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.51

Worker pool architecture

 Server creates a fixed pool of worker threads to process requests

 Pool is initialized when server starts up

 Incoming requests are placed into a queue

 Workers retrieve requests (work units) from the queue and process them

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.52

Managing priorities in the worker pool?

 Introduce multiple queues

 Worker threads scan queues in the order of descending priority

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.53

Disadvantages of the worker pool model

 Number of worker threads is fixed

 So, threads in the pool may be too few to adequately cope with the rate of

requests

 Need to account for coordinated accesses to the shared queue

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.54

Thread-per-request architecture

 Worker thread is spawned for each incoming request

 Worker thread destroys itself after processing request

 Advantages:

 Threads do not contend for the shared work-queue

 Throughput is potentially maximized

 Disadvantage

 Overhead for thread creation and destruction operations

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.55

Thread-per-connection architecture

 Associates a thread per connection

 New worker thread created when a client makes a connection

 Destroyed when client closes the connection

 Client may make many requests over the connection

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.56

Thread-per-object architecture

 Associate a thread with each remote object

 A separate thread receives requests and queues them

 But there is a queue per-object

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.57

Thread-per-connection & Thread-per-object

 Advantages

 Server benefits from lower thread management overheads compared to

thread-per-request

 Disadvantages

 Clients may be delayed when a worker thread has several outstanding

requests, but another thread has no work to perform

DISTRIBUTED SERVERS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L10.58

The contents of this slide-set are based on the

following references

 Distributed Systems: Principles and Paradigms. Andrew S. Tanenbaum and Maarten Van

der Steen. 2nd Edition. Prentice Hall. ISBN: 0132392275/978-0132392273.

[Chapter 6, 2]

 Distributed Systems: Concepts and Design. George Coulouris, Jean Dollimore, Tim

Kindberg, Gordon Blair. 5th Edition. Addison Wesley. ISBN: 978-0132143011.

[Chapter 7, 14]

	Slide 1: CSx55: Distributed Systems [Distributed Servers]
	Slide 2: Frequently asked questions from the last class survey
	Slide 3: Topics covered in this lecture
	Slide 4: Latches
	Slide 5: Latches
	Slide 6: When to use latches
	Slide 7: CountDownLatch
	Slide 8: Using CountDownLatch
	Slide 9: Semaphores
	Slide 10: Semaphores
	Slide 11: Semaphores are useful for implementing resource pools
	Slide 12: Binary semaphores
	Slide 13: Using Semaphores to bound a collection
	Slide 14: Barriers
	Slide 15: Barriers and dinner …
	Slide 16: Barriers
	Slide 17: CyclicBarrier
	Slide 18: Using Cylic Barriers
	Slide 19: Exchanger
	Slide 20: Thread Safety Summary
	Slide 21: Thread Safety: Summary [1/4]
	Slide 22: Thread Safety: Summary [2/4]
	Slide 23: Thread Safety: Summary [3/4]
	Slide 24: Thread Safety: Summary [4/4]
	Slide 25: Performance
	Slide 26: Measures of performance
	Slide 27: Performance and Scalability
	Slide 28: How fast and How much
	Slide 29: The quest for performance
	Slide 30: Avoid premature optimizations
	Slide 31: Amdahl’s Law
	Slide 32: How much can we speed things up?
	Slide 33: The right tool for the right job: Everything is not a nail
	Slide 34: Amdahl’s law describes how much a program can be theoretically sped up
	Slide 35: As N approaches infinity; maximum speedup converges to 1/F
	Slide 36: Speedups for different parallelization portions
	Slide 37: Know what to speed up
	Slide 38: Threads in Distributed Systems
	Slide 39: Threads in distributed systems: Multithreaded clients
	Slide 40: Several connections can be opened simultaneously
	Slide 41: Multithreaded Servers
	Slide 42: An example of performance improvements with Threads
	Slide 43: Client and Server with Threads
	Slide 44: Server side processing
	Slide 45: Maximum server throughput with 1 thread
	Slide 46: Server throughput with 2 threads
	Slide 47: Server throughput with disk block caching
	Slide 48: But there are costs associated with caching
	Slide 49: Let’s look at caching plus multiple threads
	Slide 50: Threading Architectures for Servers
	Slide 51: Worker pool architecture
	Slide 52: Managing priorities in the worker pool?
	Slide 53: Disadvantages of the worker pool model
	Slide 54: Thread-per-request architecture
	Slide 55: Thread-per-connection architecture
	Slide 56: Thread-per-object architecture
	Slide 57: Thread-per-connection & Thread-per-object
	Slide 58: The contents of this slide-set are based on the following references

