
COMPUTER SCIENCE DEPARTMENT

CSX55: DISTRIBUTED SYSTEMS [DHTS]

Shrideep Pallickara

Computer Science

Colorado State University

Routing in DHTs

So many, many

 nodes and items

But the mapping’s unambiguous

 Deterministic to boot

Each node in the know

only about a few others

Messages relayed closer and closer

 in a few bounded hops

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.2

Frequently asked questions from the previous class

survey

 Is a prefix hop done for every hex value in the GUID?

 Would matching prefixes go all the way towards the end of the

GUID?

 Where is the final determination made that a key needs to be stored

a given node in Pastry?

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.3

Topics covered in this lecture

 Pastry [wrap-up]

 Tapestry

 Chord

COMPUTER SCIENCE DEPARTMENT

PASTRY: HOST FAILURE

OR DEPARTURE

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.5

Detection and coping with node failures

 When a node’s immediate neighbors (in the GUID space) cannot

communicate with it?

 The node is considered failed

 Necessary to repair leaf sets and routing tables that contain the failed

GUID

 Leaf sets are repaired proactively

 Routing tables at the other nodes are updated on a “when discovered basis”

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.6

Repairing leaf sets

 Node that discovers the failure

 Looks for a live node close to the failed node, and requests copy of that

node’s leaf set, L’

 This should contain GUIDs that partly overlap those in the node that

discovered failure

◼ Include one that should replace the failed node

 Other neighboring nodes are informed

 They perform a similar procedure

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.7

How many nodes must update their leaf sets?

 With a leaf set size of 4 (2 smaller, 2 larger), a node x appears only

in the leaf sets of its 2 immediate predecessors and 2 immediate

successors

 If x fails, those 4 neighbors must update their leaf sets

 To generalize: A node x appears in the leaf sets of its ℓ predecessors

and ℓ successors on the GUID ring

 If node x fails, exactly ℓ + ℓ =2ℓ neighbors must update their leaf sets

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.8

Locality

 Pastry’s routing structure is redundant

 Multiple routes between pairs of nodes

 Construction of routing tables tries to take advantage of this

redundancy

 Reduce message transmission times by exploiting locality properties of

underlying network

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.9

Routing table:

Exploiting locality. [1/2]

 In the routing table, each row contains 16 entries

 Entries in the ith row give addresses of 16 nodes with GUIDs with i-1 initial

hexadecimal digits

 Ith digit takes each of the possible hexadecimal values

 Well-populated Pastry system contains more nodes than can be

contained in an individual routing table

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.10

Routing table:

Exploiting locality. [2/2]

 When routing table is constructed, a choice is made for each position

 Between multiple candidates

 Based on proximity neighbor selection

 Locality metric

 IP hops or measured latency

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.11

Performance of exploiting locality

 Since the information in the routing table is not comprehensive

 Mechanism does not produce globally optimal routing

 Simulations show that

 On average, the routing is 30-50% longer than the optimum

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.12

Coping with malicious nodes

 Small degree of randomness is introduced into route selection

 Randomized to yield a common prefix that is less than the maximum

length

 With a certain probability

 Routes are taken from an earlier row

 Less optimal, but different than standard version

 Client transmission succeeds in the presence of small numbers of malicious

nodes

COMPUTER SCIENCE DEPARTMENT

TAPESTRY

L8.13

Into this house, we’re born

Into this world, we’re thrown

Like a dog without a bone

An actor out on loan

Riders on the storm

Riders on the Storm; Morrison, Densmore, Manzarek, Krieger; The Doors

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.14

Tapestry

 Routes messages to nodes based on GUIDs associated with the

resources

 Uses prefix routing in a manner similar to Pastry

 160-bit identifiers are used

 To refer to both objects and nodes that perform routing actions

 For any resource with GUID G, there is a unique root node, with GUID

RG

 RG is numerically closest to G

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.15

Tapestry Routing [Summary]

 Uses local routing tables, which they also call neighbor maps, to route

messages

 Routing is digit-by-digit

▪ 4***➔ 42** ➔ 42A* ➔ 42AD

 This longest prefix routing is also used by classless interdomain routing

(CIDR)

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.16

Tapestry: Routing messages

 Each node maintains a routing table

 Entries include nodeIDs and IP addresses

 This routing table has multiple levels

 Each level contains links to nodes matching a prefix up to a digit position in

the ID

 The ith entry in the jth level at node N?

◼ Location of the closest node which begins with the prefix(N, j-1) + i

◼ E.g., 9th entry of the 4th level for node 325AE is ?

◼ 3259

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.17

Tapestry Routing

 The router for the nth hop

 Shares a prefix of length ≥ n with the destination ID

 Looks in its (n+1)th level map for entry matching the next digit in the

destination ID

 Guarantees that any node in the system can be reached in at most log

N logical hops

▪ N is the size of the ID space i.e. N = 2160

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.18

When a digit cannot be matched?

 Looks for a “close” digit in the routing table

 This approach is called surrogate routing

 Results in mapping every identifier G to a unique root node GR

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.19

Managing a dynamic environment

 Route reliably even when intermediate links are changing or faulty

 Exploit network path diversity

 Via redundant routing paths

 Primary links are augmented by backup-links

 Each sharing the same prefix

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.20

Managing multiple copies of the resource [1/2]

 Hosts H holding replicas of G periodically invoke publish(G)

 Ensures that newly arrived hosts become aware of the existence of G

 On each invocation of publish(G)

 Message is routed from invoker towards node RG

 On receipt of a publish message RG enters (G, IPH)

◼ The mapping between G and IP address of H

 Each node in the publication path caches the same mapping

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.21

Managing multiple copies of the resource [2/2]

 When nodes hold multiple (G, IP) mappings for the same GUID?

 They are sorted by network distance to the IP address

 Results in selection of nearest available replica of the object

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.22

An example of managing replicas using Tapestry

4228

43FE

4664

437A

4377 (Root for 4378)

E791

4B4F

4361

57EC

4A6D

AA93

4378

Phil’s

Books

4378

Phil’s

Books

Publish Path

Replica retrieval

path

COMPUTER SCIENCE DEPARTMENT

CHORD

My room is round when I lay down, when I wake up it’s square

When I go outside it’s on a spiral set of stairs

The people that surround me are waiting out there

In a round room they can’t find me anywhere

The Round Room; Mike Gordon; Phish

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.24

The Chord System

 Assigns IDs to keys and nodes from the same 1-dimensional ID space

 Nodes are organized into a ring

 Data item with key k is mapped to a node with the smallest id ≥ k

 Also referred to as successor(k)

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.25

Mapping of data items to nodes in Chord

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

Actual Node

{2,3,4}

{5,6,7}

{8,9,10,11,12}

{13,14,15}

Associated data keys

{0,1}
Node does not exist

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.26

Chord lookups

 N is the number of possible nodes in the system

 Each node maintains a finger table

 With log N entries

 Entries contains IP addresses of nodes

◼ Half-way around the ID space from it

◼ 1/4th, 1/8th, … in powers of two

 Ensures node can forward lookup query to at least ½ of the remaining ID-space
distance to key

◼ Lookups in O(log N)

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.27

Storing keys and forwarding lookups

 An entity with key k falls under the jurisdiction of node with the smallest

identifier id

▪ id >= k

▪ Referred to as the successor of k or succ(k)

 A node forwards query for key k to node (in its FT) with highest ID  k

 The exception is ONLY when the first entry is greater than k

◼ In this case, that node is responsible for storing that element

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.28

Chord lookup example for k=54

N

1

N

8

N

14

N

21

N

32

N

38

N

42

N

47

N

51

N

56

K54
lookup(54)

1/21/8

1/16

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.29

When a node wants to join

 Generate a random id

 Probability of collisions is low

 lookup(id)

 Will return successor(id)

 Contact successor(id) and its predecessor

 Insert self in the ring

 Transfer data items

◼ All keys must be fetched from the new node’s successor

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.30

An example of inserting a new node

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

Actual Node

{2,3,4}

{5,6,7}

{8,9,10,11,12}

{13,14,15}

Associated data keys

{0,1}

New node 10
will be inserted

Succ(12) = 15
Pred(12) = 7

Succ(7) = 12
Pred(7) = 4

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.31

An example of inserting a new node

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

Actual Node

{2,3,4}

{5,6,7}

{13,14,15}

Associated data keys

{0,1}

Succ(12) = 15
Pred(12) = 10

Succ(7) = 10
Pred(7) = 4

Succ(10) = 12
Pred(10) = 7

{11,12}

{8,9,10}

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.32

Finger Table in Chord

 Chord uses an m-bit identifier space

▪ 2m possible peers

 Each node, p, in Chord maintains a Finger Table with m-entries

◼FTp[i] = succ(p + 2i-1)

Note: This is when you count your indices from 1.

When you code, and we are counting from 0 this would be

FTp[i] = succ(p + 2i)

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.33

Constructing the Finger Table: Node 1

0 1
2

3

4

5

6

8

7

9

10

11

12

13

14
151617

18
19

20

21

22

23

24

25

26

27

28

29

30
31

succ(k) = Smallest id ≥ k

Index succ(p + 2i-1) Entry

succ(1 + 1) 41

succ(1 + 2) 42

succ(1 + 4) 93

succ(1 + 8) 94

succ(1 + 16) 185

We are looking at a 5-bit ID space.

IDs go from 0 through (25 − 1)

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.34

Constructing the Finger Table: Node 4

0 1
2

3

4

5

6

8

7

9

10

11

12

13

14
151617

18
19

20

21

22

23

24

25

26

27

28

29

30
31

1 4

2 4

3 9

4 9

5 18

succ(k) = Smallest id ≥ k

Index succ(p + 2i-1) Entry

succ(4 + 1) 91

succ(4 + 2) 92

succ(4 + 4) 93

succ(4 + 8) 144

succ(4 + 16) 205

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.35

Constructing the Finger Table: Node 9

0 1
2

3

4

5

6

8

7

9

10

11

12

13

14
151617

18
19

20

21

22

23

24

25

26

27

28

29

30
31

1 4

2 4

3 9

4 9

5 18

succ(k) = Smallest id ≥ k

Index succ(p + 2i-1) Entry

succ(9 + 1) 111

succ(9 + 2) 112

succ(9 + 4) 143

succ(9 + 8) 184

succ(9 + 16) 285

1 9

2 9

3 9

4 14

5 20

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.36

Constructing the Finger Table: Node 28

0 1
2

3

4

5

6

8

7

9

10

11

12

13

14
151617

18
19

20

21

22

23

24

25

26

27

28

29

30
31

1 4

2 4

3 9

4 9

5 18

succ(k) = Smallest id ≥ k

Index succ(p + 2i-1) Entry

succ(28 + 1) 11

succ(28 + 2) 12

succ(28 + 4) 13

succ(28 + 8) 44

succ(28 + 16) 145

1 9

2 9

3 9

4 14

5 20

1 11

2 11

3 14

4 18

5 28

if (val ≥ 2m) {

 val = val (mod 2m)

}

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.37

Using the finger table to route queries:

Make sure you don’t overshoot

 To lookup a key k, node p will forward query to node q with index j in

p’s FT where:

 q = FTp[j] ≤ k < FTp[j+1]

 OR

 q = FTp[1] when p < k < FTp[1]

Node with
 greatest ID less than or equal to k

First entry ONLY if its ID is greater than k

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.38

Stop forwarding the query when you are the target

node

 A node is responsible for keys that fall in the range

 key > predecessor

 key <= self

0 1
2

3

4

5

6

8

7

9

10

11

12

13

14
151617

18
19

20

21

22

23

24

25

26

27

28

29

30
31

1 4

2 4

3 9

4 9

5 18

1 9

2 9

3 9

4 14

5 20

1 11

2 11

3 14

4 18

5 28

1 14

2 14

3 18

4 20

5 28
1 18

2 18

3 18

4 28

5 1

1 20

2 20

3 28

4 28

5 4

1 21

2 28

3 28

4 28

5 4

1 28

2 28

3 28

4 1

5 9

1 1

2 1

3 1

4 4

5 14

Resolve k=26
from peer 1

Smallest id ≥ k

q = FTp[j] ≤ k < FTp[j+1]

q = FTp[1] when p < k < FTp[1]

0 1
2

3

4

5

6

8

7

9

10

11

12

13

14
151617

18
19

20

21

22

23

24

25

26

27

28

29

30
31

1 4

2 4

3 9

4 9

5 18

1 9

2 9

3 9

4 14

5 20

1 11

2 11

3 14

4 18

5 28

1 14

2 14

3 18

4 20

5 28
1 18

2 18

3 18

4 28

5 1

1 20

2 20

3 28

4 28

5 4

1 21

2 28

3 28

4 28

5 4

1 28

2 28

3 28

4 1

5 9

1 1

2 1

3 1

4 4

5 14
Resolve k=12
from peer 28

Smallest id ≥ k

q = FTp[j] ≤ k < FTp[j+1]

q = FTp[1] when p < k < FTp[1]

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.41

Keeping the finger table up-to-date:

At node q, FTq[1] must be accurate

① Contact succ(q+1) {This is FTq[1]}

 Have it return its predecessor

② If q = pred(succ(q+1))

 Everything is fine

③ Otherwise:

 There is a new node p such that q < p ≤ succ(q+1)

 FTq[1] = p

 Check if p has recorded q as its predecessor
No? Go to step (1)

COMPUTER SCIENCE DEPARTMENT

AN EXAMPLE OF NODES

JOINING IN CHORD

Before you can ever reach your destination, you must

travel halfway there, always leaving another half.

Zeno’s Paradox.

N.B: Also referred to as the Dichotomy paradox in a

recounting of Zeno’s Paradox by Aristotle.

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.43

An example of inserting a new node N-4:

Node-4 comes in and contacts Node-1
0

1

35

4

6

7

Succ(4) = 1

1 1

2 1

3 1

1 1

2 1

3 1

2

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.44

Installing successor at Node-1

0

1

35

4

6

7

Succ(4) = 1
Pred(4) = 1

1 1

2 1

3 1

1 1

2 1

3 1

2

Pred(1) = 4
Succ(1) = 4

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.45

Updating the FT at N-1

0

1

35

4

6

7

Succ(4) = 1
Pred(4) = 1

1 4

2 4

3 1

1 1

2 1

3 1

2

Pred(1) = 4
Succ(1) = 4

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.46

An example of inserting a new node N-7:

N-7 contacts N-1 for filling its FT
0

1

35

4

6

7

Succ(4) = 1
Pred(4) = 1

1 4

2 4

3 1

1 1

2 1

3 1

2

Pred(1) = 4
Succ(1) = 4

1

2

3

1

1
4

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.47

N-7 informs N-1 that it (N-7) is now N-1’s predecessor

0

1

35

4

6

7

Succ(4) = 1
Pred(4) = 1

1 4

2 4

3 1

1 1

2 1

3 1

2

Pred(1) = 7
Succ(1) = 4

1

2

3

1

1
4

Since 7 is closer it
 is installed as the
 predecessor of 1

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.48

When N-1 updates its FT later on …

0

1

35

4

6

7

Succ(4) = 1
Pred(4) = 1

1 4

2 4

3 7

1 1

2 1

3 1

2

Pred(1) = 7
Succ(1) = 4

1

2

3

1

1
4

Succ(7) = 1

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.49

N-4 contacts N-1 to see if it is still its predecessor … and installs

N-7 as its successor

0

1

35

4

6

7

Succ(4) = 7
Pred(4) = 1

1 4

2 4

3 7

1 7

2 1

3 1

2

Pred(1) = 7
Succ(1) = 4

1

2

3

1

1
4

Succ(7) = 1
Pred(7) = 4

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.50

When the FT at N-4 is updated …

0

1

35

4

6

7

Succ(4) = 7
Pred(4) = 1

1 4

2 4

3 7

1 7

2 7

3 1

2

Pred(1) = 7
Succ(1) = 4

1

2

3

1

1
4

Succ(7) = 1
Pred(7) = 4

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.51

The contents of this slide-set are based on the

following references

 Distributed Systems: Principles and Paradigms. Andrew S. Tanenbaum and Maarten Van

der Steen. 2nd Edition. Prentice Hall. ISBN: 0132392275/978-0132392273.

[Chapter 5]

 Distributed Systems: Concepts and Design. George Coulouris, Jean Dollimore, Tim

Kindberg, Gordon Blair. 5th Edition. Addison Wesley. ISBN: 978-0132143011.

[Chapter 10]

	Slide 1: CSx55: Distributed Systems [DHTs]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: Pastry: Host failure or departure
	Slide 5: Detection and coping with node failures
	Slide 6: Repairing leaf sets
	Slide 7: How many nodes must update their leaf sets?
	Slide 8: Locality
	Slide 9: Routing table: Exploiting locality. [1/2]
	Slide 10: Routing table: Exploiting locality. [2/2]
	Slide 11: Performance of exploiting locality
	Slide 12: Coping with malicious nodes
	Slide 13: Tapestry
	Slide 14: Tapestry
	Slide 15: Tapestry Routing [Summary]
	Slide 16: Tapestry: Routing messages
	Slide 17: Tapestry Routing
	Slide 18: When a digit cannot be matched?
	Slide 19: Managing a dynamic environment
	Slide 20: Managing multiple copies of the resource [1/2]
	Slide 21: Managing multiple copies of the resource [2/2]
	Slide 22: An example of managing replicas using Tapestry
	Slide 23: CHORD
	Slide 24: The Chord System
	Slide 25: Mapping of data items to nodes in Chord
	Slide 26: Chord lookups
	Slide 27: Storing keys and forwarding lookups
	Slide 28: Chord lookup example for k=54
	Slide 29: When a node wants to join
	Slide 30: An example of inserting a new node
	Slide 31: An example of inserting a new node
	Slide 32: Finger Table in Chord
	Slide 33: Constructing the Finger Table: Node 1
	Slide 34: Constructing the Finger Table: Node 4
	Slide 35: Constructing the Finger Table: Node 9
	Slide 36: Constructing the Finger Table: Node 28
	Slide 37: Using the finger table to route queries: Make sure you don’t overshoot
	Slide 38: Stop forwarding the query when you are the target node
	Slide 39
	Slide 40
	Slide 41: Keeping the finger table up-to-date: At node q, FTq[1] must be accurate
	Slide 42: An example of nodes joining in Chord
	Slide 43: An example of inserting a new node N-4: Node-4 comes in and contacts Node-1
	Slide 44: Installing successor at Node-1
	Slide 45: Updating the FT at N-1
	Slide 46: An example of inserting a new node N-7: N-7 contacts N-1 for filling its FT
	Slide 47: N-7 informs N-1 that it (N-7) is now N-1’s predecessor
	Slide 48: When N-1 updates its FT later on …
	Slide 49: N-4 contacts N-1 to see if it is still its predecessor … and installs N-7 as its successor
	Slide 50: When the FT at N-4 is updated …
	Slide 51: The contents of this slide-set are based on the following references

