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Trying to have your cake and eat it too

Each phase pines for  tasks with locality and their numbers on a tether
       Alas within a phase, you get one, but not the other

Who gets what?
   Stay tuned to find out
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Frequently asked questions from the previous class 

survey

 Can you rebuild MapReduce computations solely from the reducers, if 

for some reason the mappers are failing continually?

 Is the combiner solely for optimization?

 Why do map and reduce in Hadoop throw InterruptedException?
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Topics covered in today’s lecture

 Hadoop
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Hadoop divides the input to a MapReduce job into 

fixed-sized pieces

 These are called input-splits or just splits

 Creates one map task per split

 Runs user-defined map function for each record in the split
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Split strategy: Having many splits

 Time taken to process split is small compared to processing the whole 

input

 Quality of load balancing increases as splits become fine-grained

 Faster machines process proportionally more splits than slower machines

 Even if machines are identical, this feature is desirable

◼ Failed tasks get relaunched, and there are other jobs executing concurrently
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Split strategy: If the splits are too small

 Overheads for managing splits and map task creation dominates total 

job execution time

 Good split size tends to be an HDFS block

 This could be changed for a cluster or specified when each file is created
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Scheduling map tasks

 Hadoop does its best to run a map task on the node where input data 

resides in HDFS

 Data locality

 What if all three nodes holding the HDFS block replicas are busy?

 Find free map slot on node in the same rack

 Only when this is not possible, is an off-rack node utilized

◼ Inter-rack network transfer
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Why the optimal split size is the same as the block 

size …

 Largest size of input that can be stored on a single node

 If split size spanned two blocks?

 Unlikely that any HDFS node has stored both blocks

 Some of the split will have to be transferred across the network to node 

running the map task

◼ Less efficient than operating on local data without the network movement
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Map task outputs

 Stored on the local disk

 Not HDFS

 Once the job is complete, intermediate map outputs are thrown 

away

 Storing in HDFS with replication is an overkill
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Reduce tasks do not have the advantage of data 

locality

 Input to a single reduce task

 Output from all the mappers

 Sorted map outputs transferred over the network to node where reduce task 

is running

◼ Merged and then passed to the reduce function

 Output of reduce task stored on HDFS

 One replica of block is stored on local node, other replicas are stored on 

off-rack nodes
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Number of reduce tasks

 Not governed by the size of the input

 Specified independently
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When there are multiple reducers

 Maps partition their outputs

 One partition for each reduce task

 There can be many keys in each partition

 Records for a given key are all in the same partition

 Partitioning controlled with a partitioning function

 Default uses a hash function to bucket the key space
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MapReduce Dataflow

split 0 Map

Reduce Part 0

Merge
Copy

HDFS 
Replication

split 1 Map

split 2 Map

Reduce Part 1

Merge

HDFS 
Replication

Input HDFS

Output HDFS

Sort

Sort
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In Hadoop a Map task has 4 phases

 Record reader

 Mapper

 Combiner

 Partitioner
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Map task phases: Record Reader

 Translates input splits into records

 Parse data into records, but does not parse the record itself

 Passes the data to the mapper in the form of a key/value pair 

 key in this context is positional information 

 value is the chunk of data that comprises a record
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Map task phases: Map 

 User-provided code is executed on each key/value pair from the 

record reader 

 This user-code produces zero or more new key/value pairs, called the 

intermediate pairs

 key is what the data will be grouped on and value is the information 

pertinent to the analysis in the reducer

 Choice of key/value pairs is critical and not arbitrary
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Map task phases: Combiner

 Can group data in the map phase 

 Takes the intermediate keys from the mapper and applies a user-

provided method to aggregate values in the small scope of that one 

mapper

 Significantly reduces the amount of data that has to move over the 

network 

 Sending (“hello”, 3) requires fewer bytes than sending (“hello”, 1) three 

times over the network
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Map task phases: Partitioner                    [1/2]

 Takes the intermediate key/value pairs from the mapper (or combiner) 

and splits them up into shards, one shard per reducer

 Default: key.hashCode() % (number of reducers)

 Randomly distributes the keyspace evenly over the reducers

 But still ensures that keys with the same value in different mappers end up at 

the same reducer
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Map task phases: Partitioner                    [2/2]

 Partitioner can be customized (e.g., for sorting)

 Changing the partitioner is rarely necessary

 The partitioned data is written to the local file system for each map 

and waits to be pulled by its respective reducer
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In Hadoop a Reduce task has 4 phases

 Shuffle

 Sort

 Reducer

 Output format
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Reduce task phases: Shuffle and sort

 Shuffle

 Takes the output files written by all of the partitioners and downloads them 

to the local machine in which the reducer is running

 Sort

 Individual data pieces are then sorted by key into one larger data list 

 Groups equivalent keys together so that their values can be iterated over 

easily in the reduce task 
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Reduce task phases: Shuffle and sort

 This phase is not customizable and the framework handles everything 

automatically

 The only control a developer has is how the keys are sorted and 

grouped by specifying a custom Comparator object
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Reduce task phases: Reducer

 Takes the grouped data as input and runs a reduce function once per 
key grouping 

 The function is passed the key and an iterator/iterable over all of the 
values associated with that key 

 A wide range of processing can happen in this function: data can be 
aggregated, filtered, and combined etc.

 Once the reduce function is done, it sends zero or more key/value 
pairs to the final step, the output format 

 N.B.: map & reduce functions will change from job to job
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Reduce task phases: Output format

 Translates the final key/value pair from the reduce function and writes 

it out to a file using a record writer

 By default:

 Separate the key and value with a tab 

 Separates records with a newline character 

 Can typically be customized to provide richer output formats

 But in the end, the data is written out to HDFS, regardless of format 
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Combiner functions

 Many MapReduce jobs are limited by the available network 

bandwidth

 Framework has mechanisms to minimize the data transferred between map 

and reduce tasks

 A combiner function is run on the map output

 Combiner output fed to the reduce task
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Combiner function

 No guarantees on how many times Hadoop will call this on a map 

output record

 The combiner should, however, result in the same output from the reducer

 Contract for the combiner constrains the type of function that can be 

used
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Combiner function: Let’s look at the maximum 

temperature example                                     [1/2]

(1950, 0)
(1950, 20)
(1950, 10)
Map 1

(1950, 25)
(1950, 15)
Map 2

(1950, 
[0, 20, 10, 25, 15]) Reduce (1950, 25)
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Combiner function: Let’s look at the maximum 

temperature example                                     [2/2]

(1950, 0)
(1950, 20)
(1950, 10)
Map 1

(1950, 25)
(1950, 15)
Map 2

(1950, [20, 25]) Reduce (1950, 25)

Combiner

Combiner
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A closer look at the function calls

 max(0, 20, 10, 25, 15) =

max (max(0, 20, 10), max(25, 15)) =

max (20, 25) = 25

 Functions with this property are called commutative and associative

 Commutative: Order of operands (5+2) = (2 + 5) 

◼ Division and subtraction are not commutative

 Associative: Order of operators 5 x (5x3) = (5x5)x3

◼ Vector cross products are not
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Not all functions posses the commutative and 

associative properties

 What if we were computing the mean temperatures?

 We can cannot use mean as our combiner function

  mean(0, 20, 10, 25, 15) = 14

BUT

mean(mean(0, 20, 10), mean(25, 15)) =

   mean(10, 20) = 15
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Combiner: Summary

 The combiner does not replace the reduce function

 Reduce is still needed to process records from different maps

 But it is useful for cutting down traffic from maps to the reducer
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Specifying a combiner function

public class MaxTemperatureWithCombiner {

   public static main(String[] args) throws Exception {
      Job job = Job.getInstance();
      job.setJarByClass(MaxTemperature.class);
      job.setJobName(“Max temperature”);

      FileInputFormat.addInputPath(job, new Path(args[0]));
      FileOutputFormat.setOutputPath(job, new Path(args[1]));

      job.setMapperClass(MaxTemperatureMapper.class);
      job.setCombinerClass(MaxTemperatureReducer.class);
      job.setReducerClass(MaxTemperatureReducer.class);

      job.setOutputKey(Text.class);
      job.setOutputValueClass(IntWritable.class);

      System.exit(job.waitForCompletion(true) ? 0: 1);     

   }
}
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Another example with StackOverflow  [1/2] 

 Given a list of user’s comment determine the average comment length 

per-hour

 To calculate average we need two things:

 Sum values that we want to average 

 Number of values that went into the sum
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Another example with StackOverflow  [2/2] 

 Reducer can do this very easily by iterating through each value in the 

set and adding to a running sum while keeping count

 But if you do this you cannot use the reducer as your combiner!

 Calculating an average is not an associative operation

◼ You cannot change the order of the operators

◼ mean(0, 20, 10, 25, 15) = 14  BUT ..

◼ mean(mean(0, 20, 10), mean(25, 15)) = mean(10, 20) = 15
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Approach to ensuring code reuse at the combiner

 Mapper will output two columns of data

 Count and average

 Reducer will multiply “count” field by the “average” field to add to a 

running count     and     add “count” to the running count

 Then divide the running sum with running count

◼ Output the count with the calculated average
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Mapper code

public static class AverageMapper extends 

    Mapper < Object, Text, IntWritable, CountAverageTuple > {

   private CountAverageTuple outCountAverage = new CountAverageTuple();

   public void map( Object key, Text value, Context context) 

      throws IOException, InterruptedException { 

     Map < String, String > parsed =  

            MRDPUtils.transformXmlToMap( value.toString()); 

     String strDate = parsed.get(" CreationDate"); 

     String text = parsed.get(" Text"); 

     // get the hour this comment was posted in 

     Date creationDate = frmt.parse( strDate); 

    outHour.set( creationDate.getHours()); 

    outCountAverage.setCount( 1); 

    outCountAverage.setAverage( text.length()); 

     // write out the hour with the comment length 

     context.write( outHour, outCountAverage); 

   } 

}
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Reducer code

public class AverageReducer extends Reducer < IntWritable, 

CountAverageTuple, IntWritable, CountAverageTuple > { 

    private CountAverageTuple result = new CountAverageTuple();

    public void 

    reduce(IntWritable key, Iterable < CountAverageTuple > values, 

        Context context) throws IOException, InterruptedException { 

       float sum = 0; float count = 0; 

       // Iterate through all input values for this key 

       for (CountAverageTuple val : values) { 

          sum + = val.getCount() * val.getAverage(); 

          count + = val.getCount(); 

       } 

       result.setCount( count); 

       result.setAverage( sum / count); 

       context.write( key, result); 

     } 

}
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Data flow for the average example

Hour Count Average

4 1 10

4 1 8

4 1 21

3 1 1

3 1 19

9 1 7

9 1 12

Hour Count Average

3 2 10

4 3 13

9 1 7

9 1 12

G
ro

u
p

 1
G

ro
u
p

 2
Setting:

Combiner executes over Groups 1 and 2

DOES NOT execute on the last two rows

Combiner Output/ Reducer Input

Input key Input Value

Output key Output Value
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The contents of this slide set are based on the 

following references

 Tom White. Hadoop: The Definitive Guide. 3rd Edition. Early Access Release. O’Reilly 

Press. ISBN: 978-1-449-31152-0. Chapters [2 and 3]. 

 MapReduce Design Patterns: Building Effective Algorithms and Analytics for Hadoop 

and Other Systems. 1st Edition. Donald Miner and Adam Shook. O'Reilly Media ISBN: 

978-1449327170.  [Chapter 1-3]
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