CSXx55: DISTRIBUTED SYSTEMS [MAPREDUCE/HADOOP]

What’s this hullabaloo about an elephant?

No, not the one named Horton
Who has fun in the Jungle of Nool

This one’s named Hadoop, and is just as cool
Crunching through data and having fun

Shrideep Pallickara
Computer Science
Colorado State University

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

Frequently asked questions from the previous class
survey

If there are 3 copies of a chunk, does it mean that there are 3 copies of a
mapper?

What if both the map task, and its “speculative” back-up finish at the same time?
Analogy for why the speculative /backup tasks ensure faster completion?

How does the reducer know which intermediate file (or partition) to “pull” from a
given mapper?

Consider the case where there are 200,000 mappers and 5,000 reducers. Does it
mean that each of the 5,000 reducers will pull intermediate outputs from each of
the 200,000 mappers?

Yes!

What is the deeper reason why “pushing” computations to data is better than
“pulling” data to the computation?

Is GFS distributed and running on multiple machines? How does it work?

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY 5uPUTER SCIENCE DEPARTMENT HADOOP L19.2

Topics covered in today’s lecture

I
1 MapReduce

1 Hadoop

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.3

For the soul is a wanderer with many hands and feet.

The map must be of sand and can’t be r 7 ordinary light. .

t carry fire to the next tribal town, for renewal of spirit.

I’ege@ are instructions on the language of the land, how it
a e"iorgo’r to acknowledge the gift, as if 57‘),, e-not in it or of it.
HADOO P ' ‘ A Map to the Next World; Joy Harjo. U.S. poet laureate (2019)

Hadoop

Java-based open-source implementation of MapReduce

Created by Doug Cutting

Origins of the name Hadoop

Stuffed yellow elephant

Includes HDFS [Hadoop Distributed File System]

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.5

Hadoop timelines

Feb 2006

Apache Hadoop project officially started
Adoption of Hadoop by Yahoo! Grid team

Feb 2008

Yahoo! Announced its search index was generated by a 10,000-core
Hadoop cluster

May 2009
17 clusters with 24,000 nodes

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.6

Hadoop Releases
N

1 There are two active releases at the moment
1 2.10.x
0 3.4.x

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.7

Hadoop Evolution

0.20.x series became 1.x series

0.23.x was forked from 0.20.x to include some major features
0.23 series later became 2.x series

2.8.0 is branched off from 2.7.3

2.9.0 is branched off from 2.8.2

3.0.0 series is branched off from 2.7.0

3.1.0 series is branched off from 3.0.0

3.2.0 is branched off from 3.1.0

3.3.0 introduced the Software Bill of Materials (SBOM) artifacts

Provides a complete inventory of its components and dependencies

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.8

0.23 included several major features

New MapReduce runtime, called MapReduce 2, implemented on a
new system called YARN

YARN: Yet Another Resource Negotiator

Replaces the “classic” runtime in previous releases

HDFS federation

HDFS namespace can be dispersed across multiple name nodes

HDFS high-availability

Removes name node as a single point of failure; supports standby nodes for
failover

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.9

3.x includes major features

Hadoop Submarine support

Hadoop Submarine orchestrates Tensorflow programs without modifications on
Yarn and provide access to data stored on HDFS

Support for GPUs and Docker images
Erasure coding in HDFS
New /Improved storage connectors

ADLS (Azure Datalake Generation 2), Amazon S3, and Amazon DynamoDB
HDFS storage policies

Hierarchical storage — Archival, Disk (default), SSD, and RamDisk

Users can define the type of storage when storing data

Blocks can be moved between different storage types

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.10

The Hadoop Ecosystem
—

Workflow Enterprise

High Level Abstractions et Inee et

LIRS
Coordination Ve
[Zookeeper }

l—l

Programming Model NoSQL Storage
MapReduce HBase

Hadoop Distributed File System (HDFS)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.11

MapReduce Jobs

A MapReduce Job is a unit of work

Consists of:
Input Data
MapReduce program

Configuration information

Hadoop runs the jobs by dividing it into tasks
Map tasks

Reduce tasks

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.12

Types of nodes that control the job execution process

[Older Versions]
S

1 Job tracker
Coordinates all jobs by scheduling tasks to run on task trackers

Records overall progress of each job

u If task fails, reschedule on a different task tracker

1 Task tracker

Run tasks and reports progress to job tracker

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.13

Types of nodes that control the job execution process

‘Newer Versions|
—

-1 Resource Manager
o Application Manager

7 Node manager

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.14

| etched the face of a stopwatch on the back of a raindrop

And did a swap for the sand in an hourglass

| heard an unhappy ending, it sort of sounds like you leaving

| heard the piledriver waltz, it woke me up this morning
Piledriver Waltz; Alex Turner; Arctic Monkeys

PROCESSING A WEATHER DATASET

Processing a weather dataset

The dataset is from NOAA

Stored using a line-oriented format

Each line is a record
Lots of elements being recorded

We focus on temperature

Always present with a fixed width

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.16

0057

332130 # USAF weather station identifier
99999 # WBAN weather station identifier
19500101 # Observation date

300 # Observation time

4

+51317 # latitude (degrees x 1000)
+028783 # longitude (degrees x 1000)
FM-12

+0171 # elevation (meters)

99999

V020

320 # wind direction (degrees)

1 # quality code

-0128 # air temperature (degrees Celsius x 10)

1 # quality code

-0139 # dew point temperature (degree Celsius x 10)

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

Format of a record in the dataset

HADOOP

L19.17

Analyzing the dataset

What’s the highest recorded temperature for each year in the
dataset?

See how programs are written
Using Unix tools

Using MapReduce

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.18

Using awk

Tool for processing line-oriented data
——

#! /usr/bin/env bash

for yearin all/*
do
echo —ne ‘basename Syear .gz’ "\t”
gunzip —c Syear | \
awk ‘{ temp=substr(S0, 88, 5) + 0;
q=substr($0, 93, 1);

if (temp 1=9999 && q ~ /[01459]/ &&
temp > max) max = temp }

END {print max}

done

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.19

Sample output that is produced
N

% ./max_temperature.sh

1901 31/
1902 244
1903 289
1904 256
1905 283

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.20

To speed things up, we need to be able to do this

processing on multiple machines
=

- STEP 1: Divide the work and execute concurrently on multiple machines
1 STEP 2: Combine results from independent processes

o STEP 3: Deal with failures that might take place in the system

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.21

The Hollywood principle
Don’t call us, we’ll call you.

Useful software development technique

Object’s (or component’s) initial condition and ongoing life cycle is
handled by its environment, rather than by the object itself

Typically used for implementing a class/component that must fit into
the constraints of an existing framework

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.22

Doing the analysis with Hadoop

Break the processing into two phases
Map and Reduce

Each phase has <key, value> pairs as input and output

Specify two functions
Map

Reduce

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.23

The map phase

Choose a Text input format
Each line in the dataset is given as a text value

key is the offset of the beginning of the line from the beginning of the file

Our map function
Pulls out year and the air temperature

Think of this as a data preparation phase

Reducer will work on data generated by the maps

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.24

How the data is represented in the actual file

0067011990999991950051507004...
0043011990999991950051512004...
0043011990999991950051518004...
0043012650999991949032412004..
0043012650999991949032418004...

9999999N9+00001+99999999999...
9999999N9+00221+99999999999...
9999999N9-00111+99999999999...
.0500001N9+01111+99999999999...
0500001N9+00781+99999999999...

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY 5uPUTER SCIENCE DEPARTMENT HADOOP

L19.25

How the lines in the file are presented to the map
function by the framework

/ keys: Line offsets within the file

(0, 0067011990999991950051507004...9999999N9+00001+99999999999...)

(106, 0043011990999991950051512004...9999999N9+00221+99999999999...)
(212, 0043011990999991950051518004...9999999N9-00111+99999999999...)
(318, 0043012650999991949032412004...0500001N9+01111+99999999999...)
(424, 0043012650999991949032418004...0500001N9+00781+99999999999...)

The lines are presented to the map function as key-value pairs

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.26

Map function

Extract year and temperature from each record and emit output

(1950, 0)
(1950, 22)
(1950, -11)
(1949, 111)
(1949, 78)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.27

The output from the map function

Processed by the MapReduce framework before being sent to the
reduce function

Sort and group <key, value> pairs by key

In our example, at the reducer, each year appears with a list of all its
temperature readings

(1949, [111, 78])
(1950, [0, 22, -11])

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.28

What about the reduce function?

All it has to do now is iterate through the list supplied by the maps and
pick the max reading

Example output at the reducer?

(1949, 111)
(1950, 22)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.29

What does the actual code to do all of this look
like?
N
(1) Map functionality
(2) Reduce functionality

(3) Code to run the job

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.30

The map function is represented by an abstract

Mapper class
]

-1 Declares an abstract map () method

7 Mapper class is a generic type

4 formal type parameters

Specifies input key, input value, output key, and output value

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.31

The Mapper for our example

public class MaxTemperatureMapper extends
Mapper <LongWritable, Text, Text, IntWritable> {

private final int MISSING =9999;

public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {

String line = value.toString();
String year = line.substring(15, 19);
int airTemperature;

if (line.charAt(87) == "+) {
airTemperature = Integer.parselnt(line.substring(88, 92));

} else {
airTemperature = Integer.parselnt(line.substring(87, 92));

}
String quality = line.substring(92, 93);

if (airTemperature != MISSING && quality.matches(“[01459]") {
context.write(new Text(year), new IntWritable(airTemperature));

}

Professor: SHRIDEEP PALLICKARA
E:EILDRAIEII%I STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.32

Rather than use built-in Java types, Hadoop uses its

own set of basic types
S

1 Optimized for network serialization

1 These are in the org.apache.hadoop.io package
LongWritable corresponds to Java Long
Text corresponds to Java String

IntWritable corresponds to Java Integer

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.33

But the map () method also had Context
—

71 You use this to write the output

o In our example
Year was written as a Text object

Temperature was wrapped as an IntWritable

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.34

More about Context

A context object is available at any point of the MapReduce execution

Provides a convenient mechanism for exchanging required system and

job-wide information

Context coordination happens only when an appropriate phase
(driver, map, reduce) of a MapReduce job starts.

Values set by one mapper are not available in another mapper but is

available in any reducer

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.35

The reduce function is represented by an abstract
Reducer class

Declares an abstract reduce () method

Reducer class is a generic type
4 formal type parameters
Used to specify the input and output types of the reduce function

The input types should match the oufput types of the map function

In the example, Text and IntWritable

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.36

The Reducer

public class MaxTemperatureReducer extends
Reducer <Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterable<IntWritable> values,
Context context)
throws IOException, InterruptedException {

int maxValue = Integer.MIN_VALUE;

for (IntWritable value : values) {
maxValue = Math.max(maxValue, value.get());

}

context.write(key, new IntWritable(maxValue));

}
}

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.37

The code to run the MapReduce job

public class MaxTemperature {
public static main(String[] args) throws Exception {
Job job = Job.getInstance();
job.setlarByClass(MaxTemperature.class);
job.setJobName(“Max temperature”);

FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.setMapperClass(MaxTemperatureMapper.class);
job.setReducerClass(MaxTemperatureReducer.class);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

System.exit(job.waitForCompletion(true) ? 0: 1);

}

Professor: SHRIDEEP PALLICKARA
E:EILDRAE;EI STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.38

Details about the Job submission [1/3]

Code must be packaged in a JAR file for Hadoop to distribute over
the cluster

setJarByClass () causes Hadoop to locate relevant JAR file by looking
for JAR that contains this class

Input and output paths must be specified next
addInputPath () can be called more than once
setOutputPath () specifies the output directory

Directory should not exist before running the job

Precaution to prevent data loss

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.39

Details about the Job submission [2/3]

The methods setOutputKeyClass () and setOutputvValueClass ()
Control the output types of the map and reduce functions

If they are different?

Map output types can be set using setMapOutputKeyClass () and
setMapOutputValueClass ()

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.40

Details about the Job submission. [3/3]

The waitforCompletion () method submits the job and waits for it
to complete

The boolean argument is a verbose flag; if set, progress information is
printed on the console

Return value of waitforCompletion () indicates success (true) or
failure (false)

In the example this is the program’s exit code
(0 or 1)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.41

API DIFFERENCES

COMPUTER SCIENCE DEPARTMENT (®%%) COLORADO STATE UNIVERSITY

The old and new MapReduce APIs

The new APl favors abstract classes over interfaces

Make things easier to evolve

New APl is in org.apache.hadoop.mapreduce package

Old API can be found in org.apache.hadoop.mapred

New APl makes use of context objects

Context unifies roles of JobConf, OutputCollector, and Reporter
from the old API

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.43

The old and new MapReduce APIs

In the new API, job control is done using the Job class rather than
using the JobClient

Output files are named slightly differently
Old API: Both map and reduce outputs are named part-nnnn

New APl: Map outputs are named part-m-nnnn and reduce outputs are
named part-r-nnnn

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.44

The old and new MapReduce APIs

The new APl's reduce () method passes values as ITterable rather
than as Iterator

Makes it easier to iterate over values using the for-each loop construct

for (VALUEIN value: values) {

}

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.45

The contents of this slide-set are based on the
following references

Jeffrey Dean, Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large
Clusters. OSDI 2004: 137-150

Jeffrey Dean, Sanjay Ghemawat: MapReduce: simplified data processing on large
clusters. Commun. ACM 51(1): 107-113 (2008)

Tom White. Hadoop: The Definitive Guide. 3™ Edition. Early Access Release. O’Reilly
Press. ISBN: 978-1-449-31152-0. Chapters 1 and 2.

Boris Lublinsky, Kevin Smith, and Alexey Yakubovich. Professional Hadoop Solutions.
Wiley Press. Chapter 3.

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L19.46

	Slide 1: CSx55: Distributed Systems [MapReduce/Hadoop]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in today’s lecture
	Slide 4: Hadoop
	Slide 5: Hadoop
	Slide 6: Hadoop timelines
	Slide 7: Hadoop Releases
	Slide 8: Hadoop Evolution
	Slide 9: 0.23 included several major features
	Slide 10: 3.x includes major features
	Slide 11: The Hadoop Ecosystem
	Slide 12: MapReduce Jobs
	Slide 13: Types of nodes that control the job execution process [Older Versions]
	Slide 14: Types of nodes that control the job execution process [Newer Versions]
	Slide 15: Processing a Weather Dataset
	Slide 16: Processing a weather dataset
	Slide 17: Format of a record in the dataset
	Slide 18: Analyzing the dataset
	Slide 19: Using awk Tool for processing line-oriented data
	Slide 20: Sample output that is produced
	Slide 21: To speed things up, we need to be able to do this processing on multiple machines
	Slide 22: The Hollywood principle Don’t call us, we’ll call you.
	Slide 23: Doing the analysis with Hadoop
	Slide 24: The map phase
	Slide 25: How the data is represented in the actual file
	Slide 26: How the lines in the file are presented to the map function by the framework
	Slide 27: Map function
	Slide 28: The output from the map function
	Slide 29: What about the reduce function?
	Slide 30: What does the actual code to do all of this look like?
	Slide 31: The map function is represented by an abstract Mapper class
	Slide 32: The Mapper for our example
	Slide 33: Rather than use built-in Java types, Hadoop uses its own set of basic types
	Slide 34: But the map() method also had Context
	Slide 35: More about Context
	Slide 36: The reduce function is represented by an abstract Reducer class
	Slide 37: The Reducer
	Slide 38: The code to run the MapReduce job
	Slide 39: Details about the Job submission [1/3]
	Slide 40: Details about the Job submission [2/3]
	Slide 41: Details about the Job submission. [3/3]
	Slide 42: API differences
	Slide 43: The old and new MapReduce APIs
	Slide 44: The old and new MapReduce APIs
	Slide 45: The old and new MapReduce APIs
	Slide 46: The contents of this slide-set are based on the following references

