
COMPUTER SCIENCE DEPARTMENT

CSX55: DISTRIBUTED SYSTEMS [MAPREDUCE]

Shrideep Pallickara

Computer Science

Colorado State University

To Orchestrate a Job in a Cluster
A job comprises many a task

 What could be so hard, you ask?

A job’s done, when every task wraps up

 Circumventing every hiccup

Machines may slowdown or go bust

 For no reason nor rhyme

Try to complete, you must

 All tasks, at roughly the same time

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.2

Frequently asked questions from the previous class

survey

 Can Chord, Tapestry, and Pastry “communicate” with each other?

 Chord does not have a leaf set?

 Why does Chord seem to have duplicate entries in its FT?

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.3

Matrix Cup Standings [10/1]

 Tyler Malone 2.20

 Brenner Lattin 2.48

 Tommy McRoskey 21.62

 Zacharie Guida 22.46

 Connor Chapman 25.47

 Cameron Mordini 33.44

 Parker Jones 44.10

https://www.cs.colostate.edu/~csx55/matrix

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.4

Topics covered in today’s lecture

 MapReduce

COMPUTER SCIENCE DEPARTMENT

MAPREDUCE

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.6

Orchestrating computations over voluminous data:

A Google Case Study

 Late 90s work on developing effective search

Distributed PageRank algorithm and data structures to process crawled
data and rank results

 Google File System: Organize crawled data so that they are amenable
to programmatic interactions

 MapReduce: A distributed computational framework for processing large
amounts of data

 TensorFlow: A distributed computational framework for training AI
models at scale

 Google Translate and Speech recognition

 Medical applications

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.7

MapReduce: Topics that we will cover

 Why?

 What it is and what it is not?

 The core framework and the original Google paper

 Development of programs using Hadoop

 The dominant MapReduce implementation

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.8

MapReduce

 It’s a framework for processing data residing on a large number of

computers

 Very powerful framework

 Excellent for some problems

 Challenging or not applicable in other classes of problems

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.9

What is MapReduce?

 More a framework than a tool

 You are required to fit (some folks shoehorn it) your solution into the

MapReduce framework

 MapReduce is not a feature, but rather a constraint

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.10

What does this constraint mean?

 It makes problem solving easier and harder

 Clear boundaries for what you can and cannot do

 You actually need to consider fewer options than what you are used to

 But solving problems with constraints requires planning and a change in

your thinking

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.11

But what does this get us?

 Tradeoff of being confined to the MapReduce framework?

 Ability to process data on a large number of computers

 But, more importantly, without having to worry about concurrency, scale,

fault tolerance, and robustness

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.12

A challenge in writing MapReduce programs

 Design!

 Good programmers can produce bad software due to poor design

 Good programmers can produce bad MapReduce algorithms

 Only in this case your mistakes will be amplified

 Your job may be distributed on 100s or 1000s of machines and operating

on a Petabyte of data

COMPUTER SCIENCE DEPARTMENT

MAPREDUCE

JEFFREY DEAN and SANJAY GHEMAWAT: MapReduce: Simplified

Data Processing on Large Clusters. OSDI 2004: 137-150

MATERIALS BASED ON

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.14

MapReduce

 Programming model

 Associated implementation for

 Processing & Generating large data sets

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.15

Programming model

 Computation takes a set of input key/value pairs

 Produces a set of output key/value pairs

 Express the computation as two functions:

 Map

 Reduce

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.16

Map

 Takes an input pair

 Produces a set of intermediate key/value pairs

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.17

Mappers

 If map operations are independent of each other, they can be

performed in parallel

 Shared nothing

 This is usually the case

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.18

MapReduce library

 Groups all intermediate values with the same intermediate key

 Passes them to the Reduce function

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.19

Reduce function

 Accepts intermediate key I and

 Set of values for that key

 Merge these values together to get

 Smaller set of value

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.20

Counting number of occurrences of each word in a

large collection of documents

map (String key, String value)

 //key: document name

 //value: document contents

 for each word w in value

 EmitIntermediate(w, “1”)

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.21

The Road Not Taken

 Robert Frost

Two roads diverged in a yellow wood,

And sorry I could not travel both

And be one traveler, long I stood

And looked down one as far as I could

To where it bent in the undergrowth;

Then took the other, as just as fair,

And having perhaps the better claim,

Because it was grassy and wanted wear;

Though as for that the passing there

Had worn them really about the same,

And both that morning equally lay

In leaves no step had trodden black.

Oh, I kept the first for another day!

Yet knowing how way leads on to way,

I doubted if I should ever come back.

I shall be telling this with a sigh

Somewhere ages and ages hence:

Two roads diverged in a wood, and I—

I took the one less traveled by,

And that has made all the difference.

two 1

roads 1

diverged 1

in 1

a 1

yellow 1

wood 1

and 1

sorry 1

i 1

could 1

not 1

travel 1

both 1

and 1

be 1

one 1

…

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.22

Counting number of occurrences of each word in a

large collection of documents

reduce (String key, Iterator values)

 //key: a word

 //value: a list of counts

 int result = 0;
 for each v in values
 result += ParseInt(v);

 Emit(AsString(result));

Sums together all counts
emitted for a particular word

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.23

The Road Not Taken

 Robert Frost

a 3

about 1

ages 2

all 1

and 9

another 1

as 5

back 1

be 2

because 1

bent 1

better 1

black 1

both 2

by 1

claim 1

come 1

could 2

day 1

difference 1

diverged 2

…

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.24

MapReduce specification object contains

 Names of

 Input

 Output

 Tuning parameters

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.25

Map and reduce functions have associated types drawn from

different domains

map(k1, v1) → list(k2, v2)

reduce(k2, list(v2)) → list(v2)

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.26

What’s passed to-and-from user-defined functions?

 Strings

 User code converts between

 String

 Appropriate types

COMPUTER SCIENCE DEPARTMENT

EXAMPLES

History is Philosophy teaching

by example.

Thucydides

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.28

Programs expressed as MapReduce computations:

Distributed Grep

 Map

 Emit line if it matches specified pattern

 Reduce

 Just copy intermediate data to the output

◼ The reducer here is an identity function

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.29

Counts of URL access frequency

 Map

 Process logs of web page requests

 Output <URL, 1>

 Reduce

 Add together all values for a particular URL

 Output <URL, total count>

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.30

Reverse Web-link Graph

 Map

 Outputs <target, source> pair for each target URL found in page source

 Reduce

 Concatenate list of all sources for a target URL

 Output <target, list(source)>

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.31

Term-Vector per Host

 Summarizes important terms that occur in a set of documents <word,
frequency>

 For each input document, the Map

 Emits <hostname, term vector>

 Reduce function

 Has all per-document vectors for a given host

 Add term vectors; discard away infrequent terms

◼ <hostname, term vector>

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.32

Inverted Index

 Map

 Parse each document

 Emit <word, document ID>

 Reduce

 Accept all pairs for a given word

 Sort document IDs

 Emit <word, list(document ID)> pair

COMPUTER SCIENCE DEPARTMENT

IMPLEMENTATION

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.34

Implementation

 Machines are commodity machines

 GFS is used to manage data stored on the disks

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.35

Execution Overview – Part I

 Maps distributed across multiple machines

 Automatic partitioning of data into M splits

 Splits are processed concurrently on different machines

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.36

Execution Overview – Part II

 Partition intermediate key space into R pieces

 E.g. hash(key) mod R

 User specified parameters

 Partitioning function

 Number of partitions (R)

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.37

Execution Overview

Split 0

Split 1

Split 2

Split 3

Split 4

User

Program

Master

Worker

Worker

Worker

Worker

Worker

Output

file 0

Output

file 1

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.38

Execution Overview: Step I

The MapReduce library

 Splits input files into M pieces

▪ 16-64 MB per piece

 Starts up copies of the program on a cluster of machines

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.39

Execution Overview: Step II

Program copies

 One of the copies is a Master

 There are M map tasks and R reduce tasks to assign

 Master

 Picks idle workers

 Assigns each worker a map or reduce task

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.40

Execution Overview: Step III

Workers that are assigned a map task

 Read contents of their input split

 Parses <key, value> pairs out of the input data

 Pass each pair to user-defined Map function

 Intermediate <key, value> pairs from Maps

 Buffered in Memory

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.41

Execution Overview: Step IV

Writing to disk

 Periodically, buffered pairs are written to disk

 These writes are partitioned

 By the partitioning function

 Locations of buffered pairs on local disk

 Reported back to Master

 Master forwards these locations to reduce workers

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.42

Execution Overview: Step V

Reading Intermediate data

 Master notifies Reduce worker about locations

 Reduce worker reads buffered data from the local disks of Maps

 Read all intermediate data; sort by intermediate key

 All occurrences of the same key are grouped together

 Many different keys map to the same Reduce task

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.43

Execution Overview: Step VI

Processing data at the Reduce worker

 Iterate over sorted intermediate data

 For each unique key pass

▪ Key + set of intermediate values to Reduce function

 Output of the Reduce function is appended

 To output file of the reduce partition

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.44

Execution Overview: Step VII

Waking up the user

 After all Map & Reduce tasks have been completed

 Control returns to the user code

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.45

Master Data Structures

 For each Map and Reduce task

 State: {idle, in-progress, completed}

 Worker machine identity

 For each completed Map task store

 Location and sizes of R intermediate file regions

 Information pushed incrementally to in-progress Reduce tasks

MAPREDUCE
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L17.46

The contents of this slide-set are based on the

following references

 Distributed Systems: Concepts and Design. George Coulouris, Jean Dollimore, Tim

Kindberg, Gordon Blair. 5th Edition. Addison Wesley. ISBN: 978-0132143011.

[Chapter 10]

 Jeffrey Dean, Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large

Clusters. OSDI 2004: 137-150

 Jeffrey Dean, Sanjay Ghemawat: MapReduce: simplified data processing on large

clusters. Commun. ACM 51(1): 107-113 (2008)

	Slide 1: CSx55: Distributed Systems [MapReduce]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Matrix Cup Standings [10/1]
	Slide 4: Topics covered in today’s lecture
	Slide 5: MapReduce
	Slide 6: Orchestrating computations over voluminous data: A Google Case Study
	Slide 7: MapReduce: Topics that we will cover
	Slide 8: MapReduce
	Slide 9: What is MapReduce?
	Slide 10: What does this constraint mean?
	Slide 11: But what does this get us?
	Slide 12: A challenge in writing MapReduce programs
	Slide 13: MapReduce
	Slide 14: MapReduce
	Slide 15: Programming model
	Slide 16: Map
	Slide 17: Mappers
	Slide 18: MapReduce library
	Slide 19: Reduce function
	Slide 20: Counting number of occurrences of each word in a large collection of documents
	Slide 21: The Road Not Taken Robert Frost
	Slide 22: Counting number of occurrences of each word in a large collection of documents
	Slide 23: The Road Not Taken Robert Frost
	Slide 24: MapReduce specification object contains
	Slide 25: Map and reduce functions have associated types drawn from different domains
	Slide 26: What’s passed to-and-from user-defined functions?
	Slide 27: Examples
	Slide 28: Programs expressed as MapReduce computations: Distributed Grep
	Slide 29: Counts of URL access frequency
	Slide 30: Reverse Web-link Graph
	Slide 31: Term-Vector per Host
	Slide 32: Inverted Index
	Slide 33: Implementation
	Slide 34: Implementation
	Slide 35: Execution Overview – Part I
	Slide 36: Execution Overview – Part II
	Slide 37: Execution Overview
	Slide 38: Execution Overview: Step I The MapReduce library
	Slide 39: Execution Overview: Step II Program copies
	Slide 40: Execution Overview: Step III Workers that are assigned a map task
	Slide 41: Execution Overview: Step IV Writing to disk
	Slide 42: Execution Overview: Step V Reading Intermediate data
	Slide 43: Execution Overview: Step VI Processing data at the Reduce worker
	Slide 44: Execution Overview: Step VII Waking up the user
	Slide 45: Master Data Structures
	Slide 46: The contents of this slide-set are based on the following references

