
COMPUTER SCIENCE DEPARTMENT

CSX55: DISTRIBUTED SYSTEMS [HADOOP]

Shrideep Pallickara

Computer Science

Colorado State University

Trying to have your cake and eat it too

Each phase pines for tasks with locality and their numbers on a tether
 Alas within a phase, you get one, but not the other

Who gets what?
 Stay tuned to find out

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.2

Frequently asked questions from the previous class

survey

 Can you rebuild MapReduce computations solely from the reducers, if

for some reason the mappers are failing continually?

 Is the combiner solely for optimization?

 Why do map and reduce in Hadoop throw InterruptedException?

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.3

Topics covered in today’s lecture

 Hadoop

COMPUTER SCIENCE DEPARTMENT

MAPREDUCE TASKS

& SPLIT STRATEGIES

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.5

Hadoop divides the input to a MapReduce job into

fixed-sized pieces

 These are called input-splits or just splits

 Creates one map task per split

 Runs user-defined map function for each record in the split

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.6

Split strategy: Having many splits

 Time taken to process split is small compared to processing the whole

input

 Quality of load balancing increases as splits become fine-grained

 Faster machines process proportionally more splits than slower machines

 Even if machines are identical, this feature is desirable

◼ Failed tasks get relaunched, and there are other jobs executing concurrently

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.7

Split strategy: If the splits are too small

 Overheads for managing splits and map task creation dominates total

job execution time

 Good split size tends to be an HDFS block

 This could be changed for a cluster or specified when each file is created

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.8

Scheduling map tasks

 Hadoop does its best to run a map task on the node where input data

resides in HDFS

 Data locality

 What if all three nodes holding the HDFS block replicas are busy?

 Find free map slot on node in the same rack

 Only when this is not possible, is an off-rack node utilized

◼ Inter-rack network transfer

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.9

Why the optimal split size is the same as the block

size …

 Largest size of input that can be stored on a single node

 If split size spanned two blocks?

 Unlikely that any HDFS node has stored both blocks

 Some of the split will have to be transferred across the network to node

running the map task

◼ Less efficient than operating on local data without the network movement

COMPUTER SCIENCE DEPARTMENT

MANAGING OUTPUTS

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.11

Map task outputs

 Stored on the local disk

 Not HDFS

 Once the job is complete, intermediate map outputs are thrown

away

 Storing in HDFS with replication is an overkill

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.12

Reduce tasks do not have the advantage of data

locality

 Input to a single reduce task

 Output from all the mappers

 Sorted map outputs transferred over the network to node where reduce task

is running

◼ Merged and then passed to the reduce function

 Output of reduce task stored on HDFS

 One replica of block is stored on local node, other replicas are stored on

off-rack nodes

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.13

Number of reduce tasks

 Not governed by the size of the input

 Specified independently

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.14

When there are multiple reducers

 Maps partition their outputs

 One partition for each reduce task

 There can be many keys in each partition

 Records for a given key are all in the same partition

 Partitioning controlled with a partitioning function

 Default uses a hash function to bucket the key space

COMPUTER SCIENCE DEPARTMENT

DATA FLOW

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.16

MapReduce Dataflow

split 0 Map

Reduce Part 0

Merge
Copy

HDFS
Replication

split 1 Map

split 2 Map

Reduce Part 1

Merge

HDFS
Replication

Input HDFS

Output HDFS

Sort

Sort

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.17

In Hadoop a Map task has 4 phases

 Record reader

 Mapper

 Combiner

 Partitioner

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.18

Map task phases: Record Reader

 Translates input splits into records

 Parse data into records, but does not parse the record itself

 Passes the data to the mapper in the form of a key/value pair

 key in this context is positional information

 value is the chunk of data that comprises a record

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.19

Map task phases: Map

 User-provided code is executed on each key/value pair from the

record reader

 This user-code produces zero or more new key/value pairs, called the

intermediate pairs

 key is what the data will be grouped on and value is the information

pertinent to the analysis in the reducer

 Choice of key/value pairs is critical and not arbitrary

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.20

Map task phases: Combiner

 Can group data in the map phase

 Takes the intermediate keys from the mapper and applies a user-

provided method to aggregate values in the small scope of that one

mapper

 Significantly reduces the amount of data that has to move over the

network

 Sending (“hello”, 3) requires fewer bytes than sending (“hello”, 1) three

times over the network

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.21

Map task phases: Partitioner [1/2]

 Takes the intermediate key/value pairs from the mapper (or combiner)

and splits them up into shards, one shard per reducer

 Default: key.hashCode() % (number of reducers)

 Randomly distributes the keyspace evenly over the reducers

 But still ensures that keys with the same value in different mappers end up at

the same reducer

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.22

Map task phases: Partitioner [2/2]

 Partitioner can be customized (e.g., for sorting)

 Changing the partitioner is rarely necessary

 The partitioned data is written to the local file system for each map

and waits to be pulled by its respective reducer

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.23

In Hadoop a Reduce task has 4 phases

 Shuffle

 Sort

 Reducer

 Output format

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.24

Reduce task phases: Shuffle and sort

 Shuffle

 Takes the output files written by all of the partitioners and downloads them

to the local machine in which the reducer is running

 Sort

 Individual data pieces are then sorted by key into one larger data list

 Groups equivalent keys together so that their values can be iterated over

easily in the reduce task

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.25

Reduce task phases: Shuffle and sort

 This phase is not customizable and the framework handles everything

automatically

 The only control a developer has is how the keys are sorted and

grouped by specifying a custom Comparator object

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.26

Reduce task phases: Reducer

 Takes the grouped data as input and runs a reduce function once per
key grouping

 The function is passed the key and an iterator/iterable over all of the
values associated with that key

 A wide range of processing can happen in this function: data can be
aggregated, filtered, and combined etc.

 Once the reduce function is done, it sends zero or more key/value
pairs to the final step, the output format

 N.B.: map & reduce functions will change from job to job

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.27

Reduce task phases: Output format

 Translates the final key/value pair from the reduce function and writes

it out to a file using a record writer

 By default:

 Separate the key and value with a tab

 Separates records with a newline character

 Can typically be customized to provide richer output formats

 But in the end, the data is written out to HDFS, regardless of format

COMPUTER SCIENCE DEPARTMENT

COMBINER FUNCTIONS

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.29

Combiner functions

 Many MapReduce jobs are limited by the available network

bandwidth

 Framework has mechanisms to minimize the data transferred between map

and reduce tasks

 A combiner function is run on the map output

 Combiner output fed to the reduce task

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.30

Combiner function

 No guarantees on how many times Hadoop will call this on a map

output record

 The combiner should, however, result in the same output from the reducer

 Contract for the combiner constrains the type of function that can be

used

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.31

Combiner function: Let’s look at the maximum

temperature example [1/2]

(1950, 0)
(1950, 20)
(1950, 10)
Map 1

(1950, 25)
(1950, 15)
Map 2

(1950,
[0, 20, 10, 25, 15]) Reduce (1950, 25)

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.32

Combiner function: Let’s look at the maximum

temperature example [2/2]

(1950, 0)
(1950, 20)
(1950, 10)
Map 1

(1950, 25)
(1950, 15)
Map 2

(1950, [20, 25]) Reduce (1950, 25)

Combiner

Combiner

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.33

A closer look at the function calls

 max(0, 20, 10, 25, 15) =

max (max(0, 20, 10), max(25, 15)) =

max (20, 25) = 25

 Functions with this property are called commutative and associative

 Commutative: Order of operands (5+2) = (2 + 5)

◼ Division and subtraction are not commutative

 Associative: Order of operators 5 x (5x3) = (5x5)x3

◼ Vector cross products are not

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.34

Not all functions posses the commutative and

associative properties

 What if we were computing the mean temperatures?

 We can cannot use mean as our combiner function

 mean(0, 20, 10, 25, 15) = 14

BUT

mean(mean(0, 20, 10), mean(25, 15)) =

 mean(10, 20) = 15

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.35

Combiner: Summary

 The combiner does not replace the reduce function

 Reduce is still needed to process records from different maps

 But it is useful for cutting down traffic from maps to the reducer

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.36

Specifying a combiner function

public class MaxTemperatureWithCombiner {

 public static main(String[] args) throws Exception {
 Job job = Job.getInstance();
 job.setJarByClass(MaxTemperature.class);
 job.setJobName(“Max temperature”);

 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.setMapperClass(MaxTemperatureMapper.class);
 job.setCombinerClass(MaxTemperatureReducer.class);
 job.setReducerClass(MaxTemperatureReducer.class);

 job.setOutputKey(Text.class);
 job.setOutputValueClass(IntWritable.class);

 System.exit(job.waitForCompletion(true) ? 0: 1);

 }
}

COMPUTER SCIENCE DEPARTMENT

ANOTHER EXAMPLE (COMBINER)

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.38

Another example with StackOverflow [1/2]

 Given a list of user’s comment determine the average comment length

per-hour

 To calculate average we need two things:

 Sum values that we want to average

 Number of values that went into the sum

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.39

Another example with StackOverflow [2/2]

 Reducer can do this very easily by iterating through each value in the

set and adding to a running sum while keeping count

 But if you do this you cannot use the reducer as your combiner!

 Calculating an average is not an associative operation

◼ You cannot change the order of the operators

◼ mean(0, 20, 10, 25, 15) = 14 BUT ..

◼ mean(mean(0, 20, 10), mean(25, 15)) = mean(10, 20) = 15

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.40

Approach to ensuring code reuse at the combiner

 Mapper will output two columns of data

 Count and average

 Reducer will multiply “count” field by the “average” field to add to a

running count and add “count” to the running count

 Then divide the running sum with running count

◼ Output the count with the calculated average

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.41

Mapper code

public static class AverageMapper extends

 Mapper < Object, Text, IntWritable, CountAverageTuple > {

 private CountAverageTuple outCountAverage = new CountAverageTuple();

 public void map(Object key, Text value, Context context)

 throws IOException, InterruptedException {

 Map < String, String > parsed =

 MRDPUtils.transformXmlToMap(value.toString());

 String strDate = parsed.get(" CreationDate");

 String text = parsed.get(" Text");

 // get the hour this comment was posted in

 Date creationDate = frmt.parse(strDate);

 outHour.set(creationDate.getHours());

 outCountAverage.setCount(1);

 outCountAverage.setAverage(text.length());

 // write out the hour with the comment length

 context.write(outHour, outCountAverage);

 }

}

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.42

Reducer code

public class AverageReducer extends Reducer < IntWritable,

CountAverageTuple, IntWritable, CountAverageTuple > {

 private CountAverageTuple result = new CountAverageTuple();

 public void

 reduce(IntWritable key, Iterable < CountAverageTuple > values,

 Context context) throws IOException, InterruptedException {

 float sum = 0; float count = 0;

 // Iterate through all input values for this key

 for (CountAverageTuple val : values) {

 sum + = val.getCount() * val.getAverage();

 count + = val.getCount();

 }

 result.setCount(count);

 result.setAverage(sum / count);

 context.write(key, result);

 }

}

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.43

Data flow for the average example

Hour Count Average

4 1 10

4 1 8

4 1 21

3 1 1

3 1 19

9 1 7

9 1 12

Hour Count Average

3 2 10

4 3 13

9 1 7

9 1 12

G
ro

u
p

 1
G

ro
u
p

 2
Setting:

Combiner executes over Groups 1 and 2

DOES NOT execute on the last two rows

Combiner Output/ Reducer Input

Input key Input Value

Output key Output Value

HADOOP
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L20.44

The contents of this slide set are based on the

following references

 Tom White. Hadoop: The Definitive Guide. 3rd Edition. Early Access Release. O’Reilly

Press. ISBN: 978-1-449-31152-0. Chapters [2 and 3].

 MapReduce Design Patterns: Building Effective Algorithms and Analytics for Hadoop

and Other Systems. 1st Edition. Donald Miner and Adam Shook. O'Reilly Media ISBN:

978-1449327170. [Chapter 1-3]

	Slide 1: CSx55: Distributed Systems [Hadoop]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in today’s lecture
	Slide 4: MapReduce tasks & Split strategies
	Slide 5: Hadoop divides the input to a MapReduce job into fixed-sized pieces
	Slide 6: Split strategy: Having many splits
	Slide 7: Split strategy: If the splits are too small
	Slide 8: Scheduling map tasks
	Slide 9: Why the optimal split size is the same as the block size …
	Slide 10: Managing Outputs
	Slide 11: Map task outputs
	Slide 12: Reduce tasks do not have the advantage of data locality
	Slide 13: Number of reduce tasks
	Slide 14: When there are multiple reducers
	Slide 15: Data Flow
	Slide 16: MapReduce Dataflow
	Slide 17: In Hadoop a Map task has 4 phases
	Slide 18: Map task phases: Record Reader
	Slide 19: Map task phases: Map
	Slide 20: Map task phases: Combiner
	Slide 21: Map task phases: Partitioner [1/2]
	Slide 22: Map task phases: Partitioner [2/2]
	Slide 23: In Hadoop a Reduce task has 4 phases
	Slide 24: Reduce task phases: Shuffle and sort
	Slide 25: Reduce task phases: Shuffle and sort
	Slide 26: Reduce task phases: Reducer
	Slide 27: Reduce task phases: Output format
	Slide 28: Combiner Functions
	Slide 29: Combiner functions
	Slide 30: Combiner function
	Slide 31: Combiner function: Let’s look at the maximum temperature example [1/2]
	Slide 32: Combiner function: Let’s look at the maximum temperature example [2/2]
	Slide 33: A closer look at the function calls
	Slide 34: Not all functions posses the commutative and associative properties
	Slide 35: Combiner: Summary
	Slide 36: Specifying a combiner function
	Slide 37: Another example (Combiner)
	Slide 38: Another example with StackOverflow [1/2]
	Slide 39: Another example with StackOverflow [2/2]
	Slide 40: Approach to ensuring code reuse at the combiner
	Slide 41: Mapper code
	Slide 42: Reducer code
	Slide 43: Data flow for the average example
	Slide 44: The contents of this slide set are based on the following references

