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Decentralized topologies
Nodes without a weave
    Like wings without flight

Connect them near and far
     And watch it soar
Imbuing each with a nifty quirk
     Traits that make them tick

This you probably knew,
   Your networks tell a lot about you
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Frequently asked questions from the previous class 

survey

 If a site pre-loads a page, is that stateful?

 Are there times where threads-per-connection is worse than threads-

per-request?

 Is a client stateless when it fully opts out of any “cookies”?

 How do we design a system to safely isolate slow processes?

 Was there ever an IPv5?
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Topics covered in this lecture

 Decentralized architectures

 Topologies

 Regular graphs

 Random graphs

 Small world graphs

 Power law networks

Ryan Stern and Shrideep Pallickara. On the Role of Topology in Autonomously Coping with 

Failures in Content Dissemination Systems. Proceedings of the ACM Cloud and Autonomic 

Computing Conference. Miami, USA. 2013. 
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Decentralized architectures 

 Server may be split up into logically equivalent parts

 Each part operates on its share of the dataset

 Balance the load

 Interaction between processes is symmetric

 Each peer acts as a client and a server
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Structured Peer to Peer Architectures:

Distributed hash tables

 Data items are assigned an identifier from a large random space

▪ 128-bit UUIDs (2128 or 1038) or 160-bit SHA-1 digests {2160 or 1048} 

 Nodes are also assigned a number from the same identifier space
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Crux of the DHT problem

 Implement an efficient, deterministic scheme to map data item to node

 When you look up a data item?

 Network address of node holding the data is returned
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Unstructured P2P networks typically rely on random 

graphs

 Maintain connections to randomly chosen live nodes

 To locate a data item

 Flood the network
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Hierarchical organization of nodes

Super peer

Regular peer
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Superpeer networks

 The client-superpeer relationship is fixed

 When a peer joins, it attaches itself to the superpeer and stays attached till 

it leaves

 Superpeers are expected to be long-lived processes with high-

availability

 Selecting nodes that are eligible to be superpeers?

 Closely related to the leader election problem



COMPUTER SCIENCE DEPARTMENT

SMALL WORLDS

Some declare their lives are lived

as true profundity,

and others claim they really live

the real reality.

...

In minor ways we differ,

in major we're the same.

I note the obvious differences

between each sort and type,

but we are more alike, my friends,

than we are unalike.

Human Family, Maya Angelou
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Stanley Milgram’s experiment on social networks

 In 1967 he mailed 160 letters 

 People were randomly chosen from Omaha, Nebraska

 Objective was to pass their letter

 TARGET: Stock broker in Boston, MA

 CONSTRAINT: Use intermediary known to them on a first-name basis
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Results: It’s a small, small world

 42 letters made it through

 Median was just 5.5 intermediaries

 US Population in 1967: 200 million

◼ 2025: 347 million

 First demonstration of what is known as the small world effect
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Intuitively it seems that the pathlengths should have 

been much higher

 People’s social circle is cliquish or clustered

 People you know, know each other
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The key is the distribution of links within social 

networks

 Some acquaintances are relatively isolated

 Some have wide ranging connections

 Play a critical role in bringing network closer together

 Milgram experiment

 ¼ of the successful chains passed through a local storekeeper
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The Hollywood Network:

 Here we organize all actors in a graph

 If they have co-starred with someone in a movie

 They have a direct link to them (1 hop)

 Some actors have more links than others because they have acted in so 

many movies

 E.g., Kevin Bacon
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The Hollywood Network:

6 degrees of Kevin Bacon

 John Carradine: 4000 links

 Robert Mitchum: 2905 links

 But acting in the most movies does not always translate into shortest 
hops to a random node in the network

 Rankings:

 Rod Steiger: 2.53

 Donald Pleasence: 2.54

 Martin Sheen, Christopher Lee, Robert Mitchum, Charlton Heston

 Kevin Bacon? 2.79 pathlength and ranked 876th
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Turns out even a small number of bridges can 

dramatically reduce pathlengths

Duncan Watts and Steven Strogatz (1998), “Collective Dynamics of 

‘Small-World’ Networks,” Nature 393, p 440.
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Regular Graphs

 Ring of n vertices

 Each of the nodes are connected to its nearest k neighbors
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Example regular graph with k = 4

Each node is connected to 2 neighbors on either side; so k=4
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Pathlength in a graph

 Average number of hops to reach any node in the system

 For each pair of vertices, compute shortest path

 Take the average over all pairs

 Gives a sense of how far apart points are in the network
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Clustering coefficients are a measure of the level of 

clustering

 For k neighbors of a vertex, the number of possible connections 

between them is 

   

C2
k =
k(k -1)

2

• Clustering coefficient of a vertex

– Proportion (0 ~ 1)  of possible links actually 

present in graph
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Pathlength in Regular graphs

 Approximately n/2k

 If n=4096 and k=8

 Pathlength = n/2k = 256

 Very large!
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Clustering Coefficient: Regular graph k=4

For each vertex = 3/6

3(𝑘 − 2)

4(𝑘 − 1)
Clustering coefficient = 
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Random Graphs

 Opposite of regular graphs

 Vertices are connected to each other at random



ARCHITECTURES & TOPOLOGY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L12.26

Random Graphs
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Pathlength and clustering coefficients in Random 

Graphs

 Pathlength is approximately log n/log k

 Clustering coefficient is approximately: k/n 

 So, with n=4096 and k = 8

 Average pathlength = log 4096/log 8 = 4

 Much better than regular graphs

 Clustering coefficient = 8/4096 = 0.002

 Much lower than regular graphs
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Comparing regular and random graphs

 Regular graph

 High clustering

 High pathlength

 Random graph

 Low clustering

 Low pathlength
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Small world graphs: Add a few random links to the 

regular graph
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Small world graphs

 High local clustering

 Short global pathlengths

 Implications:

 Small amount of rewiring needed to promote the transition

 Transition is barely noticeable at the local level
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SCALE FREE NETWORKS

As restless as we are

We feel the pull

In the land of a thousand guilts

And poured cement

Lamented and assured

To the lights and towns below

Faster than the speed of sound

Faster than we thought we’d go

Beneath the sound of hope

1979; William Patrick Corgan; The Smashing Pumpkins
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Power law is a special relationship between two 

quantities

 The number or frequency of the object

◼ Varies as a power

 Of some attribute (size) of the object

 Earthquakes

 The frequency of earthquakes varies as a power of the size of the 

earthquake
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Power law and Random Networks: 

Real World examples

 Random networks

 Eisenhower National Highway System

 Nodes=Cities, Links=Highways connecting them

 Most cities served by roughly the same number of highways

 Scale-free networks

 Airport system

 Large number of small airports served by a few major hubs
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Distribution of links in random networks

 Follows a bell curve

 Most nodes have the same number of links
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Comparison of the distribution of links in random 

and scale-free networks

Bell Curve
Power law: 80-20
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Growth of scale-free networks

 Addition of nodes

 Preferential attachment

 Nodes prefer to attach to well-connected nodes

 RESULT: Highly connected nodes emerge
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Power law distributions have no peak

 Continuously decreasing curve

 Many small events coexist with a few very large ones

 Imaginary planet:

 Most people will be really short

 Among 8 billion people, 1 person would be 8000 ft
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Bell Curves vs Power Laws

 Bell Curves

 Occur very often in nature

 Exponentially decaying tail

◼ Responsible for absence of hubs

 Power Laws

 Emerge during phase transitions

◼ Move from chaos to order: Self organization

 Decay far more slowly

◼ Allows for hubs
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Why power law networks are called scale-free        [1/2]

 In a random network vast majority of nodes have same number of links

 Nodes deviating from average are rare

 There is a characteristic scale in its connectivity

◼ Embodied by the average node

◼ Fixed by the peak of the degree distribution
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Why power law networks are called scale-free        [2/2]

 In a power law network 

 Absence of peak

 No such thing as a characteristic node

 Continuous hierarchy of nodes spanning from rare hubs to numerous tiny 

nodes

 No intrinsic scale in power law networks

 Scale-free networks 
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Achilles’ heel in the power law network

 Power law networks are robust to random failures

 Vulnerable to a targeted attack on hubs

 Removal of hubs

 Disintegrates these networks

 Breaks them up into tiny non-communicating islands
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Coexistence of robustness and vulnerability plays a role in 

complex systems

 Sea otters in California went nearly extinct because of excessive 

hunting for its pelts

 In 1911 federal regulators banned hunting them

 Otters made a dramatic comeback 
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The case of the otter recovery                  [1/2]

 Because otters feed on urchins, increase in their numbers leads to a 

decrease in the number of urchins

 With fewer urchins around, the number of kelps went up dramatically

 Increased the supply of food for fish

 Protected the coast from erosion
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The case of the otter recovery                  [2/2]

 Protection of one species (a hub) altered economy and ecology of the 

coastline

 Finfish now dominate coastal fisheries

 Once dedicated to shellfish
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The contents of this slide set are based on the 

following references

 Peer-to-Peer: Harnessing the Power of Disruptive Technologies. Edited by Andy Oram. 

O’Reilly Publishing. ISBN: 0-596-00110-X.

[Chapter 14 – Performance by Theodore Hong]

 Linked: How Everything is Connected to Everything Else and What it Means for Business, 

Science, and Everyday Life. Albert-László Barabási. Plume. ISBN: 0452284392/978-

0452284395.

[Chapters 4,5,6, and 7]
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