
COMPUTER SCIENCE DEPARTMENT

CSX55: DISTRIBUTED SYSTEMS [MAPREDUCE]

Shrideep Pallickara

Computer Science

Colorado State University

Orchestration despite chaos

Machines failing

 Stragglers around the corner

Disks spinning out of breadth

 flipping their bits

No matter

Distributed execution plays out

 with outcomes indistinguishable

From that on a solitary, non-faulting node

 Only commensurately faster

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.2

Frequently asked questions from the previous class

survey

 How did Google counter ad farms?

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.3

Topics covered in today’s lecture

 MapReduce

COMPUTER SCIENCE DEPARTMENT

IMPLEMENTATION

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.5

Implementation

 Machines are commodity machines

 GFS is used to manage data stored on the disks

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.6

Execution Overview – Part I

 Maps distributed across multiple machines

 Automatic partitioning of data into M splits

 Splits are processed concurrently on different machines

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.7

Execution Overview – Part II

 Partition intermediate key space into R pieces

 E.g. hash(key) mod R

 User specified parameters

 Partitioning function

 Number of partitions (R)

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.8

Execution Overview

Split 0

Split 1

Split 2

Split 3

Split 4

User

Program

Master

Worker

Worker

Worker

Worker

Worker

Output

file 0

Output

file 1

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.9

Execution Overview: Step I

The MapReduce library

 Splits input files into M pieces

▪ 16-64 MB per piece

 Starts up copies of the program on a cluster of machines

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.10

Execution Overview: Step II

Program copies

 One of the copies is a Master

 There are M map tasks and R reduce tasks to assign

 Master

 Picks idle workers

 Assigns each worker a map or reduce task

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.11

Execution Overview: Step III

Workers that are assigned a map task

 Read contents of their input split

 Parses <key, value> pairs out of the input data

 Pass each pair to user-defined Map function

 Intermediate <key, value> pairs from Maps

 Buffered in Memory

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.12

Execution Overview: Step IV

Writing to disk

 Periodically, buffered pairs are written to disk

 These writes are partitioned

 By the partitioning function

 Locations of buffered pairs on local disk

 Reported back to Master

 Master forwards these locations to reduce workers

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.13

Execution Overview: Step V

Reading Intermediate data

 Master notifies Reduce worker about locations

 Reduce worker reads buffered data from the local disks of Maps

 Read all intermediate data; sort by intermediate key

 All occurrences of the same key are grouped together

 Many different keys map to the same Reduce task

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.14

Execution Overview: Step VI

Processing data at the Reduce worker

 Iterate over sorted intermediate data

 For each unique key pass

▪ Key + set of intermediate values to Reduce function

 Output of the Reduce function is appended

 To output file of the reduce partition

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.15

Execution Overview: Step VII

Waking up the user

 After all Map & Reduce tasks have been completed

 Control returns to the user code

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.16

Master Data Structures

 For each Map and Reduce task

 State: {idle, in-progress, completed}

 Worker machine identity

 For each completed Map task store

 Location and sizes of R intermediate file regions

 Information pushed incrementally to in-progress Reduce tasks

COMPUTER SCIENCE DEPARTMENT

FAULT TOLERANCE

I’m not afraid

Of anything in this world

There’s nothing you can throw at me

That I haven’t already heard

I’m just trying to find

A decent melody

A song that I can sing

In my own company

Stuck in a Moment You Can’t Get Out Of, U2

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.18

Worker failures

 Master pings worker periodically

 After a certain number of failed pings

 Master marks worker as having failed

 Any Map task completed by failed worker?

 Reset to initial idle state

 Eligible for rescheduling

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.19

Why completed Map tasks are reexecuted

 Output is stored on local disk of failed machine

 Inaccessible

 All reduce workers are notified about reexecution

 Reduce tasks do not need to be reexecuted

 Output stored in GFS

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.20

Master Failures

 Could checkpoint at the Master

 Data structures are well-defined

 However, since there is only one Master

 Assumption is that failure is unlikely

 If there is a Master failure?

 MapReduce computation is aborted!

 Client must check and retry MapReduce operation

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.21

Semantics in the presence of failures:
If map and reduce operators are deterministic

 Distributed execution output is identical to

 Non-faulting, sequential execution

 Atomic commits of map and reduce task outputs help achieve this

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.22

Each in-progress task writes output to private

temporary files

 Map task produces R such files

 When task completes, Map sends this info to the Master

 Reduce task produces one such file

 When reduce completes, worker atomically:

◼ Renames temporary file to final output file

◼ Uses GFS to do this

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.23

Locality

 Conserve network bandwidth

 Input files managed by GFS

 MapReduce master takes location of input files into account

 Schedule task on machine that contains a replica of the input slice

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.24

Locality and its impact when running large

MapReduce tasks

 Most input data is read locally

 Consumes no network bandwidth

COMPUTER SCIENCE DEPARTMENT

TASK GRANULARITY

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.26

Task Granularity

 Subdivide map phase into M pieces

 Subdivide reduce phase into R pieces

 M, R >> number of worker machines

 Each worker performing many different tasks:

 Improves dynamic load balancing

 Speeds up recovery during failures

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.27

Practical bounds on how large M and R can be

 Master must make O(M + R) scheduling decisions

 Keep O(MR) state in memory

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.28

Practical bounds on how large M and R can be

 M is chosen such that

 Input data is roughly 16 MB to 64 MB

 R constrained by users

 Output of each reduce is in a separate file

 R is a small multiple of the number of machines that will be used

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.29

Typical values used at Google

 M = 200,000

 R = 5,000

 W = 2,000 worker machines

COMPUTER SCIENCE DEPARTMENT

BACKUP TASKS

Then take me disappearin’ through the smoke rings of my mind

Down the foggy ruins of time, far past the frozen leaves

The haunted, frightened trees, out to the windy beach

Far from the twisted reach of crazy sorrow

Mr. Tambourine Man, Bob Dylan

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.31

Stragglers

 Machine that takes an unusually long time to complete a map or

reduce operation

 Can slow down entire computation

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.32

How stragglers arise

 Machine with a bad disk

 Frequent, correctable errors

 Read performance drops from 30 MB/s to 1 MB/s

 Over scheduling

 Many tasks executing on the same machine

 Competition for CPU, memory, disk or network cycles

 Bug in machine initialization code

 Processor caches may be disabled

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.33

Alleviating the problem of stragglers

 When a MapReduce operation is close to completion

 Schedule backup executions of remaining in-progress tasks

 Task completed when

 Primary or backup finishes execution

 Significantly reduces time to complete large MapReduce operations

COMPUTER SCIENCE DEPARTMENT

REFINEMENTS

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.35

Partitioning Function

 Users simply specify R

 The number of output files

 Default partitioning

▪ hash(key) mod R

 Sometimes output keys are URLs

▪ Entries from a host must go to same output file

▪ hash(Hostname(urlkey)) mod R

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.36

Ordering Guarantees

 Intermediate key/pairs are processed in increasing key order

 Easy to generate sorted output file

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.37

The Combiner function

 There is significant repetition in intermediate keys produced by each

map task

 For word-frequencies

 Each map may produce 100s or 1000s of <the, “1”>

 All of these counts sent over the network

 Combiner: Does partial merging of this data

 Before it is sent to reducer

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.38

Combiner function

 Executed on each machine that performs map task

 Code implementing combiner & reduce function

 Usually the same … [We will see an example where this is not true.]

 Difference?

 COMBINE: Output written to intermediate file

 REDUCE: Output written to final output file

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.39

Input/Output Types: Support for reading input data

in different formats

 Text mode treats every line as a <key, value> pair

 Key: Offset in the file

 Value: Contents of the line

 <key, value> pairs are sorted by key

 Each input type knows how to split itself for

 Processing as separate map tasks

 Text mode splitting occurs only at line boundaries

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.40

Side-effects

 Besides intermediate files, other auxiliary files may be produced

 Side effects

 No atomic commits for multiple auxiliary files that are produced

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.41

Skipping Bad Records [1/3]

 Bugs in user code cause Map or Reduce functions to crash

 Deterministically: On certain records

 Fix the bug?

 Yes, but not always feasible

 Acceptable to ignore a few records

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.42

Skipping Bad Records [2/3]

 Optional mode of operation

① Detect records that cause deterministic crashes

② Skip them

 Each worker installs a signal handler to catch segmentation violations

and bus errors

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.43

Skipping Bad Records [3/3]

 Signal handler sends last gasp UDP packet to the Master

 Contains sequence number

 When Master sees more than 1 failure at that record

 Indicates record should be skipped during next execution

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.44

Local Execution

 Support for sequential execution of MapReduce operation on a

single machine

 Helps with debugging, profiling, and testing

 Controls to limit computation to a particular map

 Invoke programs with a special flag

 Use debugging and testing tools

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.45

Status Information

 Master runs internal HTTP Server

 Exports pages for viewing

 Show the progress of a computation

 Number of tasks in progress

 Number of tasks that completed

 Bytes of input

 Bytes of intermediate data

 Processing rate

PEER-TO-PEER SYSTEMS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L18.46

The contents of this slide-set are based on the

following references

 Jeffrey Dean, Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large

Clusters. OSDI 2004: 137-150

 Jeffrey Dean, Sanjay Ghemawat: MapReduce: simplified data processing on large

clusters. Commun. ACM 51(1): 107-113 (2008)

	Slide 1: CSx55: Distributed Systems [MapReduce]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in today’s lecture
	Slide 4: Implementation
	Slide 5: Implementation
	Slide 6: Execution Overview – Part I
	Slide 7: Execution Overview – Part II
	Slide 8: Execution Overview
	Slide 9: Execution Overview: Step I The MapReduce library
	Slide 10: Execution Overview: Step II Program copies
	Slide 11: Execution Overview: Step III Workers that are assigned a map task
	Slide 12: Execution Overview: Step IV Writing to disk
	Slide 13: Execution Overview: Step V Reading Intermediate data
	Slide 14: Execution Overview: Step VI Processing data at the Reduce worker
	Slide 15: Execution Overview: Step VII Waking up the user
	Slide 16: Master Data Structures
	Slide 17: Fault Tolerance
	Slide 18: Worker failures
	Slide 19: Why completed Map tasks are reexecuted
	Slide 20: Master Failures
	Slide 21: Semantics in the presence of failures: If map and reduce operators are deterministic
	Slide 22: Each in-progress task writes output to private temporary files
	Slide 23: Locality
	Slide 24: Locality and its impact when running large MapReduce tasks
	Slide 25: Task Granularity
	Slide 26: Task Granularity
	Slide 27: Practical bounds on how large M and R can be
	Slide 28: Practical bounds on how large M and R can be
	Slide 29: Typical values used at Google
	Slide 30: Backup Tasks
	Slide 31: Stragglers
	Slide 32: How stragglers arise
	Slide 33: Alleviating the problem of stragglers
	Slide 34: Refinements
	Slide 35: Partitioning Function
	Slide 36: Ordering Guarantees
	Slide 37: The Combiner function
	Slide 38: Combiner function
	Slide 39: Input/Output Types: Support for reading input data in different formats
	Slide 40: Side-effects
	Slide 41: Skipping Bad Records [1/3]
	Slide 42: Skipping Bad Records [2/3]
	Slide 43: Skipping Bad Records [3/3]
	Slide 44: Local Execution
	Slide 45: Status Information
	Slide 46: The contents of this slide-set are based on the following references

