
COMPUTER SCIENCE DEPARTMENT

CSX55: DISTRIBUTED SYSTEMS [MAPREDUCE/HADOOP]

Shrideep Pallickara

Computer Science

Colorado State University

What’s this hullabaloo about an elephant?

No, not the one named Horton

 Who has fun in the Jungle of Nool

This one’s named Hadoop, and is just as cool

 Crunching through data and having fun

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.2

Frequently asked questions from the previous class

survey

 If there are 3 copies of a chunk, does it mean that there are 3 copies of a
mapper?

 What if both the map task, and its “speculative” back-up finish at the same time?

 Analogy for why the speculative/backup tasks ensure faster completion?

 How does the reducer know which intermediate file (or partition) to “pull” from a
given mapper?

 Consider the case where there are 200,000 mappers and 5,000 reducers. Does it
mean that each of the 5,000 reducers will pull intermediate outputs from each of
the 200,000 mappers?

 Yes!

 What is the deeper reason why “pushing” computations to data is better than
“pulling” data to the computation?

 Is GFS distributed and running on multiple machines? How does it work?

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.3

Topics covered in today’s lecture

 MapReduce

 Hadoop

COMPUTER SCIENCE DEPARTMENT

HADOOP

For the soul is a wanderer with many hands and feet.

The map must be of sand and can’t be read by ordinary light.

It must carry fire to the next tribal town, for renewal of spirit.

In the legend are instructions on the language of the land, how it

was we forgot to acknowledge the gift, as if we were not in it or of it.

A Map to the Next World; Joy Harjo. U.S. poet laureate (2019)

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.5

Hadoop

 Java-based open-source implementation of MapReduce

 Created by Doug Cutting

 Origins of the name Hadoop

 Stuffed yellow elephant

 Includes HDFS [Hadoop Distributed File System]

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.6

Hadoop timelines

 Feb 2006

 Apache Hadoop project officially started

 Adoption of Hadoop by Yahoo! Grid team

 Feb 2008

 Yahoo! Announced its search index was generated by a 10,000-core

Hadoop cluster

 May 2009

 17 clusters with 24,000 nodes

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.7

Hadoop Releases

 There are two active releases at the moment

 2.10.x

 3.4.x

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.8

Hadoop Evolution

 0.20.x series became 1.x series

 0.23.x was forked from 0.20.x to include some major features

 0.23 series later became 2.x series

 2.8.0 is branched off from 2.7.3

 2.9.0 is branched off from 2.8.2

 3.0.0 series is branched off from 2.7.0

 3.1.0 series is branched off from 3.0.0

 3.2.0 is branched off from 3.1.0

 3.3.0 introduced the Software Bill of Materials (SBOM) artifacts

 Provides a complete inventory of its components and dependencies

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.9

0.23 included several major features

 New MapReduce runtime, called MapReduce 2, implemented on a
new system called YARN

 YARN: Yet Another Resource Negotiator

 Replaces the “classic” runtime in previous releases

 HDFS federation

 HDFS namespace can be dispersed across multiple name nodes

 HDFS high-availability

 Removes name node as a single point of failure; supports standby nodes for
failover

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.10

3.x includes major features

 Hadoop Submarine support

 Hadoop Submarine orchestrates Tensorflow programs without modifications on
Yarn and provide access to data stored on HDFS

 Support for GPUs and Docker images

 Erasure coding in HDFS

 New/Improved storage connectors

 ADLS (Azure Datalake Generation 2), Amazon S3, and Amazon DynamoDB

 HDFS storage policies

 Hierarchical storage – Archival, Disk (default), SSD, and RamDisk

 Users can define the type of storage when storing data

 Blocks can be moved between different storage types

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.11

The Hadoop Ecosystem

Hadoop Distributed File System (HDFS)

Programming Model

MapReduce

NoSQL Storage

HBase

High Level Abstractions

Pig Hive

Enterprise

Data Integration

Sqoop

Flume

Workflow

Oozie

Coordination

Zookeeper

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.12

MapReduce Jobs

 A MapReduce Job is a unit of work

 Consists of:

 Input Data

 MapReduce program

 Configuration information

 Hadoop runs the jobs by dividing it into tasks

 Map tasks

 Reduce tasks

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.13

Types of nodes that control the job execution process

[Older Versions]

 Job tracker

 Coordinates all jobs by scheduling tasks to run on task trackers

 Records overall progress of each job

◼ If task fails, reschedule on a different task tracker

 Task tracker

 Run tasks and reports progress to job tracker

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.14

Types of nodes that control the job execution process

[Newer Versions]

 Resource Manager

 Application Manager

 Node manager

COMPUTER SCIENCE DEPARTMENT

PROCESSING A WEATHER DATASET

I etched the face of a stopwatch on the back of a raindrop

And did a swap for the sand in an hourglass

I heard an unhappy ending, it sort of sounds like you leaving

I heard the piledriver waltz, it woke me up this morning

Piledriver Waltz; Alex Turner; Arctic Monkeys

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.16

Processing a weather dataset

 The dataset is from NOAA

 Stored using a line-oriented format

 Each line is a record

 Lots of elements being recorded

 We focus on temperature

 Always present with a fixed width

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.17

Format of a record in the dataset

0057
332130 # USAF weather station identifier
99999 # WBAN weather station identifier
19500101 # Observation date
300 # Observation time
4
+51317 # latitude (degrees x 1000)
+028783 # longitude (degrees x 1000)
FM-12
+0171 # elevation (meters)
99999
V020
320 # wind direction (degrees)
1 # quality code
…
-0128 # air temperature (degrees Celsius x 10)
1 # quality code
-0139 # dew point temperature (degree Celsius x 10)

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.18

Analyzing the dataset

 What’s the highest recorded temperature for each year in the

dataset?

 See how programs are written

 Using Unix tools

 Using MapReduce

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.19

Using awk

Tool for processing line-oriented data

#! /usr/bin/env bash

for year in all/*

do

 echo –ne ‘basename $year .gz’ ”\t”

 gunzip –c $year | \

 awk ‘{ temp=substr($0, 88, 5) + 0;

 q=substr($0, 93, 1);

 if (temp !=9999 && q ~ /[01459]/ &&
 temp > max) max = temp }

 END {print max}’

done

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.20

Sample output that is produced

% ./max_temperature.sh

1901 317
1902 244
1903 289
1904 256
1905 283
 …

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.21

To speed things up, we need to be able to do this

processing on multiple machines

 STEP 1: Divide the work and execute concurrently on multiple machines

 STEP 2: Combine results from independent processes

 STEP 3: Deal with failures that might take place in the system

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.22

The Hollywood principle

 Don’t call us, we’ll call you.

 Useful software development technique

 Object’s (or component’s) initial condition and ongoing life cycle is

handled by its environment, rather than by the object itself

 Typically used for implementing a class/component that must fit into

the constraints of an existing framework

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.23

Doing the analysis with Hadoop

 Break the processing into two phases

 Map and Reduce

 Each phase has <key, value> pairs as input and output

 Specify two functions

 Map

 Reduce

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.24

The map phase

 Choose a Text input format

 Each line in the dataset is given as a text value

 key is the offset of the beginning of the line from the beginning of the file

 Our map function

 Pulls out year and the air temperature

 Think of this as a data preparation phase

◼ Reducer will work on data generated by the maps

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.25

How the data is represented in the actual file

0067011990999991950051507004...9999999N9+00001+99999999999...
0043011990999991950051512004...9999999N9+00221+99999999999...
0043011990999991950051518004...9999999N9-00111+99999999999...
0043012650999991949032412004...0500001N9+01111+99999999999...
0043012650999991949032418004...0500001N9+00781+99999999999...

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.26

How the lines in the file are presented to the map

function by the framework

(0, 0067011990999991950051507004...9999999N9+00001+99999999999...)
(106, 0043011990999991950051512004...9999999N9+00221+99999999999...)
(212, 0043011990999991950051518004...9999999N9-00111+99999999999...)
(318, 0043012650999991949032412004...0500001N9+01111+99999999999...)
(424, 0043012650999991949032418004...0500001N9+00781+99999999999...)

The lines are presented to the map function as key-value pairs

keys: Line offsets within the file

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.27

Map function

 Extract year and temperature from each record and emit output

(1950, 0)
(1950, 22)
(1950, -11)
(1949, 111)
(1949, 78)

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.28

The output from the map function

 Processed by the MapReduce framework before being sent to the

reduce function

 Sort and group <key, value> pairs by key

 In our example, at the reducer, each year appears with a list of all its

temperature readings

(1949, [111, 78])
(1950, [0, 22, -11])
...

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.29

What about the reduce function?

 All it has to do now is iterate through the list supplied by the maps and

pick the max reading

 Example output at the reducer?

(1949, 111)
(1950, 22)
...

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.30

What does the actual code to do all of this look

like?

① Map functionality

② Reduce functionality

③ Code to run the job

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.31

The map function is represented by an abstract

Mapper class

 Declares an abstract map() method

 Mapper class is a generic type

 4 formal type parameters

 Specifies input key, input value, output key, and output value

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.32

The Mapper for our example

public class MaxTemperatureMapper extends
 Mapper <LongWritable, Text, Text, IntWritable> {

 private final int MISSING = 9999;

 public void map(LongWritable key, Text value, Context context)
 throws IOException, InterruptedException {

 String line = value.toString();
 String year = line.substring(15, 19);
 int airTemperature;

 if (line.charAt(87) == `+`) {
 airTemperature = Integer.parseInt(line.substring(88, 92));
 } else {
 airTemperature = Integer.parseInt(line.substring(87, 92));
 }

 String quality = line.substring(92, 93);

 if (airTemperature != MISSING && quality.matches(“[01459]”) {
 context.write(new Text(year), new IntWritable(airTemperature));
 }
 }
}

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.33

Rather than use built-in Java types, Hadoop uses its

own set of basic types

 Optimized for network serialization

 These are in the org.apache.hadoop.io package

 LongWritable corresponds to Java Long

 Text corresponds to Java String

 IntWritable corresponds to Java Integer

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.34

But the map() method also had Context

 You use this to write the output

 In our example

 Year was written as a Text object

 Temperature was wrapped as an IntWritable

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.35

More about Context

 A context object is available at any point of the MapReduce execution

 Provides a convenient mechanism for exchanging required system and

job-wide information

 Context coordination happens only when an appropriate phase

(driver, map, reduce) of a MapReduce job starts.

 Values set by one mapper are not available in another mapper but is

available in any reducer

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.36

The reduce function is represented by an abstract

Reducer class

 Declares an abstract reduce() method

 Reducer class is a generic type

 4 formal type parameters

 Used to specify the input and output types of the reduce function

 The input types should match the output types of the map function

◼ In the example, Text and IntWritable

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.37

The Reducer

public class MaxTemperatureReducer extends
 Reducer <Text, IntWritable, Text, IntWritable> {

 public void reduce(Text key, Iterable<IntWritable> values,
 Context context)
 throws IOException, InterruptedException {

 int maxValue = Integer.MIN_VALUE;

 for (IntWritable value : values) {
 maxValue = Math.max(maxValue, value.get());

 }

 context.write(key, new IntWritable(maxValue));

 }
}

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.38

The code to run the MapReduce job

public class MaxTemperature {
 public static main(String[] args) throws Exception {
 Job job = Job.getInstance();
 job.setJarByClass(MaxTemperature.class);
 job.setJobName(“Max temperature”);

 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.setMapperClass(MaxTemperatureMapper.class);
 job.setReducerClass(MaxTemperatureReducer.class);

 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);

 System.exit(job.waitForCompletion(true) ? 0: 1);
 }
}

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.39

Details about the Job submission [1/3]

 Code must be packaged in a JAR file for Hadoop to distribute over

the cluster

 setJarByClass() causes Hadoop to locate relevant JAR file by looking

for JAR that contains this class

 Input and output paths must be specified next

 addInputPath() can be called more than once

 setOutputPath() specifies the output directory

◼ Directory should not exist before running the job

◼ Precaution to prevent data loss

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.40

Details about the Job submission [2/3]

 The methods setOutputKeyClass() and setOutputValueClass()

 Control the output types of the map and reduce functions

 If they are different?

◼ Map output types can be set using setMapOutputKeyClass() and
setMapOutputValueClass()

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.41

Details about the Job submission. [3/3]

 The waitforCompletion() method submits the job and waits for it

to complete

 The boolean argument is a verbose flag; if set, progress information is

printed on the console

 Return value of waitforCompletion() indicates success (true) or

failure (false)

 In the example this is the program’s exit code

(0 or 1)

COMPUTER SCIENCE DEPARTMENT

API DIFFERENCES

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.43

The old and new MapReduce APIs

 The new API favors abstract classes over interfaces

 Make things easier to evolve

 New API is in org.apache.hadoop.mapreduce package

 Old API can be found in org.apache.hadoop.mapred

 New API makes use of context objects

 Context unifies roles of JobConf, OutputCollector, and Reporter

from the old API

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.44

The old and new MapReduce APIs

 In the new API, job control is done using the Job class rather than

using the JobClient

 Output files are named slightly differently

 Old API: Both map and reduce outputs are named part-nnnn

 New API: Map outputs are named part-m-nnnn and reduce outputs are

named part-r-nnnn

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.45

The old and new MapReduce APIs

 The new API’s reduce() method passes values as Iterable rather

than as Iterator

 Makes it easier to iterate over values using the for-each loop construct

for (VALUEIN value: values) {
 …
}

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L19.46

The contents of this slide-set are based on the

following references

 Jeffrey Dean, Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large

Clusters. OSDI 2004: 137-150

 Jeffrey Dean, Sanjay Ghemawat: MapReduce: simplified data processing on large

clusters. Commun. ACM 51(1): 107-113 (2008)

 Tom White. Hadoop: The Definitive Guide. 3rd Edition. Early Access Release. O’Reilly

Press. ISBN: 978-1-449-31152-0. Chapters 1 and 2.

 Boris Lublinsky, Kevin Smith, and Alexey Yakubovich. Professional Hadoop Solutions.

Wiley Press. Chapter 3.

	Slide 1: CSx55: Distributed Systems [MapReduce/Hadoop]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in today’s lecture
	Slide 4: Hadoop
	Slide 5: Hadoop
	Slide 6: Hadoop timelines
	Slide 7: Hadoop Releases
	Slide 8: Hadoop Evolution
	Slide 9: 0.23 included several major features
	Slide 10: 3.x includes major features
	Slide 11: The Hadoop Ecosystem
	Slide 12: MapReduce Jobs
	Slide 13: Types of nodes that control the job execution process [Older Versions]
	Slide 14: Types of nodes that control the job execution process [Newer Versions]
	Slide 15: Processing a Weather Dataset
	Slide 16: Processing a weather dataset
	Slide 17: Format of a record in the dataset
	Slide 18: Analyzing the dataset
	Slide 19: Using awk Tool for processing line-oriented data
	Slide 20: Sample output that is produced
	Slide 21: To speed things up, we need to be able to do this processing on multiple machines
	Slide 22: The Hollywood principle Don’t call us, we’ll call you.
	Slide 23: Doing the analysis with Hadoop
	Slide 24: The map phase
	Slide 25: How the data is represented in the actual file
	Slide 26: How the lines in the file are presented to the map function by the framework
	Slide 27: Map function
	Slide 28: The output from the map function
	Slide 29: What about the reduce function?
	Slide 30: What does the actual code to do all of this look like?
	Slide 31: The map function is represented by an abstract Mapper class
	Slide 32: The Mapper for our example
	Slide 33: Rather than use built-in Java types, Hadoop uses its own set of basic types
	Slide 34: But the map() method also had Context
	Slide 35: More about Context
	Slide 36: The reduce function is represented by an abstract Reducer class
	Slide 37: The Reducer
	Slide 38: The code to run the MapReduce job
	Slide 39: Details about the Job submission [1/3]
	Slide 40: Details about the Job submission [2/3]
	Slide 41: Details about the Job submission. [3/3]
	Slide 42: API differences
	Slide 43: The old and new MapReduce APIs
	Slide 44: The old and new MapReduce APIs
	Slide 45: The old and new MapReduce APIs
	Slide 46: The contents of this slide-set are based on the following references

