CSXx55: DISTRIBUTED SYSTEMS [MAPREDUCE]

Orchestration despite chaos
Machines failing
Stragglers around the corner
Disks spinning out of breadth
flipping their bits

No matter

Distributed execution plays out
with outcomes indistinguishable

From that on a solitary, non-faulting node Sh”deep Pallickara
Only commensurately faster

Computer Science
Colorado State University

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

Frequently asked questions from the previous class

SUFVGZ
I

7 How did Google counter ad farms?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.2

Topics covered in today’s lecture

I
1 MapReduce

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.3

IMPLEMENTATION

s/ ’/
’ / ‘lv
N
(4
\ 5
W\
— R .
\ o
- - . |
+
\ ‘ =
- \
X L 7
—— B o HASC T A [h/ 1 -
o = = -‘1 7 4 7 : -
b -
0 \
7 =
' N
——t
'\

Implementation
—

7 Machines are commodity machines

1 GFS is used to manage data stored on the disks

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.5

Execution Overview — Part |

Maps distributed across multiple machines
Automatic partitioning of data into M splits

Splits are processed concurrently on different machines

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.6

Execution Overview — Part Il

Partition intermediate key space into R pieces
E.g. hash(key) mod R

User specified parameters
Partitioning function

Number of partitions (R)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.7

Execution Overview

User
_ Program

—

split 0 @ file O

Split 1
Split 2 @ | Output

Split 4

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.8

Execution Overview: Step |

The MapReduce library
—

o Splits input files into M pieces
16-64 MB per piece

1 Starts up copies of the program on a cluster of machines

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.9

Execution Overview: Step |l
Program copies
One of the copies is a Master

There are M map tasks and R reduce tasks to assign

Master
Picks idle workers

Assigns each worker a map or reduce task

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.10

Execution Overview: Step Il

Workers that are assigned a map task
Read contents of their input split
Parses <key, value> pairs out of the input data

Pass each pair to user-defined Map function

ntermediate <key, value> pairs from Maps

Buffered in Memory

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.11

Execution Overview: Step IV
Writing to disk
Periodically, buffered pairs are written to disk

These writes are partitioned

By the partitioning function

Locations of buffered pairs on local disk
Reported back to Master

Master forwards these locations to reduce workers

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.12

Execution Overview: Step V
Reading Intermediate data

Master notifies Reduce worker about locations

Reduce worker reads buffered data from the local disks of Maps

Read all intermediate data; sort by intermediate key
All occurrences of the same key are grouped together

Many different keys map to the same Reduce task

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.13

Execution Overview: Step Vi
Processing data at the Reduce worker

lterate over sorted intermediate data

For each unique key pass

Key + set of intermediate values to Reduce function

Output of the Reduce function is appended

To output file of the reduce partition

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.14

Execution Overview: Step VI

Waking up the user
I
- After all Map & Reduce tasks have been completed

1 Control returns to the user code

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.15

Master Data Structures

For each Map and Reduce task
State: {idle, in-progress, completed}

Worker machine identity

For each completed Map task store

Location and sizes of R intermediate file regions

Information pushed incrementally to in-progress Reduce tasks

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.16

- I'm not afraid
Of anything in this world
There’s nothing you can throw at
That | haven'’t already heard

I’'m just trying to find
A decent melody .
A song that | can sing .

Ii&y own company -

Stuck in a Moment You Can’t Get O

p— "

-'t,:.-.-{.; _ Faur ToLer
.'.Z""' LA -2

Worker failures

Master pings worker periodically

After a certain number of failed pings

Master marks worker as having failed

Any Map task completed by failed worker?
Reset to initial idle state

Eligible for rescheduling

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.18

Why completed Map tasks are reexecuted

Output is stored on local disk of failed machine

Inaccessible

All reduce workers are notified about reexecution

Reduce tasks do not need to be reexecuted
Output stored in GFS

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.19

Master Failures

Could checkpoint at the Master

Data structures are well-defined

However, since there is only one Master

Assumption is that failure is unlikely

If there is a Master failure?

MapReduce computation is aborted!

Client must check and retry MapReduce operation

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.20

Semantics in the presence of failures:

If map and reduce operators are deterministic
_

- Distributed execution output is identical to

Non-faulting, sequential execution

- Atomic commits of map and reduce task outputs help achieve this

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.21

Each in-progress task writes output to private
temporary files

Map task produces R such files
When task completes, Map sends this info to the Master

Reduce task produces one such file

When reduce completes, worker atomically:

Renames temporary file to final output file
Uses GFS to do this

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.22

Locality

Conserve network bandwidth
Input files managed by GFS
MapReduce master takes location of input files into account

Schedule task on machine that contains a replica of the input slice

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.23

Locality and its impact when running large

MapReduce tasks
—

= Most input data is read locally

1 Consumes no network bandwidth

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.24

&

A

S
-
oz
<
-l
-
Z
<
oz

O
4
<

—

Task Granularity

Subdivide map phase into M pieces
Subdivide reduce phase into R pieces
M, R >> number of worker machines

Each worker performing many different tasks:
Improves dynamic load balancing

Speeds up recovery during failures

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.26

Practical bounds on how large M and R can be

_
- Master must make O(M + R) scheduling decisions

1 Keep O(MR) state in memory

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.27

Practical bounds on how large M and R can be

M is chosen such that
Input data is roughly 16 MB to 64 MB

R constrained by users

Output of each reduce is in a separate file

R is a small multiple of the number of machines that will be used

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.28

Typical values used at Google

I
o M = 200,000
7 R = 5,000
01 W = 2,000 worker machines

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.29

Then take me disappearin’ through the smoke rings of my mind
Down the foggy ruins of time, far past the frozen leaves

The haunted, frightened trees, out to the windy beach

Far from the twisted reach of crazy sorrow

Mr. Tambourine Man, Bob Dylan

BACKUP TASKS

Stragglers

Machine that takes an unusually long time to complete a map or
reduce operation

Can slow down entire computation

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.31

How stragglers arise

Machine with a bad disk

Frequent, correctable errors
Read performance drops from 30 MB/sto 1 MB/s

Over scheduling
Many tasks executing on the same machine

Competition for CPU, memory, disk or network cycles

Bug in machine initialization code

Processor caches may be disabled

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.32

Alleviating the problem of stragglers

When a MapReduce operation is close to completion
Schedule backup executions of remaining in-progress tasks

Task completed when

Primary or backup finishes execution

Significantly reduces time to complete large MapReduce operations

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.33

REFINEMENTS

n‘h" .

COLORADO STATE UNIVERSITY

COMPUTER SCIENCE DEPARTMENT

Partitioning Function

Users simply specify R

The number of output files

Default partitioning
hash(key) mod R

Sometimes output keys are URLs
Entries from a host must go to same output file

hash(Hostname(urlkey)) mod R

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.35

Ordering Guarantees
—

o Intermediate key/pairs are processed in increasing key order

- Easy to generate sorted output file

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.36

The Combiner function

There is significant repetition in intermediate keys produced by each
map task

For word-frequencies
Each map may produce 100s or 1000s of <the, “1”>

All of these counts sent over the network

Combiner: Does partial merging of this data

Before it is sent to reducer

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.37

Combiner function

Executed on each machine that performs map task

Code implementing combiner & reduce function

Usually the same ... [We will see an example where this is not true.]

Difference?
COMBINE: Output written to infermediate file
REDUCE: Output written to final output file

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.38

Input /Output Types: Support for reading input data
in different formats

Text mode treats every line as a <key, value> pair
Key: Offset in the file

Value: Contents of the line
<key, value> pairs are sorted by key

Each input type knows how to split itself for

Processing as separate map tasks

Text mode splitting occurs only at line boundaries

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.39

Side-effects

Besides intermediate files, other auxiliary files may be produced
Side effects

No atomic commits for multiple auxiliary files that are produced

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.40

Skipping Bad Records [1/3]

Bugs in user code cause Map or Reduce functions to crash

Deterministically: On certain records

Fix the bug?

Yes, but not always feasible

Acceptable to ignore a few records

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.41

Skipping Bad Records [2/3]

Optional mode of operation

(1) Detect records that cause deterministic crashes

(2) Skip them

Each worker installs a signal handler to catch segmentation violations
and bus errors

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.42

Skipping Bad Records [3/3]

Signal handler sends last gasp UDP packet to the Master

Contains sequence number

When Master sees more than 1 failure at that record

Indicates record should be skipped during next execution

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.43

Local Execution

Support for sequential execution of MapReduce operation on a
single machine

Helps with debugging, profiling, and testing
Controls to limit computation to a particular map

Invoke programs with a special flag

Use debugging and testing tools

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.44

Status Information

Master runs internal HTTP Server
Exports pages for viewing

Show the progress of a computation
Number of tasks in progress
Number of tasks that completed
Bytes of input
Bytes of intermediate data

Processing rate

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.45

The contents of this slide-set are based on the
following references

Jeffrey Dean, Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large
Clusters. OSDI 2004: 137-150

Jeffrey Dean, Sanjay Ghemawat: MapReduce: simplified data processing on large

clusters. Commun. ACM 51(1): 107-113 (2008)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT PEER-TO-PEER SYSTEMS L18.46

	Slide 1: CSx55: Distributed Systems [MapReduce]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in today’s lecture
	Slide 4: Implementation
	Slide 5: Implementation
	Slide 6: Execution Overview – Part I
	Slide 7: Execution Overview – Part II
	Slide 8: Execution Overview
	Slide 9: Execution Overview: Step I The MapReduce library
	Slide 10: Execution Overview: Step II Program copies
	Slide 11: Execution Overview: Step III Workers that are assigned a map task
	Slide 12: Execution Overview: Step IV Writing to disk
	Slide 13: Execution Overview: Step V Reading Intermediate data
	Slide 14: Execution Overview: Step VI Processing data at the Reduce worker
	Slide 15: Execution Overview: Step VII Waking up the user
	Slide 16: Master Data Structures
	Slide 17: Fault Tolerance
	Slide 18: Worker failures
	Slide 19: Why completed Map tasks are reexecuted
	Slide 20: Master Failures
	Slide 21: Semantics in the presence of failures: If map and reduce operators are deterministic
	Slide 22: Each in-progress task writes output to private temporary files
	Slide 23: Locality
	Slide 24: Locality and its impact when running large MapReduce tasks
	Slide 25: Task Granularity
	Slide 26: Task Granularity
	Slide 27: Practical bounds on how large M and R can be
	Slide 28: Practical bounds on how large M and R can be
	Slide 29: Typical values used at Google
	Slide 30: Backup Tasks
	Slide 31: Stragglers
	Slide 32: How stragglers arise
	Slide 33: Alleviating the problem of stragglers
	Slide 34: Refinements
	Slide 35: Partitioning Function
	Slide 36: Ordering Guarantees
	Slide 37: The Combiner function
	Slide 38: Combiner function
	Slide 39: Input/Output Types: Support for reading input data in different formats
	Slide 40: Side-effects
	Slide 41: Skipping Bad Records [1/3]
	Slide 42: Skipping Bad Records [2/3]
	Slide 43: Skipping Bad Records [3/3]
	Slide 44: Local Execution
	Slide 45: Status Information
	Slide 46: The contents of this slide-set are based on the following references

