CSX55: DISTRIBUTED SYSTEMS
[DISTRIBUTED SERVERS]
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The lore of Ahmdahl’s law
Within each program lurks

a serial soul and a parallel spirit
one runs alone

the other splits and swarms

The parallel can be broken
scattered on separate cores

The serial flies solo, immune to the rush
needing its jolly time

But as you heap on cores

the serial swells and comes to the fore
Its shadow the same as before

but bigger in the grand design

Damping speedup
dulling efficiency
teaching the law
what cannot be split, commands it all
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Frequently asked questions from the last class survey

ConcurrentHashMap

Is 16 generally a good degree of concurrency?

Because it is using lock striping, when a thread is accessing an element, it is only acquiring
one lock, correct?

What happens if there is a concurrent modification?
Is a weakly consistent iterator like a deepCopy?

But is it thread-safe? Focus seems to be primarily on performance?

If you have a Collections.unmodifiable wrapper, do | need to worry
about ConcurrentModification?

Is MutablePoint being used in a thread-safe manner because we make
copies?
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Topics covered in this lecture
—

7 Wrap-up of synchronizers
o Threads in Distributed Servers

1 Server design issues
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Latches

Latch acts as a gate

Until latch reaches terminal state; gate is closed and no threads can pass

In the terminal state: gate opens and allows all threads to pass

Once the latch reaches terminal state?
Cannot change state again

Remains open forever
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When to use latches

Ensure that a computation does not proceed until all resources that it
needs are initialized

Service does not start until other services that it depends on have
started

Waiting until all parties in an activity are ready to proceed

Multiplayer gaming
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CountDownLatch

Allows one or more threads to wait for a set of events to occur

Latch state has a counter initialized to a positive number

This is the number of events to wait for

countDown () decrements the counter indicating that an event has
occurred

await () method waits for the counter to reach 0
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Using CountDownlLatch

COLOR/

&

public class TestHarness {
public long timeTasks (int nThreads, final Runnable task)
throws InterruptedException {
final CountDownlLatch startGate = new CountDownLatch (1) ;
final CountDownLatch endGate=new CountDownlLatch (nThreads);

for (int 1=0; i1 < nThreads; i++) {

Thread t = new Thread() {
public void run() {
try {

startGate.await () ;

task.run () ;

} finally {
endGate.countDown () ;

}
b

t.start () ;

}
long start = System.nanoTime() ;
startGate.countDown () ;
endGate.await () ;
long end = System.nanoTime () ;
return end-start;

L10.8



Semaphores

Counting semaphores control the number of activities that can:
Access a certain resource

Perform a given action

Used to implement resource pools or impose bounds on a collection
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Semaphores

Manage a set of virtual permits

Initial number passed to the constructor
Activities acquire and release permits

If no permits are available?

acquire blocks until one is available

The release method returns a permit to the semaphore
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Semaphores are useful for implementing resource
pools

Block if the pool is empty
Unblock if the pool is non-empty

Initialize a semaphore to the pool size
acquire a permit before trying to fetch a resource from pool
release the permit after putting the resource back in pool

acquire blocks until the pool is non-empty
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Binary semaphores

Semaphore with an initial count of 1

Can be used as a mutex with non-reentrant locking semantics

Whoever holds the sole permit holds the mutex
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@ Using Semaphores to

bound a collection

COLOR

public BoundedHashSet<T> {
private final Set<T> set;
private final Semaphore sem;

public BoundedHashSet (int bound) {
this.set = Collections.synchronizedSet (new HashSet<T>());
sem = new Semaphore (bound) ;

}

public boolean add(T o) throws InterruptedException {

sem.acquire () ;
boolean wasAdded = false;
try {

wasAdded = set.add (o) ;

return wasAdded;
} finally {

1f (!wasAdded) sem.release()

}

public boolean remove (Object o) {
boolean wasRemoved = set.remove (0);
if (wasRemoved) sem.release() ;
return wasRemoved;

L10.13



Barriers

Barriers are similar to latches in that they block a group of threads till
an event has occurred

All threads must come together at barrier point at the same time to

proceed

Latches wait for events, barriers wait for other threads
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Barriers and dinner ...

Family rendezvous protocol

Everyone meet at Panera @ 6:00 pm;
Once you get there, stay there ... till everyone shows up

Then we’ll figure out what we do next
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Barriers

Often used in simulations where work to calculate one step can be
done in parallel

But all work associated with a given step must complete before advancing to
the next step

All threads complete step k, before moving on to step k+1

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DISTRIBUTED SERVERS L10.16



CyclicBarrier

Allows a fixed number of parties to rendezvous at a fixed point

Useful in parallel iterative algorithms

Break problem into fixed number of independent subproblems

Creation of a CyclicBarrier

Runnable cyclicBarrierAction = ... ;
CyclicBarrier cyclicBarrier =
new CyclicBarrier (2, cyclicbarrierAction);
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Using Cylic Barr

COLOR/

class Solver {
final int N; final CyclicBarrier barrier;
class Worker implements Runnable {

int myRow;
Source: From the Java API

Worker (int row) { myRow = row; }
public void run() {
while (!done()) {

processRow (myRow) ;
try {
barrier.await () ;

} catch (BrokenBarrierException ex) {

}

public Solver (float[][] matrix) {
data = matrix; N = matrix.length;
barrier = new CyclicBarrier (N, new Runnable() { public void run() {
mergeRows (...); } });
for (int i = 0; 1 < N; ++1i)
new Thread(new Worker (i)).start(); //DO NOT START THREAD in constructor.

waltUntilDone () ;

L10.18



Exchanger

Another type of barrier
Two-party barrier
Parties exchange data at the barrier point

Useful when asymmetric activities are performed

Producer-consumer problem

When 2 threads exchange objects via Exchanger

Safe publication of objects to other party
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Thread Safety: Summary [1/4]

It’s all about mutable, shared state

The less mutable state there is, the easier it is to ensure thread-safety

Make fields £inal unless they need to be mutable

Immutable objects are automatically thread-safe

Encapsulation makes it practical to manage complexity
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Thread Safety: Summary [2/4]

Guard each mutable variable with a lock

Guard all variables in an invariant with the same lock

Hold locks for the duration of compound actions
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Thread Safety: Summary [3/4]

Program that accesses mutable variables from multiple threads without
synchronization?

Broken program

Include thread-safety in the design process

Document if your class is not thread-safe

Document your synchronization policy
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Thread Safety: Summary [4 /4]

Rather than scattering access to shared state throughout your
programs and attempting ad hoc reasoning about interleaved access

Structure program to facilitate reasoning about concurrency

Use a set of standard synchronization primitives to control access to shared
state
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Is this the real life? Is this just fantasy?
Caught in a landslide, no escape from reality

Open your eyes, look up to the skies and see
Bohemian Rhapsody; Freddie Mercury; Queen
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Measures of performance

]
1 Service time
} How fast?
0 Latency
1 Throughput
9np } How much?
1 Capacity

-1 Efficiency

0 Scalability
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Performance and Scalability

Tuning for performance

Do same work with less effort How fast?
ow fast:
Caching, choice of algorithms O(n?) to O(nlogn)

Scalability

Find ways to parallelize problem } How much?
Do more work with more resources
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HOW FAST and HOW MUCH

Are separate and can (at times) be at odds with each other

To scale or for better hardware utilization

We often end up increasing the amount of work for each task

Divide tasks into multiple pipelined tasks

Orchestration overhead
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The quest for performance

What do you mean by faster?

Under what conditions?
Small or large datasets

Perform measurements to substantiate arguments

How often do these conditions arise?

What are the hidden costs?

Development /maintenance risks
Tradeoffs

Ripple effects of decision
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Avoid premature optimizations

I
o First make it right, then fast

7 Measure, don’t guess

7 Quest for performance is one of the biggest source of bugs
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How much can we speed things up?

Harvesting crops
The more the number of workers

The faster the crop can be harvested

But some things are fundamentally serial

Adding additional workers does not make the crop grow faster
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The right tool for the right job: Everything is not @
nail

Make sure that problem is amenable to parallel decomposition

Most programs have a mix of parallelizable and serial
portions
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Amdahl’s law describes how much a program can be

th ticall d
___ theoretically sped up

0 I : Fraction of components that must be executed serially

1 N : Number of available processors

|
Speedup < —
F+ U=F)
N
Speed
Utilization = pECy
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As N approaches infinity; maximum speedup
converges to 1 /F

With 50% serial code

Maximum speedup is 2 What cannot be parallelized (i.e., the serial
component) only grows in importance!

With 10% serial code
Maximum speedup is10 add more processors, and it only looms larger.
With N=10

Speedup = 5.3 at 53% utilization
With N= 100
Speedup = 9.2 at 9% utilization

The serial part never shrinks;
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Speedups for different parallelization portions
N

Amdahl's Law
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Source: http: / /en.wikipedia.org /wiki/Amdahl's_law
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Know what to speed up
—

Two independent parts A B

Original process I
Make B 5x faster - ™

Make A 2x faster [

Image from: http://en.wikipedia.org/wiki/Amdahl's law
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THREADS IN DISTRIBUTED SYSTEMS
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Threads in distributed systems:
Multithreaded clients

Hide communication latencies
Initiate communications
Interleave

Immediately do something else

Web browsers

As soon as main HTML page is fetched

Identical
Display it — Code

Activate threads to retrieve other data types
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Several connections can be opened simultaneously
——

1 To the same server

If the server is overloaded; things get even slower

11 To replicated servers
Data transfer in parallel

Much faster rendering of content
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Multithreaded Servers

Simplifies server code
Easier to develop servers that exploit parallelism

E.g.: Handling concurrent connections

Each connection managed by a different thread

Multiple connections handled by a pool of threads
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AN EXAMPLE OF PERFORMANCE
IMPROVEMENTS WITH THREADS
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Client and Server with Threads
——

| piski/o |

Request

Requests

Server
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Server side processing

Server has queue of requests received from clients

Server also has a pool of one or more threads

Each thread repeatedly removes requests & processes it

Each thread applies the same methods to process the requests

Each request takes 2 ms of processing PLUS 8 ms of 1/O (when server reads
from disk i.e., no caching)
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Maximum server throughput with 1 thread

The turnaround time for handling any request is 2+8 = 10 ms
The server can handle 100 requests per second

Any new requests that arrive while the thread is handling a request?

These will be queued
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Server throughput with 2 threads

We assume that the threads are independently schedulable
One thread can be scheduled while the other is blocked for 1/O

Thread T2 can process a second request when thread T1 is blocked, and vice
versa

This increases throughput ... but both threads may be blocked for | /O on the
single disk drive

If all 1/O requests are serialized and take 8 ms each?

Maximum throughput is 1000/8 = 125 requests/second
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Server throughput with disk block caching

Server keeps data that it reads in buffers

When a server thread tries to retrieve data

It first examines the cache and avoids disk accesses if it finds data element
there

If the hit rate is 75%:2

The mean 1/O time per-request reduces to
(0.75 x 0+ 0.25 x 8) = 2 milliseconds

Maximum theoretical throughput?

Becomes 500 requests per second
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But there are costs associated with caching

Average processor time for a request increases
This is because it takes time to search for cached data for every operation

Let us assume that this is now 2.5 milliseconds

The server can now handle 1000/2.5 requests per second i.e., 400
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Let’s look at caching plus multiple threads

Each request takes about 2.5 (processing) + 2 (1/0O)
Total time per request is now 4.5 mSecs when disk accesses are serialized

Each thread can do 1000/4.5 requests per second i.e., 222 requests/second

With two threads?
444 requests /second

With three threads?
500 requests (bound by the 1/O time)
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THREADING ARCHITECTURES FOR
SERVERS
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Worker pool architecture

Server creates a fixed pool of worker threads to process requests

Pool is initialized when server starts up

Incoming requests are placed into a queue

Workers retrieve requests (work units) from the queue and process them
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Managing priorities in the worker pool?
—

0 Introduce multiple queues

1 Worker threads scan queues in the order of descending priority
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Disadvantages of the worker pool model

Number of worker threads is fixed

So, threads in the pool may be too few to adequately cope with the rate of
requests

Need to account for coordinated accesses to the shared queuve
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Thread-per-request architecture

Worker thread is spawned for each incoming request

Worker thread destroys itself after processing request

Advantages:
Threads do not contend for the shared work-queue

Throughput is potentially maximized

Disadvantage

Overhead for thread creation and destruction operations
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Thread-per-connection architecture

Associates a thread per connection

New worker thread created when a client makes a connection

Destroyed when client closes the connection

Client may make many requests over the connection
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Thread-per-object architecture

Associate a thread with each remote object

A separate thread receives requests and queues them

But there is a queue per-object
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Thread-per-connection & Thread-per-object

Advantages

Server benefits from lower thread management overheads compared to
thread-per-request

Disadvantages

Clients may be delayed when a worker thread has several outstanding
requests, but another thread has no work to perform
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The contents of this slide-set are based on the
following references

Distributed Systems: Principles and Paradigms. Andrew S. Tanenbaum and Maarten Van

der Steen. 2nd Edition. Prentice Hall. ISBN: 0132392275/978-013239227 3.
[Chapter 6, 2]

Distributed Systems: Concepts and Design. George Coulouris, Jean Dollimore, Tim
Kindberg, Gordon Blair. 5th Edition. Addison Wesley. ISBN: 978-0132143011.
[Chapter 7, 14]
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