
COMPUTER SCIENCE DEPARTMENT

CSX55: DISTRIBUTED SYSTEMS [HDFS]

Shrideep Pallickara

Computer Science

Colorado State University

Circumventing The Perils of Doing Too Much

To sidestep the curse of overreach

 the namenode needs gumption and guardrails alike

What’s not an option?

 Playing it by ear

With data volumes on an upward trajectory

 avoid the bottleneck strain

A way out? This ain’t much of a mystery

 separate data from the control plane

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.2

Frequently asked questions from the previous class

survey

 How are splits/blocks/chunks assigned to different machines in a way

that is commensurate with their capabilities?

 Where is the combiner?

 Right next to the mapper!

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.3

Topics covered in today’s lecture

 Hadoop MapReduce

 (wrap-up)

 HDFS

Matrix Cup

Final Standings

COMPUTER SCIENCE DEPARTMENT

HADOOP MAPREDUCE

[WRAP-UP]

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.5

In Hadoop a Reduce task has 4 phases

 Shuffle

 Sort

 Reducer

 Output format

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.6

Reduce task phases: Shuffle and sort

 Shuffle

 Takes the output files written by all of the partitioners and downloads them

to the local machine in which the reducer is running

 Sort

 Individual data pieces are then sorted by key into one larger data list

 Groups equivalent keys together so that their values can be iterated over

easily in the reduce task

 Shuffle brings it all home; sort lines it up for the reducer

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.7

Reduce task phases: Shuffle and sort

 This phase is not customizable and the framework handles everything

automatically

 The only control a developer has is how the keys are sorted and

grouped by specifying a custom Comparator object

 A Comparator in Java defines how two objects are compared

◼ It is the rulebook that tells the sorting algorithm what “comes before” what

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.8

Reduce task phases: Reducer

 Takes the grouped data as input and runs a reduce function once per
key grouping

 The function is passed the key and an iterator/iterable over all of the
values associated with that key

 A wide range of processing can happen in this function: data can be
aggregated, filtered, and combined etc.

 Once the reduce function is done, it sends zero or more key/value
pairs to the final step, the output format

 N.B.: map & reduce functions will change from job to job

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.9

Reduce task phases: Output format

 Translates the final key/value pair from the reduce function and writes

it out to a file using a record writer

 By default:

 Separate the key and value with a tab

 Separates records with a newline character

 Can typically be customized to provide richer output formats

 But in the end, the data is written out to HDFS, regardless of format

COMPUTER SCIENCE DEPARTMENT

COMBINER FUNCTIONS

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.11

Combiner functions

 Many MapReduce jobs are limited by the available network

bandwidth

 Framework has mechanisms to minimize the data transferred between map

and reduce tasks

 A combiner function is run on the map output

 Combiner output fed to the reduce task

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.12

Combiner function

 No guarantees on how many times Hadoop will call this on a map

output record

 The combiner should, however, result in the same output from the reducer

 Contract for the combiner constrains the type of function that can be

used

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.13

Combiner function: Let’s look at the maximum

temperature example [1/2]

(1950, 0)
(1950, 20)
(1950, 10)
Map 1

(1950, 25)
(1950, 15)
Map 2

(1950,
[0, 20, 10, 25, 15]) Reduce (1950, 25)

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.14

Combiner function: Let’s look at the maximum

temperature example [2/2]

(1950, 0)
(1950, 20)
(1950, 10)
Map 1

(1950, 25)
(1950, 15)
Map 2

(1950, [20, 25]) Reduce (1950, 25)

Combiner

Combiner

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.15

A closer look at the function calls

 max(0, 20, 10, 25, 15) =

max (max(0, 20, 10), max(25, 15)) =

max (20, 25) = 25

 Functions with this property are called commutative and associative

 Commutative: Order of operands (5+2) = (2 + 5)

◼ Division and subtraction are not commutative

 Associative: Order of operators 5 x (5x3) = (5x5)x3

◼ Vector cross products are not; also note that division/subtraction aren’t for e.g.,

𝑎 ÷ 𝑏 ÷ 𝑐 ≠ 𝑎 ÷ (𝑏 ÷ 𝑐)

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.16

Not all functions posses the commutative and

associative properties

 What if we were computing the mean temperatures?

 We can cannot use mean as our combiner function

 mean(0, 20, 10, 25, 15) = 14

BUT

mean(mean(0, 20, 10), mean(25, 15)) =

 mean(10, 20) = 15

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.17

Combiner: Summary

 The combiner does not replace the reduce function

 Reduce is still needed to process records from different maps

 But it is useful for cutting down traffic from maps to the reducer

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.18

Specifying a combiner function

public class MaxTemperatureWithCombiner {

 public static main(String[] args) throws Exception {
 Job job = Job.getInstance();
 job.setJarByClass(MaxTemperature.class);
 job.setJobName(“Max temperature”);

 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.setMapperClass(MaxTemperatureMapper.class);
 job.setCombinerClass(MaxTemperatureReducer.class);
 job.setReducerClass(MaxTemperatureReducer.class);

 job.setOutputKey(Text.class);
 job.setOutputValueClass(IntWritable.class);

 System.exit(job.waitForCompletion(true) ? 0: 1);

 }
}

COMPUTER SCIENCE DEPARTMENT

ANOTHER EXAMPLE (COMBINER)

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.20

Another example with StackOverflow [1/2]

 Given a list of user’s comment determine the average comment length

per-hour

 To calculate the average, we need two things:

 Sum values that we want to average

 Number of values that went into the sum

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.21

Another example with StackOverflow [2/2]

 Reducer can do this very easily by iterating through each value in the

set and adding to a running sum while keeping count

 But if you do this you cannot use the reducer as your combiner!

 Calculating an average is not an associative operation

◼ You cannot change the order of the operators

◼ mean(0, 20, 10, 25, 15) = 14 BUT ..

◼ mean(mean(0, 20, 10), mean(25, 15)) = mean(10, 20) = 15

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.22

Approach to ensuring code reuse at the combiner

 Mapper will output two columns of data

 Count and average

 Reducer will multiply “count” field by the “average” field to add to a

running count and add “count” to the running count

 Then divide the running sum with running count

◼ Output the count with the calculated average

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.23

Mapper code

public static class AverageMapper extends

 Mapper < Object, Text, IntWritable, CountAverageTuple > {

 private CountAverageTuple outCountAverage = new CountAverageTuple();

 public void map(Object key, Text value, Context context)

 throws IOException, InterruptedException {

 Map < String, String > parsed =

 MRDPUtils.transformXmlToMap(value.toString());

 String strDate = parsed.get(" CreationDate");

 String text = parsed.get(" Text");

 // get the hour this comment was posted in

 Date creationDate = frmt.parse(strDate);

 outHour.set(creationDate.getHours());

 outCountAverage.setCount(1);

 outCountAverage.setAverage(text.length());

 // write out the hour with the comment length

 context.write(outHour, outCountAverage);

 }

}

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.24

Reducer code

public class AverageReducer extends Reducer < IntWritable,

CountAverageTuple, IntWritable, CountAverageTuple > {

 private CountAverageTuple result = new CountAverageTuple();

 public void

 reduce(IntWritable key, Iterable < CountAverageTuple > values,

 Context context) throws IOException, InterruptedException {

 float sum = 0; float count = 0;

 // Iterate through all input values for this key

 for (CountAverageTuple val : values) {

 sum += val.getCount() * val.getAverage();

 count += val.getCount();

 }

 result.setCount(count);

 result.setAverage(sum / count);

 context.write(key, result);

 }

}

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.25

Data flow for the average example

Hour Count Average

4 1 10

4 1 8

4 1 21

3 1 1

3 1 19

9 1 7

9 1 12

Hour Count Average

3 2 10

4 3 13

9 1 7

9 1 12

G
ro

u
p

 1
G

ro
u
p

 2
Setting:

Combiner executes over Groups 1 and 2

DOES NOT execute on the last two rows

Combiner Output/ Reducer Input

Input key Input Value

Output key Output Value

COMPUTER SCIENCE DEPARTMENT

HADOOP DISTRIBUTED FILE SYSTEM

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.27

Block

 Filesystems for a single disk deal with data in blocks

 Integral number of the HDD block size

 Block sizes

 Filesystem blocks are a few KB

 Disk blocks are normally 512 bytes

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.28

HDFS Blocks

 Have a much larger size: 256 MB [default was 64 till version 1.x]

 Files are broken into block-sized chunks

 Each block is stored as an independent unit

 If the last chunk is less than the HDFS block size?

 No space is wasted because the blocks are themselves stored as files

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.29

Why is the block-size so big?

 Time to transfer data from disk can be made significantly larger than

the time to seek first block

 If the seek time is 10 ms and transfer rate is 100 MB/sec?

 To make seek time 1% of the transfer time, block size should be 100 MB

 Must be careful not to overdo block size increase

 Since tasks operate on blocks, the number of tasks could reduce

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.30

Benefits of the block abstraction in distributed file

systems

 File can be larger than any single disk in the cluster

 Simplifies the storage subsystem

 File metadata (including permissions) handled by another subsystem and not

stored with the block

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.31

Blocks and replication

 Each block is replicated on a small number of physically separate

machines

 If a block becomes unavailable?

① Copy read from another location transparently

② That block is also replicated from its alternative locations to other live

machines

◼ Bring replication factor back to the desired level

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.32

HDFS’ fsck command

 List blocks that make up each file in the filesystem

% hadoop fsck / -files -blocks

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.33

Nodes in the HDFS

 Namenode {master}

 Datanode {worker}

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.34

Namenode

 Manages filesystem namespace

 Maintains filesystem tree and metadata

 For all files and directories in the tree

 Information stored persistently on local disk in two files

 Namespace image and the edit log

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.35

Tracking location of blocks comprising files

 Namenode knows about datanodes on which all blocks of a file are

located

 The locations of the blocks are not stored persistently

 Information reconstructed from datanodes during start up

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.36

Interacting with HDFS

 HDFS presents a POSIX-like file system interface

 Client code does not need to know about the namenode and

datanode to function

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.37

Datanodes

 Store and retrieve blocks

 Initiated by the client or the namenode

 Periodically reports back to the namenode with the list of blocks that

they store

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.38

Failure of the namenode

 Decimates the filesystem

 All files on the filesystem are lost

 No way of knowing how to reconstitute the files from the blocks

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.39

Guarding against namenode failures

 Backup files comprising the persistent state of the filesystem

metadata

 Hadoop can be configured so that the namenode writes its persistent state

to multiple filesystems

◼ Writes are synchronous and atomic

 Run a secondary namenode

 Does not act as a namenode

 Periodically merges namespace image with edit log

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.40

Secondary namenode

 Runs on a separate physical machine

 Requires as much memory as the namenode to perform the merge operation

 Keeps a copy of the merged namespace image

 Can be used if the namenode fails

 However, the secondary namenode lags the primary

 Data loss is almost certain

COMPUTER SCIENCE DEPARTMENT

SCALING THE NAMENODES

Though my soul may set in darkness, it will rise in perfect light;

I have loved the stars too fondly to be fearful of the night.

Poem: The Old Astronomer; Sarah Williams (1837-1868)

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.42

Too many files, not enough memory: Enter federation

 On large clusters with many files, memory is a limiting factor for

scaling

 HDFS federation allows scaling with the addition of namenodes

 Each manages a portion of the filesystem namespace

◼ For e.g., one namenode for /user and another for /share

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.43

HDFS Federation [1/2]

 Each namenode manages a namespace volume

 Metadata for the namespace and block pool

 Namespace volumes are independent of each other

 No communications between namenodes

 Failure of one namenode does not affect availability of another

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.44

HDFS Federation [2/2]

 Block pool storage is not partitioned

 Datanodes register with each namenode in the cluster

 Store blocks from multiple blockpools

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.45

Recovering from a failed namenode [1/2]

 Admin starts a new primary namenode

 With one of the filesystem metadata replicas

 Configure datanodes and clients to use this namenode

 New namenode unable to serve requests until:

① Namespace image is loaded into memory

② Replay of edit log is complete

③ Received enough block reports from datanodes to leave safe mode

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.46

Recovering from a failed namenode [2/2]

 Recovery can be really long

 On large clusters with many files and blocks this can be about 30 minutes

 This also impacts routine maintenance

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.47

HDFS High Availability has features to cope with this

 Pair of namenodes in active standby configuration

 During failure of active namenode, standby takes over the servicing of

client requests

 In 10s of seconds

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.48

HDFS High-Availability:

Additional items to get things to work

 Namenodes use a highly-available shared storage to store the edit

log

 Datanodes must send block reports to both namenodes

 Block mappings stored in memory not disk

 Clients must be configured to handle namenode failover

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.49

HDFS HA: Dealing with ungraceful failovers

 Slow network or a network partition can trigger failover transition

 Previously active namenode thinks it is still the active namenode

 The HDFS HA tries to avoid this situation using fencing

 Previously active namenode should be prevented from causing corruptions

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.50

Fencing mechanisms: To shutdown previously active

namenode

 Kill the namenode’s process

 Revoking access to the shared storage directory

 Disabling namenode’s network port

 Using the remote management command

 STONITH

 Use specialized power distribution unit to forcibly power down the host

machine

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.51

Basic Filesystem Operations

 Type hadoop fs –help to get detailed help on commands

 We are invoking Hadoop’s filesystem shell command fs which supports other

subcommands

 Start copying a file from the local filesystem to HDFS

 % hadoop fs –copyFromLocal input/docs/quangle.txt

 /user/tom/quangle.txt

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.52

Basic Filesystem Operations

 Copy file back to the local filesystem

%hadoop fs –copyToLocal /user/tom/quangle.txt
input/docs/quangle.copy.txt

 Verify if the movement of the files have changed the files in any way

% openssl md5 quangle.txt quangle.copy.txt

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.53

Basic Filesystem Operations

% hadoop fs -mkdir books

% hadoop fs -ls .

Found 2 items

drwxr-xr-x - tom supergroup 0 2019-04-02 22:41 /user/tom/books

-rw-r--r-- 1 tom supergroup 118 2019-04-02 22:29 /user/tom/quangle.txt

 Directories are treated as metadata and stored by the namenode not

the datanodes

COMPUTER SCIENCE DEPARTMENT

HADOOP FILE SYSTEMS

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.55

Hadoop filesystems

 Hadoop has an abstract notion of filesystem

 HDFS is just one implementation

 Others include HAR, KFS (Cloud Store), S3 (native and block-based)

 Uses URI scheme to pick correct filesystem instance to communicate with

% hadoop fs –ls file:// to communicate with local file system

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.56

Interacting with the filesystem

 Hadoop has a FileSystem class

 HDFS implementation is accessible through the

DistributedFileSystem

 Write your code against the FileSystem class for maximum portability

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.57

Reading data from a Hadoop URL

InputStream in = null;

try {

 in = new URL("hdfs://host/path").openStream();

 // process in

} finally {

 IOUtils.closeStream(in);

}

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.58

Make Java recognize Hadoop’s URL scheme

 Call setURLStreamHandlerFactory() on URL with an instance

of FsURLStreamHandlerFactory

 Can only be called once per JVM, so it is typically executed in a static

block

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.59

Displaying files from a Hadoop filesystem

public class URLCat {

 static {

 URL.setURLStreamHandlerFactory(

 new FsUrlStreamHandlerFactory());

 }

 public static void main(String[] args) throws Exception {

 InputStream in = null;

 try {

 in = new URL(args[0]).openStream();

 IOUtils.copyBytes(in, System.out, 4096, false);

 } finally {

 IOUtils.closeStream(in);

 }

 }

}

Buffer size used

for copying

Close streams after

copying is complete?

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.60

A sample run of the URLCat

% hadoop URLCat hdfs://localhost/user/tom/quangle.txt

On the top of the Crumpetty Tree
The Quangle Wangle sat,
But his face you could not see,
On account of his Beaver Hat.

HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.61

The contents of this slide set are based on the

following references

 Tom White. Hadoop: The Definitive Guide. 3rd Edition. Early Access Release. O’Reilly

Press. ISBN: 978-1-449-31152-0. Chapters [2 and 3].

	Slide 1: CSx55: Distributed Systems [HDFS]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in today’s lecture
	Slide 4: Hadoop MapReduce [wrap-up]
	Slide 5: In Hadoop a Reduce task has 4 phases
	Slide 6: Reduce task phases: Shuffle and sort
	Slide 7: Reduce task phases: Shuffle and sort
	Slide 8: Reduce task phases: Reducer
	Slide 9: Reduce task phases: Output format
	Slide 10: Combiner Functions
	Slide 11: Combiner functions
	Slide 12: Combiner function
	Slide 13: Combiner function: Let’s look at the maximum temperature example [1/2]
	Slide 14: Combiner function: Let’s look at the maximum temperature example [2/2]
	Slide 15: A closer look at the function calls
	Slide 16: Not all functions posses the commutative and associative properties
	Slide 17: Combiner: Summary
	Slide 18: Specifying a combiner function
	Slide 19: Another example (Combiner)
	Slide 20: Another example with StackOverflow [1/2]
	Slide 21: Another example with StackOverflow [2/2]
	Slide 22: Approach to ensuring code reuse at the combiner
	Slide 23: Mapper code
	Slide 24: Reducer code
	Slide 25: Data flow for the average example
	Slide 26: Hadoop Distributed File System
	Slide 27: Block
	Slide 28: HDFS Blocks
	Slide 29: Why is the block-size so big?
	Slide 30: Benefits of the block abstraction in distributed file systems
	Slide 31: Blocks and replication
	Slide 32: HDFS’ fsck command
	Slide 33: Nodes in the HDFS
	Slide 34: Namenode
	Slide 35: Tracking location of blocks comprising files
	Slide 36: Interacting with HDFS
	Slide 37: Datanodes
	Slide 38: Failure of the namenode
	Slide 39: Guarding against namenode failures
	Slide 40: Secondary namenode
	Slide 41: Scaling the NameNodes
	Slide 42: Too many files, not enough memory: Enter federation
	Slide 43: HDFS Federation [1/2]
	Slide 44: HDFS Federation [2/2]
	Slide 45: Recovering from a failed namenode [1/2]
	Slide 46: Recovering from a failed namenode [2/2]
	Slide 47: HDFS High Availability has features to cope with this
	Slide 48: HDFS High-Availability: Additional items to get things to work
	Slide 49: HDFS HA: Dealing with ungraceful failovers
	Slide 50: Fencing mechanisms: To shutdown previously active namenode
	Slide 51: Basic Filesystem Operations
	Slide 52: Basic Filesystem Operations
	Slide 53: Basic Filesystem Operations
	Slide 54: Hadoop File Systems
	Slide 55: Hadoop filesystems
	Slide 56: Interacting with the filesystem
	Slide 57: Reading data from a Hadoop URL
	Slide 58: Make Java recognize Hadoop’s URL scheme
	Slide 59: Displaying files from a Hadoop filesystem
	Slide 60: A sample run of the URLCat
	Slide 61: The contents of this slide set are based on the following references

