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Routing in DHTs

So many, many

    nodes     and      items

But the mapping’s unambiguous

 Deterministic to boot

Each node  in the know

only about a few others

Messages relayed closer and closer

 in a few bounded hops
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Frequently asked questions from the previous class 

survey

 Is a prefix hop done for every hex value in the GUID?

 Would matching prefixes go all the way towards the end of the 

GUID?

 Where is the final determination made that a key needs to be stored 

a given node in Pastry?



PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.3

Topics covered in this lecture

 Pastry [wrap-up]

 Tapestry

 Chord
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OR DEPARTURE
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Detection and coping with node failures

 When a node’s immediate neighbors (in the GUID space) cannot 

communicate with it?

 The node is considered failed

 Necessary to repair leaf sets and routing tables that contain the failed 

GUID

 Leaf sets are repaired proactively

 Routing tables at the other nodes are updated on a “when discovered basis”
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Repairing leaf sets

 Node that discovers the failure 

 Looks for a live node close to the failed node, and requests copy of that 

node’s leaf set, L’

 This should contain GUIDs that partly overlap those in the node that 

discovered failure

◼ Include one that should replace the failed node

 Other neighboring nodes are informed

 They perform a similar procedure
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How many nodes must update their leaf sets?

 With a leaf set size of 4 (2 smaller, 2 larger), a node x appears only 

in the leaf sets of its 2 immediate predecessors and 2 immediate 

successors 

 If x fails, those 4 neighbors must update their leaf sets

 To generalize: A node x appears in the leaf sets of its ℓ predecessors 

and ℓ successors on the GUID ring 

 If node x fails, exactly ℓ + ℓ =2ℓ neighbors must update their leaf sets



PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.8

Locality

 Pastry’s routing structure is redundant

 Multiple routes between pairs of nodes

 Construction of routing tables tries to take advantage of this 

redundancy

 Reduce message transmission times by exploiting locality properties of 

underlying network
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Routing table: 

Exploiting locality.                                          [1/2]

 In the routing table, each row contains 16 entries

 Entries in the ith row give addresses of 16 nodes with GUIDs with i-1 initial 

hexadecimal digits

 Ith digit takes each of the possible hexadecimal values

 Well-populated Pastry system contains more nodes than can be 

contained in an individual routing table
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Routing table:

Exploiting locality.                                          [2/2]

 When routing table is constructed, a choice is made for each position

 Between multiple candidates 

 Based on proximity neighbor selection

 Locality metric

 IP hops or measured latency
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Performance of exploiting locality

 Since the information in the routing table is not comprehensive

 Mechanism does not produce globally optimal routing

 Simulations show that

 On average, the routing is 30-50% longer than the optimum
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Coping with malicious nodes

 Small degree of randomness is introduced into route selection

 Randomized to yield a common prefix that is less than the maximum 

length

 With a certain probability

 Routes are taken from an earlier row

 Less optimal, but different than standard version

 Client transmission succeeds in the presence of small numbers of malicious 

nodes
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L8.13

Into this house, we’re born

Into this world, we’re thrown

Like a dog without a bone

An actor out on loan

Riders on the storm

Riders on the Storm; Morrison, Densmore, Manzarek, Krieger; The Doors
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Tapestry

 Routes messages to nodes based on GUIDs associated with the 

resources

 Uses prefix routing in a manner similar to Pastry

 160-bit identifiers are used 

 To refer to both objects and nodes that perform routing actions 

 For any resource with GUID G, there is a unique root node, with GUID 

RG 

 RG is numerically closest to G
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Tapestry Routing [Summary]

 Uses local routing tables, which they also call neighbor maps, to route 

messages

 Routing is digit-by-digit

▪ 4***➔ 42** ➔ 42A* ➔ 42AD

 This longest prefix routing is also used by classless interdomain routing 

(CIDR)
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Tapestry: Routing messages

 Each node maintains a routing table

 Entries include nodeIDs and IP addresses

 This routing table has multiple levels

 Each level contains links to nodes matching a prefix up to a digit position in 

the ID

 The ith entry in the jth level at node N?

◼ Location of the closest node which begins with the prefix(N, j-1) + i

◼ E.g., 9th entry of the 4th level for node 325AE is ?

◼ 3259
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Tapestry Routing

 The router for the nth hop 

 Shares a prefix of length ≥ n with the destination ID

 Looks in its (n+1)th level map for entry matching the next digit in the 

destination ID

 Guarantees that any node in the system can be reached in at most log 

N logical hops

▪ N is the size of the ID space i.e. N = 2160
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When a digit cannot be matched?

 Looks for a “close” digit in the routing table

 This approach is called surrogate routing

 Results in mapping every identifier G to a unique root node GR



PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.19

Managing a dynamic environment

 Route reliably even when intermediate links are changing or faulty

 Exploit network path diversity

 Via redundant routing paths

 Primary links are augmented by backup-links

 Each sharing the same prefix
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Managing multiple copies of the resource  [1/2]

 Hosts H holding replicas of G periodically invoke publish(G)

 Ensures that newly arrived hosts become aware of the existence of G

 On each invocation of publish(G)

 Message is routed from invoker towards node RG

 On receipt of a publish message RG enters (G, IPH)

◼ The mapping between G and IP address of H

 Each node in the publication path caches the same mapping
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Managing multiple copies of the resource  [2/2]

 When nodes hold multiple (G, IP) mappings for the same GUID?

 They are sorted by network distance to the IP address

 Results in selection of nearest available replica of the object 
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An example of managing replicas using Tapestry

4228

43FE

4664

437A

4377 (Root for 4378)

E791

4B4F

4361

57EC

4A6D

AA93

4378

Phil’s

Books

4378

Phil’s

Books

Publish Path

Replica retrieval 

path
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My room is round when I lay down, when I wake up it’s square

When I go outside it’s on a spiral set of stairs

The people that surround me are waiting out there

In a round room they can’t find me anywhere

The Round Room; Mike Gordon; Phish 
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The Chord System

 Assigns IDs to keys and nodes from the same 1-dimensional ID space

 Nodes are organized into a ring

 Data item with key k is mapped to a node with the smallest id ≥ k 

 Also referred to as successor(k)
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Mapping of data items to nodes in Chord

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

Actual Node

{2,3,4}

{5,6,7}

{8,9,10,11,12}

{13,14,15}

Associated data keys

{0,1}
Node does not exist
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Chord lookups

 N is the number of possible nodes in the system

 Each node maintains a finger table 

 With log N entries

 Entries contains IP addresses of nodes

◼ Half-way around the ID space from it

◼ 1/4th, 1/8th, … in powers of two

 Ensures node can forward lookup query to at least ½ of the remaining ID-space 
distance to key

◼ Lookups in O(log N)
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Storing keys and forwarding lookups

 An entity with key k falls under the jurisdiction of node with the smallest 

identifier id

▪ id >= k

▪ Referred to as the successor of k or succ(k)

 A node forwards query for key k to node (in its FT) with highest ID  k

 The exception is ONLY when the first entry is greater than k

◼ In this case, that node is responsible for storing that element
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Chord lookup example for k=54

N

1

N

8

N

14

N

21

N

32

N

38

N

42

N

47

N

51

N

56

K54
lookup(54)

1/21/8

1/16
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When a node wants to join

 Generate a random id

 Probability of collisions is low

 lookup(id)

 Will return successor(id)

 Contact successor(id) and its predecessor

 Insert self in the ring

 Transfer data items

◼ All keys must be fetched from the new node’s successor
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An example of inserting a new node

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

Actual Node

{2,3,4}

{5,6,7}

{8,9,10,11,12}

{13,14,15}

Associated data keys

{0,1}

New node 10
will be inserted

Succ(12) = 15
Pred(12) = 7

Succ(7) = 12
Pred(7) = 4
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An example of inserting a new node

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

Actual Node

{2,3,4}

{5,6,7}

{13,14,15}

Associated data keys

{0,1}

Succ(12) = 15
Pred(12) = 10

Succ(7) = 10
Pred(7) = 4

Succ(10) = 12
Pred(10) =  7

{11,12}

{8,9,10}
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Finger Table in Chord 

 Chord uses an m-bit identifier space

▪ 2m possible peers

 Each node, p, in Chord maintains a Finger Table with m-entries

◼FTp[i] = succ(p + 2i-1)   

Note: This is when you count your indices from 1.  

When you code, and we are counting from 0 this would be 

FTp[i] = succ(p + 2i)   
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Constructing the Finger Table: Node 1

0 1
2

3

4

5

6

8

7

9

10

11

12

13

14
151617

18
19

20

21

22

23

24

25

26

27

28

29

30
31

succ(k) = Smallest id ≥ k

Index succ(p + 2i-1) Entry

succ(1 + 1) 41

succ(1 + 2) 42

succ(1 + 4) 93

succ(1 + 8) 94

succ(1 + 16) 185

We are looking at a 5-bit ID space.

IDs go from 0 through (25 − 1)



PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L16.34

Constructing the Finger Table: Node 4

0 1
2

3

4

5

6

8

7

9

10

11

12

13

14
151617

18
19

20

21

22

23

24

25

26

27

28

29

30
31

1 4

2 4

3 9

4 9

5 18

succ(k) = Smallest id ≥ k

Index succ(p + 2i-1) Entry

succ(4 + 1) 91

succ(4 + 2) 92

succ(4 + 4) 93

succ(4 + 8) 144

succ(4 + 16) 205
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Constructing the Finger Table: Node 9

0 1
2

3

4

5

6

8

7

9

10

11

12

13

14
151617

18
19

20

21

22

23

24

25

26

27

28

29

30
31

1 4

2 4

3 9

4 9

5 18

succ(k) = Smallest id ≥ k

Index succ(p + 2i-1) Entry

succ(9 + 1) 111

succ(9 + 2) 112

succ(9 + 4) 143

succ(9 + 8) 184

succ(9 + 16) 285

1 9

2 9

3 9

4 14

5 20
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Constructing the Finger Table: Node 28

0 1
2

3

4

5

6

8

7

9

10

11

12

13

14
151617

18
19

20

21

22

23

24

25

26

27

28

29

30
31

1 4

2 4

3 9

4 9

5 18

succ(k) = Smallest id ≥ k

Index succ(p + 2i-1) Entry

succ(28 + 1) 11

succ(28 + 2) 12

succ(28 + 4) 13

succ(28 + 8) 44

succ(28 + 16) 145

1 9

2 9

3 9

4 14

5 20

1 11

2 11

3 14

4 18

5 28

if (val ≥ 2m) {

  val = val (mod 2m) 

}
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Using the finger table to route queries:

Make sure you don’t overshoot

 To lookup a key k, node p will forward query to node q with index j in 

p’s FT where:

                      q = FTp[j] ≤ k < FTp[j+1] 

                              OR

                      q  = FTp[1] when p < k < FTp[1] 

Node with 
  greatest ID less than or equal to k

First entry ONLY if its ID is greater than k
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Stop forwarding the query when you are the target 

node

 A node is responsible for keys that fall in the range

      key > predecessor 

      key <= self



0 1
2

3

4

5

6

8

7

9

10

11

12

13

14
151617

18
19

20

21

22

23

24

25

26

27

28

29

30
31

1 4

2 4

3 9

4 9

5 18

1 9

2 9

3 9

4 14

5 20

1 11

2 11

3 14

4 18

5 28

1 14

2 14

3 18

4 20

5 28
1 18

2 18

3 18

4 28

5 1

1 20

2 20

3 28

4 28

5 4

1 21

2 28

3 28

4 28

5 4

1 28

2 28

3 28

4 1

5 9

1 1

2 1

3 1

4 4

5 14

Resolve k=26
from peer 1

Smallest id ≥ k

q = FTp[j] ≤ k < FTp[j+1]

q = FTp[1] when p < k < FTp[1]



0 1
2

3

4

5

6

8

7

9

10

11

12

13

14
151617

18
19

20

21

22

23

24

25

26

27

28

29

30
31

1 4

2 4

3 9

4 9

5 18

1 9

2 9

3 9

4 14

5 20

1 11

2 11

3 14

4 18

5 28

1 14

2 14

3 18

4 20

5 28
1 18

2 18

3 18

4 28

5 1

1 20

2 20

3 28

4 28

5 4

1 21

2 28

3 28

4 28

5 4

1 28

2 28

3 28

4 1

5 9

1 1

2 1

3 1

4 4

5 14
Resolve k=12
from peer 28

Smallest id ≥ k

q = FTp[j] ≤ k < FTp[j+1]

q = FTp[1] when p < k < FTp[1]
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Keeping the finger table up-to-date:

At node q, FTq[1] must be accurate

① Contact succ(q+1) {This is FTq[1]}

 Have it return its predecessor

② If q = pred( succ(q+1) )

 Everything is fine

③ Otherwise:

 There is a new node p such that q < p ≤ succ(q+1)

 FTq[1] = p

 Check if p has recorded q as its predecessor
No? Go to step (1)
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AN EXAMPLE OF NODES 

JOINING IN CHORD

Before you can ever reach your destination, you must 

travel halfway there, always leaving another half.

Zeno’s Paradox.   

N.B: Also referred to as the Dichotomy paradox in a 

recounting of Zeno’s Paradox by Aristotle.
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An example of inserting a new node N-4:

Node-4 comes in and contacts Node-1
0

1

35

4

6

7

Succ(4) = 1

1 1

2 1

3 1

1 1

2 1

3 1

2
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Installing successor at Node-1

0

1

35

4

6

7

Succ(4) = 1
Pred(4) = 1

1 1

2 1

3 1

1 1

2 1

3 1

2

Pred(1) = 4
Succ(1) = 4
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Updating the FT at N-1

0

1

35

4

6

7

Succ(4) = 1
Pred(4) = 1

1 4

2 4

3 1

1 1

2 1

3 1

2

Pred(1) = 4
Succ(1) = 4
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An example of inserting a new node N-7:

N-7 contacts N-1 for filling its FT
0

1

35

4

6

7

Succ(4) = 1
Pred(4) = 1

1 4

2 4

3 1

1 1

2 1

3 1

2

Pred(1) = 4
Succ(1) = 4

1

2

3

1

1
4
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N-7 informs N-1 that it (N-7) is now N-1’s predecessor

0

1

35

4

6

7

Succ(4) = 1
Pred(4) = 1

1 4

2 4

3 1

1 1

2 1

3 1

2

Pred(1) = 7
Succ(1) = 4

1

2

3

1

1
4

Since 7 is closer it
   is installed as the 
    predecessor of 1
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When N-1 updates its FT later on … 

0

1

35

4

6

7

Succ(4) = 1
Pred(4) = 1

1 4

2 4

3 7

1 1

2 1

3 1

2

Pred(1) = 7
Succ(1) = 4

1

2

3

1

1
4

Succ(7) = 1
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N-4 contacts N-1 to see if it is still its predecessor … and installs 

N-7 as its successor

0

1

35

4

6

7

Succ(4) = 7
Pred(4) = 1

1 4

2 4

3 7

1 7

2 1

3 1

2

Pred(1) = 7
Succ(1) = 4

1

2

3

1

1
4

Succ(7) = 1
Pred(7) = 4
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When the FT at N-4 is updated …

0

1

35

4

6

7

Succ(4) = 7
Pred(4) = 1

1 4

2 4

3 7

1 7

2 7

3 1

2

Pred(1) = 7
Succ(1) = 4

1

2

3

1

1
4

Succ(7) = 1
Pred(7) = 4
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The contents of this slide-set are based on the 

following references

 Distributed Systems: Principles and Paradigms. Andrew S. Tanenbaum and Maarten Van 

der Steen. 2nd Edition. Prentice Hall. ISBN: 0132392275/978-0132392273. 

[Chapter 5]

 Distributed Systems: Concepts and Design. George Coulouris, Jean Dollimore, Tim 

Kindberg, Gordon Blair. 5th Edition. Addison Wesley. ISBN: 978-0132143011. 

[Chapter 10]
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