CSX55: DISTRIBUTED SYSTEMS [DHTs]

Routing in DHTs
So many, many
nodes and items
But the mapping’s unambiguous
Deterministic to boot

Each node in the know

only about a few others Shrideep Pallickara
Messages relayed closer and closer .

in a few bounded hops ComPUTer Science

Colorado State University

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

Frequently asked questions from the previous class

survey

Is a prefix hop done for every hex value in the GUID?

Would matching prefixes go all the way towards the end of the
GUID?
Where is the final determination made that a key needs to be stored

a given node in Pastry?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.2

Topics covered in this lecture

S
01 Pastry [wrap-up]

01 Tapestry
1 Chord

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.3

4

= PASTRY: HOST FAILURE
OR DEPARTURE

-~

Detection and coping with node failures

When a node’s immediate neighbors (in the GUID space) cannot
communicate with it¢

The node is considered failed

Necessary to repair leaf sets and routing tables that contain the failed

GUID

Leaf sets are repaired proactively

Routing tables at the other nodes are updated on a “when discovered basis”

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.5

Repairing leaf sets

Node that discovers the failure
Looks for a live node close to the failed node, and requests copy of that

node’s leaf set, I’
This should contain GUIDs that partly overlap those in the node that

discovered failure

Include one that should replace the failed node

Other neighboring nodes are informed

They perform a similar procedure

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.6

How many nodes must update their leaf sets?

With a leaf set size of 4 (2 smaller, 2 larger), a node x appears only
in the leaf sets of its 2 immediate predecessors and 2 immediate
sUCCessors

If x fails, those 4 neighbors must update their leaf sets

To generalize: A node x appears in the leaf sets of its £ predecessors
and € successors on the GUID ring

If node X fails, exactly £ + £ =24 neighbors must update their leaf sets

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.7

Locality

Pastry’s routing structure is redundant

Multiple routes between pairs of nodes

Construction of routing tables tries to take advantage of this
redundancy

Reduce message transmission times by exploiting locality properties of
underlying network

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.8

Routing table:
Exploiting locality. [1/2]

In the routing table, each row contains 16 entries

Entries in the 1™ row give addresses of 16 nodes with GUIDs with i-1 initial
hexadecimal digits

' digit takes each of the possible hexadecimal values

Well-populated Pastry system contains more nodes than can be
contained in an individual routing table

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.9

Routing table:
Exploiting locality. [2/2]

When routing table is constructed, a choice is made for each position
Between multiple candidates

Based on proximity neighbor selection

Locality metric

IP hops or measured latency

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.10

Performance of exploiting locality

Since the information in the routing table is not comprehensive

Mechanism does not produce globally optimal routing

Simulations show that

On average, the routing is 30-50% longer than the optimum

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.11

Coping with malicious nodes

Small degree of randomness is introduced into route selection

Randomized to yield a common prefix that is less than the maximum
length

With a certain probability

Routes are taken from an earlier row
Less optimal, but different than standard version

Client transmission succeeds in the presence of small numbers of malicious
nodes

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.12

Into this house, we’re born
Into this world, we’re thrown
Like a dog without a bone
An actor out on loan

Riders on the storm

TAPESTRY

COMPUTER SCIENCE DEPARTMENT

Tapestry

Routes messages to nodes based on GUIDs associated with the

resources

Uses prefix routing in a manner similar to Pastry

160-bit identifiers are used

To refer to both objects and nodes that perform routing actions

For any resource with GUID @, there is a unique root node, with GUID
Rg
R is numerically closest to G

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.14

Tapestry Routing [Summary]

Uses local routing tables, which they also call neighbor maps, to route
messages

Routing is digit-by-digit
AFFxmP ADFE mp ADA* = 42AD

This longest prefix routing is also used by classless interdomain routing

(CIDR)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.15

Tapestry: Routing messages

Each node maintains a routing table

Entries include nodelDs and IP addresses

This routing table has multiple levels

Each level contains links to nodes matching a prefix up to a digit position in
the ID

The i’ entry in the j level at node N2

Location of the closest node which begins with the prefix(N, j-1) +1

E.g., 9" entry of the 4™ level for node 325AF is 2
3259

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.16

Tapestry Routing

The router for the n’ hop
Shares a prefix of length > n with the destination ID

Looks in its (nt1)? level map for entry matching the next digit in the
destination ID

Guarantees that any node in the system can be reached in at most log
N logical hops

N is the size of the ID space i.e. N =210

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.17

When a digit cannot be matched?

Looks for a “close” digit in the routing table

This approach is called surrogate routing

Results in mapping every identifier G to a unique root node Gy

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.18

Managing a dynamic environment

Route reliably even when intermediate links are changing or faulty

Exploit network path diversity
Via redundant routing paths

Primary links are augmented by backup-links

Each sharing the same prefix

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.19

Managing multiple copies of the resource [1/2]

Hosts H holding replicas of G periodically invoke publish(G)

Ensures that newly arrived hosts become aware of the existence of G

On each invocation of publish(G)
Message is routed from invoker towards node R

On receipt of a publish message R enters (G, IPy)
The mapping between G and IP address of H

Each node in the publication path caches the same mapping

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.20

Managing multiple copies of the resource [2/2]

When nodes hold multiple (G, IP) mappings for the same GUID?

They are sorted by network distance to the IP address

Results in selection of nearest available replica of the object

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.21

An example of managing replicas using Tapestry
—

(Root for 437 8)

Publish Path

4378
Phil’s
Books

Replica retrieval
path

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.22

My room is round when | lay down, when | wake up it’s square
When | go outside it’s on a spiral set of stairs
The people that surround me are waiting out there

In a round room they can’t find me anywhere
The Round Room; Mike Gordon; Phish

LARRTRRANY

1'“

CHORD

The Chord System

Assigns IDs to keys and nodes from the same 1-dimensional ID space

Nodes are organized into a ring

Data item with key k is mapped to a node with the smallest id 2 k

Also referred to as successor (k)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.24

Mapping of data items to nodes in Chord

I
Actual Node
OR 0%
e S o1 | 2
14) {13,14,15} .+ Node does not exist

Associated data keys
{8,9,10,11,12}

e ~,

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.25

Chord lookups

N is the number of possible nodes in the system

Each node maintains a finger table
With log N entries

Entries contains IP addresses of nodes

Half-way around the ID space from it

1/4%h 1/8"M, ... in powers of two
Ensures node can forward lookup query to at least /2 of the remaining ID-space
distance to key

Lookups in O(log N)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.26

Storing keys and forwarding lookups

An entity with key k falls under the jurisdiction of node with the smallest
identifier id
id>=k

Referred to as the successor of k or succ(k)

A node forwards query for key k to node (in its FT) with highest ID < &
The exception is ONLY when the first entry is greater than &

In this case, that node is responsible for storing that element

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.27

Chord lookup example for k=54
—

lookup (54)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.28

When a node wants to join

Generate a random id

Probability of collisions is low

lookup (1d)

Will return successor(id)

Contact successor(id) and its predecessor
Insert self in the ring

Transfer data items

All keys must be fetched from the new node’s successor

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.29

An example of inserting a new node

P ~

{0,1} { 2 |

Succ(12) = 15 Associated data keys

Pred(12) = 7 {8,9,10,11,12} {2,3,4}
11 (5
YT (5,6,7)
New node 10 .\ '° L —. 8
will be inserted : \1) oo - 12
N’ Pred(7) = 4

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.30

An example of inserting a new node

- ~

SN

Associated data keys

Succ(12) = 15 {2,3,4}
(11,12} =y
Pred(12) = 10
oy (5)
S 8,9,10} . _ _ . oy
{ booos,6,71 o
o o
Succ(10) = 12 - N /@N
Pred(10) = 7 /1 8] Succ(7) = 10
COLORADO STATE UNIVERSITY rofessor: SHRIDEEP ProTn Pr: A7) =P4 S
COMPUTER SCIENCE DEPARTMENT EER-TO-FEER SYSTEMS

1L16.31

Finger Table in Chord

Chord uses an m-bit identifier space

2™ possible peers

Each node, p, in Chord maintains a Finger Table with m-entries

FT [i] = suce(p + 21) \

Note: This is when you count your indices from 1.
When you code, and we are counting from O this would be

FT,[i] = suce(p +2')

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.32

Constructing the Finger Table: Node 1

.‘. 3] “. O ﬂ.‘.‘

{ '_/{___/ i\.a/ i 2+ ..
. & '30 e ,\0

T 4 1 3
=29.- "

e ' \@ We are looking at a 5-bit ID space.
£ succ(k) = Smallest id 2> k o

*
L]
b

' 97 - L5 IDs go from O through (25 — 1)
26” Index succ(p + 2i-1) Entry .’:\'6'
o 1 succ(l +1) 4. .
:‘25 .' Y 4 ..
T 2 succ(l +2) 4 Ny
£ 24 - £ 8
& 3 succ(l +4) 9 st
a5 4 succ(l+8) 9 é
Y 5 succ(l + 16) 18 A
£ 22 - 9

*
*
-
a ..
* .
12 -
s o " J
*
. @ ‘/'.‘
* * L]
n

t19 e 13
COLORADO STATE UNIVERSITY | "l-{fﬁ:!‘fﬁf‘c.lfz«
COMPUTER SCIENCE DEPARTMENT

PEER-TO-PEER SYSTEMS L16.33

Constructing the Finger Table: Node 4

1 4
e N 2 4
. e ’ ‘./_' 0 : il 3 9
;'. 30 ‘./{\?_L“ uﬂ 2 7\‘ .. 4 9
AT N AT
: 29 ,' »._‘}\@
P ‘ succ(k) = Smallest id > k >
: 26 - Index succ(p + 2i-!) Entry A
ik 1 succ(4 + 1) 9 .
:‘25 3 &
T 2 succ(4 + 2) 9 -
2% 3 succ(4 +4) 9 8/
& 4 succ4+8) | 14 é
e 5 succ(4 + 16) 20 P
122 - t 0.
@ 312

19 L ‘_.]_:f,.
COLORADO STATE UNIVERSITY PSé"-Zﬁ:"TESTL":‘C»]--SuA
COMPUTER SCIENCE DEPARTMENT

PEER-TO-PEER SYSTEMS

L16.34

Constructing the Finger Table: Node 9

.

b WOWN -

— 0‘ .:/__:‘O.‘V .‘.‘
30 A3 uﬂ 2
9./‘-.'. Ser : 3

: - i
: 2 y
. - \@\; Z
1 succ(k) = Smallest id > k > . T3 &
ol 5 y 4 14
26/. Index SUCC(p + 2i-1) En'l'r'y ’\6 5 20
ok 1 succ(9 + 1) 11 .
:‘25 3 &
f 2 succ(9 + 2) 11 :_‘T_.‘
=’?-‘§" 3 succ(9 +4) 14 8/
='23:‘- 4 SUCC(9 = 8) 18 é
: 22 - ‘10

A »
. -
a_
Q .
* *
12 -
s o " y
.
. ‘/'._‘
* . -
-
s]

19 ’ e]3
COLORADO STATE UNIVERSITY PSé'l'Zﬁ:léﬁa!'s‘\A P o-P Sys S L16.35
COMPUTER SCIENCE DEPARTMENT EER-TO-FEER SYSTEM :

Constructing the Finger Table: Node 28

- .31~ 0 ,\@\,'-‘ 3 9
L f30 T e e O
129+ G
' g \@\; Z
succ(k) = Smallest id 2 k 3 9
1 27 .' :’ 5 .- 4 14
eyt) -
;26/‘; Index succ(p + 2i-1) Entry 6" 2120
3 1 succ(28+1) 1 L[(val = 2m) {
P P 7 — m
T 5 succ(28 + 2) 1 . }val = val (mod 2™)
2% , 3 succ(28 + 4) 1 L8
4 succ(28 + 8) 4 T
2?1\ N 2 11
L. 5 swc@ele) 14 gl o
Sax 5 28

.
»
Q . n
. S
1.=.|2.
. ‘/'."
L]

‘- .‘ -]3.
t19 ..
- 17 2 £ 16+ 15

“owOfer ,* SHRseP PALLICKARA
COLORADO STATE UNIVERSITY 0 oUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.36

Using the finger table to route queries:
Make sure you don’t overshoot

To lookup a key k, node p will forward query to node g with index j in

p’s FT where:

Node with
greatest ID less than or equal to k

ciL= FT [J] <k <FT[j+1]
OR
/ q =FT,[1] when p <k <FT 1]

First entry ONLY if its ID is greater than k

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.37

Stop forwarding the query when you are the target

node
e

-1 A node is responsible for keys that fall in the range
key > predecessor
key <= self

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.38

Smallest id > k

A ON=—-

wuh WON -

I S

1
2
3
4
5

28
28

O o
"

Resolve k=26
from peer 1

18
18
18
28

']
0w A ON=

FT.[j] < k < FT [j+1]
FT,[1] when p < k < FT [1]

1
2
3
4
5

N = 0 0 O

o

14
14
18
20
28

11
11
14
18
28

A ON=—-

H 1 4
. ,_—" 3] /-1’ .o‘ .ﬂ' ‘2 ‘- .. 3 9
1 .. 130 ' AN g 4 9
e . : 3 - 5 18
1 H 29 .' L\ ‘,.'
1 s
14 b .0 ‘.
P27 Resolve k=12 3 5’\,
o from peer 28
i 26 : . 1
- .(7‘

wuh WON -

125

0. o~
‘I
* .
]
- L]

v h WN =

28
28

FT.[] < k < FT [j+1]
FT,[1] when p < k < FT [1]

N = 0 0 O

o

11
11
14
18
28

Keeping the finger table up-to-date:
At node g, F'T [1] must be accurate

(D Contact succ(q+1) {Thisis FT [1]}

Have it return its predecessor

2) If g = pred(succ(q+1))
Everything is fine

(3) Otherwise:
There is a new node p such that ¢ < p <succ(q+1)
FT [1]=p
Check if p has recorded g as its predecessor
No? Go to step (1)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.41

L -

Before you can ever reach your destination, you must
travel halfway there, always leaving another half.

Zeno’s Paradox.
N.B: Also referred to as the Dichotomy paradox in a
recounting of Zeno’s Paradox by Aristotle.

AN EXAMPLE OF NODES
JOINING IN CHORD

.
-

An example of inserting a new node N-4:
Node-4 comes in and contacts Node-1

] \
0o ; 1 1
1
/)
o 3 1
P “ /v
Ay
1
i
l 1

1 1
2 1

/ '\ e ~.
/ \
i 1 4 "\
1 1 4 \
1
! ! 3 l 1 i
/ ! 3 ‘

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.43

- ~.

Installing successor at Node-1

]
S o 11
2 1
P /v 3 :
.7 Pred(1) = 4
Succ(l) = 4
i 6 \:} l 2
_______ 1N
- 2 1
L 5 3 1 [3

Succ(4) = 1

red§4R) = IS1
Pro?essor: HRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.44

Updating the FT at N-1

I
S o 1 4
2 4
P /v 3 :
.7 Pred(1) = 4
Succ(l) = 4
i 6 \:} l 2
_______ 10
o 2 1
L 5 3 1 [3

Succ(4) = 1

red§4R) = IS1
Pro?essor: HRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.45

An example of inserting a new node N-7:
filling its FT

1 " |
. 0 1 4
i 4 2 4
T ~ s
3 |4 Pred(1) = 4
Succ(l) = 4
(6 | 2
\\ _______ 1 1
i 2 1 TN
L5 3 1 (3 |

Succ(4) = 1

COLORADO STATE UNIVERSITY p LS AENE Do P PEER S 116.46
COMPUTER SCIENCE DEPARTMENT EER-TO-FEER SYSTEMS '

N-7 informs N-1 that it (N-7) is now N-1’s predecessor

] &£ —
1 S’ 2 4
2 1 2
3 4 Pred(1) = 7
Succ(l) = 4
Since 7 is closer it
is installed as the
N ~—predecessor of 1

-~ S,

Succ(4) = 1

COLORADO STATE UNIVERSITY p ESAEE Auucow P PEER S L16.47
COMPUTER SCIENCE DEPARTMENT EER-TO-FEER SYSTEMS '

When N-1 updates its FT later on ...

o o
\ 0]] 1 4
1 Moo’ 2 A
Succ(7) =1 5 3 7
3 |4 Pred(1) = 7
Succ(l) = 4
= 2
,,,,,,, 1 1
/," \\\ 2 1 T
.5 L 3
M

Succ(4) = 1

COLORADO STATE UNIVERSITY p LS AENE Do P PEER S 116.48
COMPUTER SCIENCE DEPARTMENT EER-TO-FEER SYSTEMS '

N-4 contacts N-1 to see if it is still its predecessor ... and installs

N-7 as its successor

. 0] 1 4
, N L
Succ(7) =1 5 P
Pred(7) =4 3 4 Pr'ed(l) =7
Succ(l) = 4
6 2)
_______ 17
2 1 Pl Y
L5 SH) (3
Succ(4) = 7
red(4) =
Pro?essor: QHQDEEP IJALUCKARA PEER-TO-PEER SYSTEMS L16.49

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

When the FT at N-4 is updated ...

—— 7
. 0 1 4
1 \\-..._// 2 4
Succ(?) =1 , 3 7
Pred(7) =4 3 4 Pr'ed(l) =7
Succ(l) = 4
, 6 L2
_______ 1 7
] 2 7 TN
L5) - (3)

Succ(4) =7

COLORADO STATE UNIVERSITY p ESAEE Auucow P PEER S 116.50
COMPUTER SCIENCE DEPARTMENT EER-TO-FEER SYSTEMS '

The contents of this slide-set are based on the
following references

Distributed Systems: Principles and Paradigms. Andrew S. Tanenbaum and Maarten Van

der Steen. 2nd Edition. Prentice Hall. ISBN: 0132392275/978-013239227 3.
[Chapter 5]

Distributed Systems: Concepts and Design. George Coulouris, Jean Dollimore, Tim
Kindberg, Gordon Blair. 5th Edition. Addison Wesley. ISBN: 978-0132143011.
[Chapter 10]

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L16.51

	Slide 1: CSx55: Distributed Systems [DHTs]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: Pastry: Host failure or departure
	Slide 5: Detection and coping with node failures
	Slide 6: Repairing leaf sets
	Slide 7: How many nodes must update their leaf sets?
	Slide 8: Locality
	Slide 9: Routing table: Exploiting locality. [1/2]
	Slide 10: Routing table: Exploiting locality. [2/2]
	Slide 11: Performance of exploiting locality
	Slide 12: Coping with malicious nodes
	Slide 13: Tapestry
	Slide 14: Tapestry
	Slide 15: Tapestry Routing [Summary]
	Slide 16: Tapestry: Routing messages
	Slide 17: Tapestry Routing
	Slide 18: When a digit cannot be matched?
	Slide 19: Managing a dynamic environment
	Slide 20: Managing multiple copies of the resource [1/2]
	Slide 21: Managing multiple copies of the resource [2/2]
	Slide 22: An example of managing replicas using Tapestry
	Slide 23: CHORD
	Slide 24: The Chord System
	Slide 25: Mapping of data items to nodes in Chord
	Slide 26: Chord lookups
	Slide 27: Storing keys and forwarding lookups
	Slide 28: Chord lookup example for k=54
	Slide 29: When a node wants to join
	Slide 30: An example of inserting a new node
	Slide 31: An example of inserting a new node
	Slide 32: Finger Table in Chord
	Slide 33: Constructing the Finger Table: Node 1
	Slide 34: Constructing the Finger Table: Node 4
	Slide 35: Constructing the Finger Table: Node 9
	Slide 36: Constructing the Finger Table: Node 28
	Slide 37: Using the finger table to route queries: Make sure you don’t overshoot
	Slide 38: Stop forwarding the query when you are the target node
	Slide 39
	Slide 40
	Slide 41: Keeping the finger table up-to-date: At node q, FTq[1] must be accurate
	Slide 42: An example of nodes joining in Chord
	Slide 43: An example of inserting a new node N-4: Node-4 comes in and contacts Node-1
	Slide 44: Installing successor at Node-1
	Slide 45: Updating the FT at N-1
	Slide 46: An example of inserting a new node N-7: N-7 contacts N-1 for filling its FT
	Slide 47: N-7 informs N-1 that it (N-7) is now N-1’s predecessor
	Slide 48: When N-1 updates its FT later on …
	Slide 49: N-4 contacts N-1 to see if it is still its predecessor … and installs N-7 as its successor
	Slide 50: When the FT at N-4 is updated …
	Slide 51: The contents of this slide-set are based on the following references

