CSXx55: DISTRIBUTED SYSTEMS [HApoOP]

Trying to have your cake and eat it too

Each phase pines for tasks with locality and their numbers on a tether
Alas within a phase, you get one, but not the other

Who gets what?
Stay tuned to find out

Shrideep Pallickara
Computer Science
Colorado State University

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

Frequently asked questions from the previous class
survey

Can you rebuild MapReduce computations solely from the reducers, if
for some reason the mappers are failing continually?

Is the combiner solely for optimization?

Why do map and reduce in Hadoop throw InterruptedException?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.2

Topics covered in today’s lecture

S
1 Hadoop

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.3

\“"33 S -
o/ & . . _
/ "’7'?\2‘\3‘; < MAPREDUCE TASKsS

20, WAL & SPLIT STRATEGIES
ey @@ \“(’ §:
A

iyt
YR
1l

e
" L ""#]
R
%\:;s%‘@:

QL5 T mnm
NN

i

Hadoop divides the input to a MapReduce job into

fixed-sized pieces
—

o These are called input-splits or just splits

1 Creates one map task per split

Runs user-defined map function for each record in the split

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.5

Split strategy: Having many splits

Time taken to process split is small compared to processing the whole
input

Quality of load balancing increases as splits become fine-grained
Faster machines process proportionally more splits than slower machines

Even if machines are identical, this feature is desirable

Failed tasks get relaunched, and there are other jobs executing concurrently

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.6

Split strategy: If the splits are too small

Overheads for managing splits and map task creation dominates total
job execution time

Good split size tends to be an HDFS block

This could be changed for a cluster or specified when each file is created

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.7

Scheduling map tasks

Hadoop does its best to run a map task on the node where input data
resides in HDFS

Data locality

What if all three nodes holding the HDFS block replicas are busy?
Find free map slot on node in the same rack

Only when this is not possible, is an off-rack node utilized

Inter-rack network transfer

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.8

Why the optimal split size is the same as the block
size ...

Largest size of input that can be stored on a single node

If split size spanned two blocks?
Unlikely that any HDFS node has stored both blocks

Some of the split will have to be transferred across the network to node
running the map task

Less efficient than operating on local data without the network movement

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.9

MANAGING OUTPUTS

COMPUTER SCIENCE DEPARTMENT (®%%) COLORADO STATE UNIVERSITY

Map task outputs

Stored on the local disk
Not HDFS

Once the job is complete, intermediate map outputs are thrown
away

Storing in HDFS with replication is an overkill

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.11

Reduce tasks do not have the advantage of data
locality

Input to a single reduce task
Output from all the mappers

Sorted map outputs transferred over the network to node where reduce task
is running

Merged and then passed to the reduce function

Output of reduce task stored on HDFS

One replica of block is stored on local node, other replicas are stored on
off-rack nodes

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.12

Number of reduce tasks

I
1 Not governed by the size of the input

0 Specified independently

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.13

When there are multiple reducers

Maps partition their outputs
One partition for each reduce task

There can be many keys in each partition

Records for a given key are all in the same partition

Partitioning controlled with a partitioning function

Default uses a hash function to bucket the key space

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP

120.14

DATA FLOW

COMPUTER SCIENCE DEPARTMENT @ COLORADDO STATE UNIVERSITY

MapReduce Dataflow

Ovutput HDFS

Merge Sort

>

COLORADO STATE UNIVERSITY oyoUTER SCIENCE DEPARTMENT

Reduce

HDF
cation

Sort

erge

Map

e

Reduce

HDF
cation

1l

roressor-oHRIDEEP PALLICKARA

HADOOP

L20.16

In Hadoop a Map task has 4 phases
B

1 Record reader
1 Mapper
1 Combiner

1 Partitioner

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.17

Map task phases: Record Reader

Translates input splits into records

Parse data into records, but does not parse the record itself

Passes the data to the mapper in the form of a key /value pair
key in this context is positional information

value is the chunk of data that comprises a record

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.18

Map task phases: Map

User-provided code is executed on each key /value pair from the
record reader

This user-code produces zero or more new key/value pairs, called the
intermediate pairs

key is what the data will be grouped on and value is the information
pertinent to the analysis in the reducer

Choice of key/value pairs is critical and not arbitrary

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.19

Map task phases: Combiner

Can group data in the map phase

Takes the intermediate keys from the mapper and applies a user-
provided method to aggregate values in the small scope of that one
mapper

Significantly reduces the amount of data that has to move over the
network

Sending (“hello”, 3) requires fewer bytes than sending (“hello”, 1) three
times over the network

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.20

Map task phases: Partitioner [1/2]

Takes the intermediate key/value pairs from the mapper (or combiner)
and splits them up into shards, one shard per reducer

Default: key.hashCode() % (number of reducers)
Randomly distributes the keyspace evenly over the reducers

But still ensures that keys with the same value in different mappers end up at
the same reducer

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.21

Map task phases: Partitioner [2/2]

Partitioner can be customized (e.g., for sorting)

Changing the partitioner is rarely necessary

The partitioned data is written to the local file system for each map
and waits to be pulled by its respective reducer

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.22

In Haodoop a Reduce task has 4 phases

S
o Shuffle
0 Sort
-1 Reducer

1 Qutput format

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.23

Reduce task phases: Shuffle and sort

Shuffle

Takes the output files written by all of the partitioners and downloads them
to the local machine in which the reducer is running

Sort
Individual data pieces are then sorted by key into one larger data list

Groups equivalent keys together so that their values can be iterated over
easily in the reduce task

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.24

Reduce task phases: Shuffle and sort

This phase is not customizable and the framework handles everything
automatically

The only control a developer has is how the keys are sorted and
grouped by specifying a custom Comparator object

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.25

Reduce task phases: Reducer

Takes the grouped data as input and runs a reduce function once per
key grouping

The function is passed the key and an iterator/iterable over all of the
values associated with that key

A wide range of processing can happen in this function: data can be
aggregated, filtered, and combined etc.

Once the reduce function is done, it sends zero or more key/value
pairs to the final step, the output format

N.B.: map & reduce functions will change from job to job

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.26

Reduce task phases: Output format

Translates the final key /value pair from the reduce function and writes
it out to a file using a record writer

By default:

Separate the key and value with a tab

Separates records with a newline character

Can typically be customized to provide richer output formats

But in the end, the data is written out to HDFS, regardless of format

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.27

COMBINER FUNCTIONS

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

Combiner functions

Many MapReduce jobs are limited by the available network
bandwidth

Framework has mechanisms to minimize the data transferred between map
and reduce tasks

A combiner function is run on the map output

Combiner output fed to the reduce task

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.29

Combiner function

No guarantees on how many times Hadoop will call this on a map

output record

The combiner should, however, result in the same output from the reducer

Contract for the combiner constrains the type of function that can be
used

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.30

Combiner function: Let’s look at the maximum

temperature example 1/2
—

(1950, 0)
(1950, 20)
(1950, 10)
Map 1

(1950,
[0, 20, 10, 25, 15])

Reduce 1950, 25)

(1950, 25)
(1950, 15)
Map 2

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.31

Combiner function: Let’s look at the maximum

temperature example 2/2
]
(1950, 0)
(1950, 20)
(1950, 10) -
Map 1 [Combiner
(1950, [20, 25]) Reduce ———{1950, 25)
(1950, 25) [Combiner
(1950, 15) —
Map 2

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.32

A closer look at the function calls

max(0, 20, 10, 25, 15) =
max (max(0, 20, 10), max(25, 15)) =
max (20, 25) = 25

Functions with this property are called commutative and associative
Commutative: Order of operands (5+2) = (2 + 5)

Division and subtraction are not commutative

Associative: Order of operators 5 x (5x3) = (5x5)x3

Vector cross products are not

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.33

Not all functions posses the commutative and

associative properties
B

7 What if we were computing the mean temperatures?
1 We can cannot use mean as our combiner function

mean(0, 20, 10, 25, 15) = 14

BUT
mean(mean(0, 20, 10), mean(25, 15)) =
mean(10, 20) = 15

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.34

Combiner: Summary

The combiner does not replace the reduce function

Reduce is still needed to process records from different maps

But it is useful for cutting down traffic from maps to the reducer

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.35

Specifying a combiner function

public class MaxTemperatureWithCombiner {

public static main(String[] args) throws Exception {
Job job =Job.getInstance();
job.setJarByClass(MaxTemperature.class);
job.setlobName(“Max temperature”);

FilelnputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.setMapperClass(MaxTemperatureMapper.class);
job.setCombinerClass(MaxTemperatureReducer.class);

job.setReducerClass(MaxTemperatureReducer.class);

job.setOutputKey(Text.class);
job.setOutputValueClass(IntWritable.class);

System.exit(job.waitForCompletion(true) ? 0: 1);

}
Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.36

ANOTHER EXAMPLE (COMBINER)

COMPUTER SCIENCE DEPARTMENT @ COLORADDO STATE UNIVERSITY

Another example with StackOverflow [1/2]

Given a list of user’'s comment determine the average comment length
per-hour

To calculate average we need two things:
Sum values that we want to average

Number of values that went into the sum

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.38

Another example with StackOverflow [2/2]

Reducer can do this very easily by iterating through each value in the
set and adding to a running sum while keeping count

But if you do this you cannot use the reducer as your combiner!

Calculating an average is not an associative operation
You cannot change the order of the operators
mean(0, 20, 10, 25, 15) = 14 BUT ..
mean(mean(0, 20, 10), mean(25, 15)) = mean(10, 20) =15

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.39

Approach to ensuring code reuse at the combiner

Mapper will output two columns of data

Count and average

Reducer will multiply “count” field by the “average” field to add to a
running count and add “count” to the running count

Then divide the running sum with running count

Output the count with the calculated average

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.40

Mapper code

public static class AverageMapper extends
Mapper < Object, Text, IntWritable, CountAverageTuple > {

private CountAverageTuple outCountAverage = new CountAverageTuple () ;

public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
Map < String, String > parsed =
MRDPUtils.transformXmlToMap(value.toString()) ;
String strDate = parsed.get (" CreationDate");
String text = parsed.get (" Text");
// get the hour this comment was posted in
Date creationDate = frmt.parse(strDate);
outHour.set (creationDate.getHours())

outCountAverage.setCount (1);
outCountAverage.setAverage (text.length())

// write out the hour with the comment length
context.write(outHour, outCountAverage);

}
Professor: SHRIDEEP PALLICKARA

COLORADD STATE UNIVERSITY 5uPUTER SCIENCE DEPARTMENT HADOOP

120.41

Reducer code

public class AverageReducer extends Reducer < IntWritable,
CountAverageTuple, IntWritable, CountAverageTuple > {
private CountAverageTuple result = new CountAverageTuple () ;

public void
reduce (IntWritable key,

Context context) throws IOException,

Iterable < CountAverageTuple > values,
InterruptedException {

float sum = 0; float count = 0;

// Iterate through all input values for this key

for (CountAverageTuple val

values) {

sum + = val.getCount () * val.getAverage();
count + = val.getCount ()

}

result.setCount (count);
result.setAverage (sum / count) ;

context.write (key,

}

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

result) ;

HADOOP

120.42

Data flow for the average example
=

Inputkey InputValue g
-- Combiner executes over Groups 1 and 2

DOES NOT execute on the last two rows

o 4 1 10
g* 4 1 8
— 4 1 21
g. B 3 1 1 ombiner Output/ Reducer Input
§1 3 ! 19 Outputkey OutputValve
9 1 7 _--
9 1 12 3 9 10
4 3 13
9 1 7
9 1 12

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.43

The contents of this slide set are based on the
following references

Tom White. Hadoop: The Definitive Guide. 3™ Edition. Early Access Release. O’Reilly
Press. ISBN: 978-1-449-31152-0. Chapters [2 and 3].

MapReduce Design Patterns: Building Effective Algorithms and Analytics for Hadoop
and Other Systems. 1° Edition. Donald Miner and Adam Shook. O'Reilly Media ISBN:
978-1449327170. [Chapter 1-3]

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADOOP L20.44

	Slide 1: CSx55: Distributed Systems [Hadoop]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in today’s lecture
	Slide 4: MapReduce tasks & Split strategies
	Slide 5: Hadoop divides the input to a MapReduce job into fixed-sized pieces
	Slide 6: Split strategy: Having many splits
	Slide 7: Split strategy: If the splits are too small
	Slide 8: Scheduling map tasks
	Slide 9: Why the optimal split size is the same as the block size …
	Slide 10: Managing Outputs
	Slide 11: Map task outputs
	Slide 12: Reduce tasks do not have the advantage of data locality
	Slide 13: Number of reduce tasks
	Slide 14: When there are multiple reducers
	Slide 15: Data Flow
	Slide 16: MapReduce Dataflow
	Slide 17: In Hadoop a Map task has 4 phases
	Slide 18: Map task phases: Record Reader
	Slide 19: Map task phases: Map
	Slide 20: Map task phases: Combiner
	Slide 21: Map task phases: Partitioner [1/2]
	Slide 22: Map task phases: Partitioner [2/2]
	Slide 23: In Hadoop a Reduce task has 4 phases
	Slide 24: Reduce task phases: Shuffle and sort
	Slide 25: Reduce task phases: Shuffle and sort
	Slide 26: Reduce task phases: Reducer
	Slide 27: Reduce task phases: Output format
	Slide 28: Combiner Functions
	Slide 29: Combiner functions
	Slide 30: Combiner function
	Slide 31: Combiner function: Let’s look at the maximum temperature example [1/2]
	Slide 32: Combiner function: Let’s look at the maximum temperature example [2/2]
	Slide 33: A closer look at the function calls
	Slide 34: Not all functions posses the commutative and associative properties
	Slide 35: Combiner: Summary
	Slide 36: Specifying a combiner function
	Slide 37: Another example (Combiner)
	Slide 38: Another example with StackOverflow [1/2]
	Slide 39: Another example with StackOverflow [2/2]
	Slide 40: Approach to ensuring code reuse at the combiner
	Slide 41: Mapper code
	Slide 42: Reducer code
	Slide 43: Data flow for the average example
	Slide 44: The contents of this slide set are based on the following references

