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To Orchestrate a Job in a Cluster
A job comprises many a task

    What could be so hard, you ask?

A job’s done, when every task wraps up

   Circumventing every hiccup

Machines may slowdown or go bust

       For no reason nor rhyme

Try to complete, you must

     All tasks, at roughly the same time
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Frequently asked questions from the previous class 

survey

 Can Chord, Tapestry, and Pastry “communicate” with each other?

 Chord does not have a leaf set?

 Why does Chord seem to have duplicate entries in its FT?
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Matrix Cup Standings [10/1]

 Tyler Malone  2.20

 Brenner Lattin  2.48

 Tommy McRoskey 21.62

 Zacharie Guida  22.46

 Connor Chapman 25.47

 Cameron Mordini 33.44

 Parker Jones  44.10

https://www.cs.colostate.edu/~csx55/matrix
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Topics covered in today’s lecture

 MapReduce
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Orchestrating computations over voluminous data: 

A Google Case Study

 Late 90s work on developing effective search

Distributed PageRank algorithm and data structures to process crawled 
data and rank results

 Google File System: Organize crawled data so that they are amenable 
to programmatic interactions

 MapReduce: A distributed computational framework for processing large 
amounts of data

 TensorFlow: A distributed computational framework for training AI 
models at scale

 Google Translate and Speech recognition

 Medical applications
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MapReduce: Topics that we will cover

 Why?

 What it is and what it is not?

 The core framework and the original Google paper

 Development of programs using Hadoop

 The dominant MapReduce implementation
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MapReduce

 It’s a framework for processing data residing on a large number of 

computers

 Very powerful framework

 Excellent for some problems

 Challenging or not applicable in other classes of problems
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What is MapReduce? 

 More a framework than a tool

 You are required to fit (some folks shoehorn it) your solution into the 

MapReduce framework

 MapReduce is not a feature, but rather a constraint
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What does this constraint mean?

 It makes problem solving easier and harder

 Clear boundaries for what you can and cannot do

 You actually need to consider fewer options than what you are used to

 But solving problems with constraints requires planning and a change in 

your thinking
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But what does this get us?

 Tradeoff of being confined to the MapReduce framework?

 Ability to process data on a large number of computers

 But, more importantly, without having to worry about concurrency, scale, 

fault tolerance, and robustness 
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A challenge in writing MapReduce programs

 Design!

 Good programmers can produce bad software due to poor design

 Good programmers can produce bad MapReduce algorithms

 Only in this case your mistakes will be amplified

 Your job may be distributed on 100s or 1000s of machines and operating 

on a Petabyte of data
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JEFFREY DEAN and SANJAY GHEMAWAT: MapReduce: Simplified 

Data Processing on Large Clusters. OSDI 2004: 137-150

MATERIALS BASED ON
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MapReduce

 Programming model

 Associated implementation for 

 Processing & Generating large data sets
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Programming model

 Computation takes a set of input key/value pairs

 Produces a set of output key/value pairs

 Express the computation as two functions:

 Map

 Reduce
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Map

 Takes an input pair

 Produces a set of intermediate key/value pairs
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Mappers

 If map operations are independent of each other, they can be 

performed in parallel

 Shared nothing

 This is usually the case
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MapReduce library 

 Groups all intermediate values with the same intermediate key

 Passes them to the Reduce function
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Reduce function

 Accepts intermediate key I and 

 Set of values for that key

 Merge these values together to get

 Smaller set of value
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Counting number of occurrences of each word in a 

large collection of documents

map (String key, String value)

     //key: document name

     //value: document contents

   for each word w in value

       EmitIntermediate(w, “1”)
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The Road Not Taken 

  Robert Frost

Two roads diverged in a yellow wood,

And sorry I could not travel both

And be one traveler, long I stood

And looked down one as far as I could

To where it bent in the undergrowth;

Then took the other, as just as fair,

And having perhaps the better claim,

Because it was grassy and wanted wear;

Though as for that the passing there

Had worn them really about the same,

And both that morning equally lay

In leaves no step had trodden black.

Oh, I kept the first for another day!

Yet knowing how way leads on to way,

I doubted if I should ever come back.

I shall be telling this with a sigh

Somewhere ages and ages hence:

Two roads diverged in a wood, and I—

I took the one less traveled by,

And that has made all the difference.

two 1

roads 1

diverged 1

in 1

a 1

yellow 1

wood 1

and 1

sorry 1

i 1

could 1

not 1

travel 1

both 1

and 1

be 1

one 1

…
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Counting number of occurrences of each word in a 

large collection of documents

reduce (String key, Iterator values)

     //key: a word

    //value: a list of counts

    int result = 0;  
  for each v in values
     result += ParseInt(v);

    Emit(AsString(result));

Sums together all counts 
emitted for a particular word
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The Road Not Taken 

  Robert Frost

a             3

about       1

ages         2

all            1

and          9

another    1

as            5

back         1

be            2

because    1

bent          1

better        1

black         1

both          2

by            1

claim         1

come         1

could         2

day           1

difference  1

diverged    2

…



MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.24

MapReduce specification object contains

 Names of

 Input

 Output

 Tuning parameters
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Map and reduce functions have associated types drawn from 

different domains

map(k1, v1)          → list(k2, v2)

reduce(k2, list(v2)) → list(v2)
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What’s passed to-and-from user-defined functions?

 Strings

 User code converts between

 String

 Appropriate types
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History is Philosophy teaching 

by example. 

Thucydides
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Programs expressed as MapReduce computations: 

Distributed Grep

 Map

 Emit line if it matches specified pattern

 Reduce

 Just copy intermediate data to the output 

◼ The reducer here is an identity function
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Counts of URL access frequency

 Map

 Process logs of web page requests

 Output  <URL, 1>

 Reduce

 Add together all values for a particular URL

 Output  <URL, total count>



MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.30

Reverse Web-link Graph

 Map

 Outputs <target, source> pair for each target URL found in page source

 Reduce

 Concatenate list of all sources for a target URL

 Output <target, list(source)>  



MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.31

Term-Vector per Host

 Summarizes important terms that occur in a set of documents  <word, 
frequency>

 For each input document, the Map

 Emits <hostname, term vector>

 Reduce function

 Has all per-document vectors for a given host

 Add term vectors; discard away infrequent terms

◼ <hostname, term vector>
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Inverted Index

 Map

 Parse each document

 Emit <word, document ID>

 Reduce

 Accept all pairs for a given word

 Sort document IDs

 Emit <word, list(document ID)> pair
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Implementation 

 Machines are commodity machines

 GFS is used to manage data stored on the disks
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Execution Overview – Part I

 Maps distributed across multiple machines

 Automatic partitioning of data into M splits

 Splits are processed concurrently on different machines
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Execution Overview – Part II

 Partition intermediate key space into R pieces

 E.g. hash(key) mod R

 User specified parameters

 Partitioning function

 Number of partitions (R)
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Execution Overview

Split 0

Split 1

Split 2

Split 3

Split 4

User 

Program

Master

Worker

Worker

Worker

Worker

Worker

Output 

file 0

Output 

file 1
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Execution Overview: Step I

The MapReduce library 

 Splits input files into M pieces

▪ 16-64 MB per piece

 Starts up copies of the program on a cluster of machines
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Execution Overview: Step II

Program copies

 One of the copies is a Master

 There are M map tasks and R reduce tasks to assign

 Master

 Picks idle workers

 Assigns each worker a map or reduce task
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Execution Overview: Step III

Workers that are assigned a map task

 Read contents of their input split

 Parses <key, value> pairs out of the input data

 Pass each pair to user-defined Map function

 Intermediate <key, value> pairs from Maps

 Buffered in Memory
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Execution Overview: Step IV

Writing to disk

 Periodically, buffered pairs are written to disk

 These writes are partitioned

 By the partitioning function

 Locations of buffered pairs on local disk

 Reported back to Master

 Master forwards these locations to reduce workers
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Execution Overview: Step V

Reading Intermediate data

 Master notifies Reduce worker about locations

 Reduce worker reads buffered data from the local disks of Maps

 Read all intermediate data; sort by intermediate key

 All occurrences of the same key are grouped together

 Many different keys map to the same Reduce task
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Execution Overview: Step VI

Processing data at the Reduce worker

 Iterate over sorted intermediate data

 For each unique key pass

▪ Key + set of intermediate values to Reduce function

 Output of the Reduce function is appended

 To output file of the reduce partition
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Execution Overview: Step VII

Waking up the user

 After all Map & Reduce tasks have been completed

 Control returns to the user code
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Master Data Structures

 For each Map and Reduce task

 State: {idle, in-progress, completed}

 Worker machine identity

 For each completed Map task store 

 Location and sizes of R intermediate file regions

 Information pushed incrementally to in-progress Reduce tasks
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The contents of this slide-set are based on the 

following references

 Distributed Systems: Concepts and Design. George Coulouris, Jean Dollimore, Tim 

Kindberg, Gordon Blair. 5th Edition. Addison Wesley. ISBN: 978-0132143011. 

[Chapter 10]

 Jeffrey Dean, Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large 

Clusters. OSDI 2004: 137-150

 Jeffrey Dean, Sanjay Ghemawat: MapReduce: simplified data processing on large 

clusters. Commun. ACM 51(1): 107-113 (2008)
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