CSX55: DISTRIBUTED SYSTEMS [DHTs]
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Frequently asked questions from the previous class

survey

Is a prefix hop done for every hex value in the GUID?

Would matching prefixes go all the way towards the end of the
GUID?
Where is the final determination made that a key needs to be stored

a given node in Pastry?
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Topics covered in this lecture

S
01 Pastry [wrap-up]

01 Tapestry
1 Chord
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= PASTRY: HOST FAILURE
OR DEPARTURE
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Detection and coping with node failures

When a node’s immediate neighbors (in the GUID space) cannot
communicate with it¢

The node is considered failed

Necessary to repair leaf sets and routing tables that contain the failed

GUID

Leaf sets are repaired proactively

Routing tables at the other nodes are updated on a “when discovered basis”
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Repairing leaf sets

Node that discovers the failure
Looks for a live node close to the failed node, and requests copy of that

node’s leaf set, I’
This should contain GUIDs that partly overlap those in the node that

discovered failure

Include one that should replace the failed node

Other neighboring nodes are informed

They perform a similar procedure
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How many nodes must update their leaf sets?

With a leaf set size of 4 (2 smaller, 2 larger), a node x appears only
in the leaf sets of its 2 immediate predecessors and 2 immediate
sUCCessors

If x fails, those 4 neighbors must update their leaf sets

To generalize: A node x appears in the leaf sets of its £ predecessors
and € successors on the GUID ring

If node X fails, exactly £ + £ =24 neighbors must update their leaf sets
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Locality

Pastry’s routing structure is redundant

Multiple routes between pairs of nodes

Construction of routing tables tries to take advantage of this
redundancy

Reduce message transmission times by exploiting locality properties of
underlying network
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Routing table:
Exploiting locality. [1/2]

In the routing table, each row contains 16 entries

Entries in the 1™ row give addresses of 16 nodes with GUIDs with i-1 initial
hexadecimal digits

' digit takes each of the possible hexadecimal values

Well-populated Pastry system contains more nodes than can be
contained in an individual routing table
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Routing table:
Exploiting locality. [2/2]

When routing table is constructed, a choice is made for each position
Between multiple candidates

Based on proximity neighbor selection

Locality metric

IP hops or measured latency
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Performance of exploiting locality

Since the information in the routing table is not comprehensive

Mechanism does not produce globally optimal routing

Simulations show that

On average, the routing is 30-50% longer than the optimum
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Coping with malicious nodes

Small degree of randomness is introduced into route selection

Randomized to yield a common prefix that is less than the maximum
length

With a certain probability

Routes are taken from an earlier row
Less optimal, but different than standard version

Client transmission succeeds in the presence of small numbers of malicious
nodes
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Into this house, we’re born
Into this world, we’re thrown
Like a dog without a bone
An actor out on loan

Riders on the storm

TAPESTRY

COMPUTER SCIENCE DEPARTMENT




Tapestry

Routes messages to nodes based on GUIDs associated with the

resources

Uses prefix routing in a manner similar to Pastry

160-bit identifiers are used

To refer to both objects and nodes that perform routing actions

For any resource with GUID @, there is a unique root node, with GUID
Rg
R is numerically closest to G
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Tapestry Routing [Summary]

Uses local routing tables, which they also call neighbor maps, to route
messages

Routing is digit-by-digit
AFFxmP ADFE mp ADA* = 42AD

This longest prefix routing is also used by classless interdomain routing

(CIDR)
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Tapestry: Routing messages

Each node maintains a routing table

Entries include nodelDs and IP addresses

This routing table has multiple levels

Each level contains links to nodes matching a prefix up to a digit position in
the ID

The i’ entry in the j level at node N2

Location of the closest node which begins with the prefix(N, j-1) +1

E.g., 9" entry of the 4™ level for node 325AF is 2
3259
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Tapestry Routing

The router for the n’ hop
Shares a prefix of length > n with the destination ID

Looks in its (nt1)? level map for entry matching the next digit in the
destination ID

Guarantees that any node in the system can be reached in at most log
N logical hops

N is the size of the ID space i.e. N =210
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When a digit cannot be matched?

Looks for a “close” digit in the routing table

This approach is called surrogate routing

Results in mapping every identifier G to a unique root node Gy
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Managing a dynamic environment

Route reliably even when intermediate links are changing or faulty

Exploit network path diversity
Via redundant routing paths

Primary links are augmented by backup-links

Each sharing the same prefix
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Managing multiple copies of the resource [1/2]

Hosts H holding replicas of G periodically invoke publish(G)

Ensures that newly arrived hosts become aware of the existence of G

On each invocation of publish(G)
Message is routed from invoker towards node R

On receipt of a publish message R enters (G, IPy)
The mapping between G and IP address of H

Each node in the publication path caches the same mapping
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Managing multiple copies of the resource [2/2]

When nodes hold multiple (G, IP) mappings for the same GUID?

They are sorted by network distance to the IP address

Results in selection of nearest available replica of the object
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An example of managing replicas using Tapestry
—

(Root for 437 8)

Publish Path

4378
Phil’s
Books

Replica retrieval
path
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My room is round when | lay down, when | wake up it’s square
When | go outside it’s on a spiral set of stairs
The people that surround me are waiting out there

In a round room they can’t find me anywhere
The Round Room; Mike Gordon; Phish

LARRTRRANY

1'“

CHORD




The Chord System

Assigns IDs to keys and nodes from the same 1-dimensional ID space

Nodes are organized into a ring

Data item with key k is mapped to a node with the smallest id 2 k

Also referred to as successor (k)
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Mapping of data items to nodes in Chord

I
Actual Node
OR 0%
e S o1 | 2
14 ) {13,14,15} .+ Node does not exist

Associated data keys
{8,9,10,11,12}

e ~,
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Chord lookups

N is the number of possible nodes in the system

Each node maintains a finger table
With log N entries

Entries contains IP addresses of nodes

Half-way around the ID space from it

1/4%h 1/8"M, ... in powers of two
Ensures node can forward lookup query to at least /2 of the remaining ID-space
distance to key

Lookups in O(log N)
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Storing keys and forwarding lookups

An entity with key k falls under the jurisdiction of node with the smallest
identifier id
id>=k

Referred to as the successor of k or succ(k)

A node forwards query for key k to node (in its FT) with highest ID < &
The exception is ONLY when the first entry is greater than &

In this case, that node is responsible for storing that element
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Chord lookup example for k=54
—

lookup (54)
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When a node wants to join

Generate a random id

Probability of collisions is low

lookup (1d)

Will return successor(id)

Contact successor(id) and its predecessor
Insert self in the ring

Transfer data items

All keys must be fetched from the new node’s successor
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An example of inserting a new node

P ~

{0,1} { 2 |

Succ(12) = 15 Associated data keys

Pred(12) = 7 {8,9,10,11,12} {2,3,4}
11 (5
YT (5,6,7)
New node 10 .\ '° L —. 8
will be inserted : \1 ) oo - 12
N’ Pred(7) = 4
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An example of inserting a new node

- ~

SN

Associated data keys

Succ(12) = 15 {2,3,4}
(11,12} =y
Pred(12) = 10
oy (5 )
S 8,9,10} . _ _ . oy
{ booos,6,71 o
o o
Succ(10) = 12 - N /@N
Pred(10) = 7 /1 8 ] Succ(7) = 10
COLORADO STATE UNIVERSITY  rofessor: SHRIDEEP ProTn Pr: A7) =P4 S
COMPUTER SCIENCE DEPARTMENT EER-TO-FEER SYSTEMS

1L16.31



Finger Table in Chord

Chord uses an m-bit identifier space

2™ possible peers

Each node, p, in Chord maintains a Finger Table with m-entries

FT [i] = suce(p + 21) \

Note: This is when you count your indices from 1.
When you code, and we are counting from O this would be

FT,[i] = suce(p +2')
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Constructing the Finger Table: Node 1
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Constructing the Finger Table: Node 4

1 4
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Constructing the Finger Table: Node 9
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Constructing the Finger Table: Node 28
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Using the finger table to route queries:
Make sure you don’t overshoot

To lookup a key k, node p will forward query to node g with index j in

p’s FT where:

Node with
greatest ID less than or equal to k

ciL= FT [J] <k <FT[j+1]
OR
/ q =FT,[1] when p <k <FT 1]

First entry ONLY if its ID is greater than k
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Stop forwarding the query when you are the target

node
e

-1 A node is responsible for keys that fall in the range
key > predecessor
key <= self
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Smallest id > k
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Keeping the finger table up-to-date:
At node g, F'T [1] must be accurate

(D Contact succ(q+1) {Thisis FT [1]}

Have it return its predecessor

2) If g = pred( succ(q+1) )
Everything is fine

(3) Otherwise:
There is a new node p such that ¢ < p <succ(q+1)
FT [1]=p
Check if p has recorded g as its predecessor
No? Go to step (1)
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L -

Before you can ever reach your destination, you must
travel halfway there, always leaving another half.

Zeno’s Paradox.
N.B: Also referred to as the Dichotomy paradox in a
recounting of Zeno’s Paradox by Aristotle.

AN EXAMPLE OF NODES
JOINING IN CHORD

.
-



An example of inserting a new node N-4:
Node-4 comes in and contacts Node-1

] \
0o ; 1 1
1
/)
o 3 1
P “ /v
Ay
1
i
l 1

1 1
2 1

/ '\ e ~.
/ \
i 1 4 "\
1 1 4 \
1
! ! 3 l 1 i
/ ! 3 ‘
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Installing successor at Node-1

]
S o 11
2 1
P /v 3 :
.7 Pred(1) = 4
Succ(l) = 4
i 6 \:} l 2
_______ 1N
- 2 1
L 5 3 1 [ 3

Succ(4) = 1

red§4R) = IS1
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Updating the FT at N-1

I
S o 1 4
2 4
P /v 3 :
.7 Pred(1) = 4
Succ(l) = 4
i 6 \:} l 2
_______ 10
o 2 1
L 5 3 1 [ 3

Succ(4) = 1

red§4R) = IS1
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An example of inserting a new node N-7:
filling its FT

1 " |
. 0 1 4
i 4 2 4
T ~ s
3 |4 Pred(1) = 4
Succ(l) = 4
(6 | 2
\\ _______ 1 1
i 2 1 TN
L5 3 1 (3 |

Succ(4) = 1
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N-7 informs N-1 that it (N-7) is now N-1’s predecessor

] &£ —
1 S’ 2 4
2 1 2
3 4 Pred(1) = 7
Succ(l) = 4
Since 7 is closer it
is installed as the
N ~—predecessor of 1

-~ S,

Succ(4) = 1
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When N-1 updates its FT later on ...

o o
\ 0] ] 1 4
1 Moo’ 2 A
Succ(7) =1 5 3 7
3 |4 Pred(1) = 7
Succ(l) = 4
= 2
,,,,,,, 1 1
/," \\\ 2 1 T
.5 L 3
M

Succ(4) = 1
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N-4 contacts N-1 to see if it is still its predecessor ... and installs

N-7 as its successor

. 0 ] 1 4
, N L
Succ(7) =1 5 P
Pred(7) =4 3 4 Pr'ed(l) =7
Succ(l) = 4
6 2 )
_______ 17
2 1 Pl Y
L5 SH) (3
Succ(4) = 7
red(4) =
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When the FT at N-4 is updated ...

—— 7
. 0 1 4
1 \\-..._// 2 4
Succ(?) =1 , 3 7
Pred(7) =4 3 4 Pr'ed(l) =7
Succ(l) = 4
, 6 L2
_______ 1 7
] 2 7 TN
L5 ) - (3 )

Succ(4) =7
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The contents of this slide-set are based on the
following references

Distributed Systems: Principles and Paradigms. Andrew S. Tanenbaum and Maarten Van

der Steen. 2nd Edition. Prentice Hall. ISBN: 0132392275/978-013239227 3.
[Chapter 5]

Distributed Systems: Concepts and Design. George Coulouris, Jean Dollimore, Tim
Kindberg, Gordon Blair. 5th Edition. Addison Wesley. ISBN: 978-0132143011.
[Chapter 10]
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