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Decentralized topologies
Nodes without a weave
Like wings without flight

Connect them near and far
And watch it soar

Imbuing each with a nifty quirk
Traits that make them tick

Shrideep Pallickara
This you probably knew, P
Your networks tell a lot about you Compu’rer Science

Colorado State University
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Frequently asked questions from the previous class

survey

If a site pre-loads a page, is that stateful?

Are there times where threads-per-connection is worse than threads-
per-request?

Is a client stateless when it fully opts out of any “cookies”?

How do we design a system to safely isolate slow processes?

Woas there ever an IPv52
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Topics covered in this lecture

Decentralized architectures
Topologies

Regular graphs

Random graphs

Small world graphs

Power law networks

Ryan Stern and Shrideep Pallickara. On the Role of Topology in Autonomously Coping with
Failures in Content Dissemination Systems. Proceedings of the ACM Cloud and Autonomic
Computing Conference. Miami, USA. 201 3.
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Decentralized architectures

Server may be split up into logically equivalent parts
Each part operates on its share of the dataset

Balance the load

Interaction between processes is symmetric

Each peer acts as a client and a server
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Structured Peer to Peer Architectures:
Distributed hash tables

Data items are assigned an identifier from a large random space
128-bit UUIDs (2728 or 10°%8) or 160-bit SHA-1 digests {210 or 1048}

Nodes are also assigned a number from the same identifier space
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Crux of the DHT problem

Implement an efficient, deterministic scheme to map data item to node

When you look up a data item?

Network address of node holding the data is returned
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Unstructured P2P networks typically rely on random

h
___ graphs

7 Maintain connections to randomly chosen live nodes

- To locate a data item

Flood the network
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Hierarchical organization of nodes
——

Super peer .
Regular peer .
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Superpeer networks

The client-superpeer relationship is fixed

When a peer joins, it attaches itself to the superpeer and stays attached fill
it leaves

Superpeers are expected to be long-lived processes with high-
availability

Selecting nodes that are eligible to be superpeers?

Closely related to the leader election problem
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Some declare their lives are lived
as true profundity,

and others claim they really live
the real reality.

In minor ways we gffer,
in major we're the same.

| note the obvious differences
between each sort and type,
but we are more alike, my frie
than we are unalike.

Human Family, Mayo

SMALL WORLDS



Stanley Milgram’s experiment on social networks

In 1967 he mailed 160 letters
People were randomly chosen from Omaha, Nebraska

Objective was to pass their letter
TARGET: Stock broker in Boston, MA

CONSTRAINT: Use infermediary known to them on a first-name basis
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Results: It's a small, small world

42 letters made it through

Median was just 5.5 intermediaries

US Population in 1967: 200 million
2025: 347 million

First demonstration of what is known as the small world effect
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Intuitively it seems that the pathlengths should have

been much higher
——

-1 People’s social circle is cliquish or clustered

-1 People you know, know each other
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The key is the distribution of links within social
networks

Some acquaintances are relatively isolated

Some have wide ranging connections

Play a critical role in bringing network closer together

Milgram experiment

/4 of the successful chains passed through a local storekeeper
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The Hollywood Network:

Here we organize all actors in a graph

If they have co-starred with someone in a movie

They have a direct link to them (1 hop)

Some actors have more links than others because they have acted in so
many movies

E.g., Kevin Bacon
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The Hollywood Network:
6 degrees of Kevin Bacon

John Carradine: 4000 links
Robert Mitchum: 2905 links

But acting in the most movies does not always translate into shortest
hops to a random node in the network

Rankings:
Rod Steiger: 2.53
Donald Pleasence: 2.54

Martin Sheen, Christopher Lee, Robert Mitchum, Charlton Heston
Kevin Bacon? 2.79 pathlength and ranked 876t
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Turns out even a small number of bridges can

d ticall d thlength
___ dramatically reduce pathlengths

Duncan Watts and Steven Strogatz (1998), “Collective Dynamics of
‘Small-World’ Networks,” Nature 393, p 440.
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Regular Graphs

N
7 Ring of n vertices

- Each of the nodes are connected to its nearest k neighbors
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Example regular graph with k = 4

Each node is connec‘redp'r? 2 nseighbpor's on either side; so k=4
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Pathlength in a graph

Average number of hops to reach any node in the system
For each pair of vertices, compute shortest path

Take the average over all pairs

Gives a sense of how far apart points are in the network
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Clustering coefficients are a measure of the level of
clustering

For k neighbors of a vertex, the number of possible connections
between them is

 k(k-1)
2

* Clustering coefficient of a vertex

C,

— Proportion (0 ~ 1) of possible links actually
present in graph
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Pathlength in Regular graphs

_
- Approximately n/2k

0 If n=4096 and k=8

- Pathlength = n/2k = 256
Very large!
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Clustering Coefficient: Regular graph k=4

3(k — 2)
4k — 1)

Clustering coefficient =

For each vertex = 3/6
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Random Graphs

I
1 Opposite of regular graphs

1 Vertices are connected to each other at random
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Random Graphs
=

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT ARCHITECTURES & TOPOLOGY L12.26



Pathlength and clustering coefficients in Random
Graphs

Pathlength is approximately 1log n/log k

Clustering coefficient is approximately: k/n

So, with n=4096 and k = 8
Average pathlength = 1og 4096/1log 8 =4
Much better than regular graphs

Clustering coefficient = 8 /4096 = 0.002

Much lower than regular graphs
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Comparing regular and random graphs

]
-1 Regular graph
High clustering
High pathlength

1 Random graph

Low clustering

Low pathlength

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT ARCHITECTURES & TOPOLOGY L12.28



Small world graphs: Add a few random links to the
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Small world graphs

High local clustering

Short global pathlengths

Implications:
Small amount of rewiring needed to promote the transition

Transition is barely noticeable at the local level
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As restless as we are

We feel the pull

In the land of a thousand guilts
And poured cement

Lamented and assured

To the lights and towns below
Faster than the speed of sound
Faster than we thought we’d go
Beneath the sound of hope

. 1979; William Patrick Corgan; The Smashing Pumpkins

SCALE FREE NETWORKS



Power law is a special relationship between two
quantities

The number or frequency of the object

Varies as a power

Of some attribute (size) of the object

Earthquakes

The frequency of earthquakes varies as a power of the size of the
earthquake
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Power law and Random Networks:
Real World examples

Random networks
Eisenhower National Highway System
Nodes=Cities, Links=Highways connecting them

Most cities served by roughly the same number of highways

Scale-free networks

Airport system

Large number of small airports served by a few major hubs

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT ARCHITECTURES & TOPOLOGY L12.33



Distribution of links in random networks
N

1 Follows a bell curve

1 Most nodes have the same number of links
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Comparison of the distribution of links in random

and scale-free networks
—

Bell Curve
Power law: 80-20

Number of nodes with Links
Number of nodes with Links

Number of links (k)
Number of links (k)
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Growth of scale-free networks

]
1 Addition of nodes

1 Preferential atachment

Nodes prefer to attach to well-connected nodes

1 RESULT: Highly connected nodes emerge
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Power law distributions have no peak

Continuously decreasing curve

Many small events coexist with a few very large ones

Imaginary planet:
Most people will be really short
Among 8 billion people, 1 person would be 8000 ft
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Bell Curves vs Power Laws

Bell Curves
Occur very often in nature

Exponentially decaying tail

Responsible for absence of hubs

Power Laws

Emerge during phase transitions

Move from chaos to order: Self organization

Decay far more slowly
Allows for hubs
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Why power law networks are called scale-free [1/2]

In a random network vast majority of nodes have same number of links

Nodes deviating from average are rare

There is a characteristic scale in its connectivity
Embodied by the average node
Fixed by the peak of the degree distribution
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Why power law networks are called scale-free [2/2]

In a power law network

Absence of peak

No such thing as a characteristic node

Continuous hierarchy of nodes spanning from rare hubs to numerous tiny
nodes

No intrinsic scale in power law networks

Scale-free networks
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Achilles’ heel in the power law network

Power law networks are robust to random failures

Vulnerable to a targeted attack on hubs

Removal of hubs

Disintegrates these networks

Breaks them up into tiny non-communicating islands
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Coexistence of robustness and vulnerability plays a role in
complex systems

Sea otters in California went nearly extinct because of excessive
hunting for its pelts

In 1911 federal regulators banned hunting them

Otters made a dramatic comeback
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The case of the otter recovery [1/2]

Because otters feed on urchins, increase in their numbers leads to a

decrease in the number of urchins

With fewer urchins around, the number of kelps went up dramatically

Increased the supply of food for fish

Protected the coast from erosion
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The case of the otter recovery [2/2]

Protection of one species (a hub) altered economy and ecology of the
coastline

Finfish now dominate coastal fisheries
Once dedicated to shellfish
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The contents of this slide set are based on the
following references

Peer-to-Peer: Harnessing the Power of Disruptive Technologies. Edited by Andy Oram.
O’Reilly Publishing. ISBN: 0-596-00110-X.
[Chapter 14 — Performance by Theodore Hong]

Linked: How Everything is Connected to Everything Else and What it Means for Business,
Science, and Everyday Life. Albert-Laszlé Barabdsi. Plume. ISBN: 0452284392 /97 8-

0452284395.
[Chapters 4,5,6, and 7]
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