CSXx55: DISTRIBUTED SYSTEMS [HDFS]

Circumventing The Perils of Doing Too Much

To sidestep the curse of overreach

the namenode needs gumption and guardrails alike
What's not an option?

Playing it by ear

With data volumes on an upward trajectory
avoid the bottleneck strain

A way out? This ain’t much of a mystery Sh rideep PCI”iCkCI ra
separate data from the control plane
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Frequently asked questions from the previous class
survey

How are splits /blocks/chunks assigned to different machines in a way
that is commensurate with their capabilities?

Where is the combiner?

Right next to the mapper!
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Topics covered in today’s lecture

O quoop quReduce Position Student Time (seconds)
(qup_up) 1 Brenner Lattin 1.66
2 Tyler Malone 2.04
o HDFS
3 Adam Nasla 4.09
4 Kushal Reddy Alimineti 13.03
5 Job Roloff 13.45
6 Trevor Chartier 18.54
7 Henry Gates 19.46
8 Ayden Garza 20.76
Matrix Cup
Final Standings 9 Tommy McRoskey 21.62
10 Zacharie Guida 22.46
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In Haodoop a Reduce task has 4 phases

S
o Shuffle
0 Sort
-1 Reducer

1 Qutput format
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Reduce task phases: Shuffle and sort

Shuffle

Takes the output files written by all of the partitioners and downloads them
to the local machine in which the reducer is running

Sort
Individual data pieces are then sorted by key into one larger data list

Groups equivalent keys together so that their values can be iterated over
easily in the reduce task

Shuffle brings it all home; sort lines it up for the reducer
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Reduce task phases: Shuffle and sort

This phase is not customizable and the framework handles everything
automatically

The only control a developer has is how the keys are sorted and
grouped by specifying a custom Comparator object

A Comparator in Java defines how two objects are compared

It is the rulebook that tells the sorting algorithm what “comes before” what
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Reduce task phases: Reducer

Takes the grouped data as input and runs a reduce function once per
key grouping

The function is passed the key and an iterator/iterable over all of the
values associated with that key

A wide range of processing can happen in this function: data can be
aggregated, filtered, and combined etc.

Once the reduce function is done, it sends zero or more key/value
pairs to the final step, the output format

N.B.: map & reduce functions will change from job to job
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Reduce task phases: Output format

Translates the final key /value pair from the reduce function and writes
it out to a file using a record writer

By default:

Separate the key and value with a tab

Separates records with a newline character

Can typically be customized to provide richer output formats

But in the end, the data is written out to HDFS, regardless of format
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Combiner functions

Many MapReduce jobs are limited by the available network
bandwidth

Framework has mechanisms to minimize the data transferred between map
and reduce tasks

A combiner function is run on the map output

Combiner output fed to the reduce task
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Combiner function

No guarantees on how many times Hadoop will call this on a map

output record

The combiner should, however, result in the same output from the reducer

Contract for the combiner constrains the type of function that can be
used

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADoor/ HDFS L21.12



Combiner function: Let’s look at the maximum

temperature example 1/2
—

(1950, 0)
(1950, 20)
(1950, 10)
Map 1

(1950,
[0, 20, 10, 25, 15])

Reduce 1950, 25)

(1950, 25)
(1950, 15)
Map 2
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Combiner function: Let’s look at the maximum

temperature example 2/2
]
(1950, 0)
(1950, 20)
(1950, 10) -
Map 1 [ Combiner
(1950, [20, 25]) Reduce ———{1950, 25)
(1950, 25) [ Combiner
(1950, 15)  —
Map 2
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A closer look at the function calls

max(0, 20, 10, 25, 15) =
max (max(0, 20, 10), max(25, 15)) =
max (20, 25) = 25

Functions with this property are called commutative and associative
Commutative: Order of operands (5+2) = (2 + 5)

Division and subtraction are not commutative

Associative: Order of operators 5 x (5x3) = (5x5)x3

Vector cross products are not; also note that division /subtraction aren’t for e.g.,

(a +b)+~c # a+(b+c)
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Not all functions posses the commutative and

associative properties
B

7 What if we were computing the mean temperatures?
1 We can cannot use mean as our combiner function

mean(0, 20, 10, 25, 15) = 14

BUT
mean(mean(0, 20, 10), mean(25, 15)) =
mean(10, 20) = 15
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Combiner: Summary

The combiner does not replace the reduce function

Reduce is still needed to process records from different maps

But it is useful for cutting down traffic from maps to the reducer
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Specifying a combiner function

public class MaxTemperatureWithCombiner {

public static main(String[] args) throws Exception {

}

Job job =Job.getInstance();
job.setJarByClass(MaxTemperature.class);
job.setlobName(“Max temperature”);

FilelnputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.setMapperClass(MaxTemperatureMapper.class);
job.setCombinerClass(MaxTemperatureReducer.class);

job.setReducerClass(MaxTemperatureReducer.class);

job.setOutputKey(Text.class);
job.setOutputValueClass(IntWritable.class);

System.exit(job.waitForCompletion(true) ? 0: 1);
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Another example with StackOverflow [1/2]

Given a list of user’'s comment determine the average comment length
per-hour

To calculate the average, we need two things:
Sum values that we want to average

Number of values that went into the sum
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Another example with StackOverflow [2/2]

Reducer can do this very easily by iterating through each value in the
set and adding to a running sum while keeping count

But if you do this you cannot use the reducer as your combiner!

Calculating an average is not an associative operation
You cannot change the order of the operators
mean(0, 20, 10, 25, 15) = 14 BUT ..
mean(mean(0, 20, 10), mean(25, 15)) = mean(10, 20) =15
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Approach to ensuring code reuse at the combiner

Mapper will output two columns of data

Count and average

Reducer will multiply “count” field by the “average” field to add to a
running count and  add “count” to the running count

Then divide the running sum with running count

Output the count with the calculated average
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Mapper code

public static class AverageMapper extends
Mapper < Object, Text, IntWritable, CountAverageTuple > {

private CountAverageTuple outCountAverage = new CountAverageTuple () ;

public void map( Object key, Text value, Context context)
throws IOException, InterruptedException {
Map < String, String > parsed =
MRDPUtils.transformXmlToMap( value.toString()) ;
String strDate = parsed.get (" CreationDate");
String text = parsed.get (" Text");
// get the hour this comment was posted in
Date creationDate = frmt.parse( strDate);
outHour.set ( creationDate.getHours())

outCountAverage.setCount ( 1);
outCountAverage.setAverage ( text.length())

// write out the hour with the comment length
context.write( outHour, outCountAverage);

}
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Reducer code
—

public class AverageReducer extends Reducer < IntWritable,
CountAverageTuple, IntWritable, CountAverageTuple > {
private CountAverageTuple result = new CountAverageTuple () ;

public void
reduce (IntWritable key, Iterable < CountAverageTuple > values,
Context context) throws IOException, InterruptedException {

float sum = 0; float count = 0;

// Iterate through all input values for this key

for (CountAverageTuple val : wvalues) {
sum += val.getCount () * val.getAverage () ;
count += wval.getCount()

}

result.setCount ( count);

result.setAverage ( sum / count);

context.write( key, result);

}

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADoor/ HDFS L21.24



Data flow for the average example
=

Inputkey InputValue g
-- Combiner executes over Groups 1 and 2

DOES NOT execute on the last two rows

o 4 1 10
g* 4 1 8
— 4 1 21
g. B 3 1 1 ombiner Output/ Reducer Input
§1 3 ! 19 Outputkey OutputValve
9 1 7 _--
9 1 12 3 9 10
4 3 13
9 1 7
9 1 12
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Block

Filesystems for a single disk deal with data in blocks

Integral number of the HDD block size

Block sizes
Filesystem blocks are a few KB

Disk blocks are normally 512 bytes
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HDFS Blocks

Have a much larger size: 256 MB [default was 64 till version 1.x]

Files are broken into block-sized chunks

Each block is stored as an independent unit

If the last chunk is less than the HDFS block size?

No space is wasted because the blocks are themselves stored as files
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Why is the block-size so big?

Time to transfer data from disk can be made significantly larger than
the time to seek first block

If the seek time is 10 ms and transfer rate is 100 MB /sec?

To make seek time 1% of the transfer time, block size should be 100 MB

Must be careful not to overdo block size increase

Since tasks operate on blocks, the number of tasks could reduce
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Benefits of the block abstraction in distributed file

systems

File can be larger than any single disk in the cluster

Simplifies the storage subsystem

File metadata (including permissions) handled by another subsystem and not
stored with the block

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADoor/ HDFS L21.30



Blocks and replication

Each block is replicated on a small number of physically separate
machines

If a block becomes unavailable?
(1) Copy read from another location transparently

(2) That block is also replicated from its alternative locations to other live
machines

Bring replication factor back to the desired level
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HDFS’ fsck command

o List blocks that make up each file in the filesystem

% hadoop fsck / -files -blocks
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Nodes in the HDFS

-1 Namenode {master}

-1 Datanode {worker}
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Namenode

Manages filesystem namespace

Maintains filesystem tree and metadata

For all files and directories in the tree

Information stored persistently on local disk in two files

Namespace image and the edit log
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Tracking location of blocks comprising files

Namenode knows about datanodes on which all blocks of a file are
located

The locations of the blocks are not stored persistently

Information reconstructed from datanodes during start up
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Interacting with HDFS

HDFS presents a POSIX-like file system interface

Client code does not need to know about the namenode and
datanode to function
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Datanodes

Store and retrieve blocks

Initiated by the client or the namenode

Periodically reports back to the namenode with the list of blocks that
they store
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Failure of the namenode
—

-1 Decimates the filesystem

o All files on the filesystem are lost

No way of knowing how to reconstitute the files from the blocks
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Guarding against namenode failures

Backup files comprising the persistent state of the filesystem
metadata

Hadoop can be configured so that the namenode writes its persistent state
to multiple filesystems

Writes are synchronous and atomic

Run a secondary namenode
Does not act as a namenode

Periodically merges namespace image with edit log
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Secondary namenode

Runs on a separate physical machine

Requires as much memory as the namenode to perform the merge operation

Keeps a copy of the merged namespace image

Can be used if the namenode fails

However, the secondary namenode lags the primary

Data loss is almost certain
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Too many files, not enough memory: Enter federation

On large clusters with many files, memory is a limiting factor for
scaling

HDFS federation allows scaling with the addition of namenodes

Each manages a portion of the filesystem namespace

For e.g., one namenode for /user and another for /share
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HDFS Federation [1/2]

Each namenode manages a namespace volume

Metadata for the namespace and block pool

Namespace volumes are independent of each other
No communications between namenodes

Failure of one namenode does not affect availability of another
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HDFS Federation [2/2]

Block pool storage is not partitioned

Datanodes register with each namenode in the cluster

Store blocks from multiple blockpools

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADoor/ HDFS L21.44



Recovering from a failed namenode [1/2]

Admin starts a new primary namenode
With one of the filesystem metadata replicas

Configure datanodes and clients to use this namenode

New namenode unable to serve requests until:
(1) Namespace image is loaded infto memory

(2) Replay of edit log is complete

(3) Received enough block reports from datanodes to leave safe mode
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Recovering from a failed namenode [2/2]

Recovery can be really long

On large clusters with many files and blocks this can be about 30 minutes

This also impacts routine maintenance
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HDFS High Availability has features to cope with this

Pair of namenodes in active standby configuration

During failure of active namenode, standby takes over the servicing of
client requests

In 10s of seconds
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HDFS High-Availability:
Additional items to get things to work

Namenodes use a highly-available shared storage to store the edit
log

Datanodes must send block reports to both namenodes

Block mappings stored in memory not disk

Clients must be configured to handle namenode failover
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HDFS HA: Dealing with ungraceful failovers

Slow network or a network partition can trigger failover transition

Previously active namenode thinks it is still the active namenode

The HDFS HA tries to avoid this situation using fencing

Previously active namenode should be prevented from causing corruptions
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Fencing mechanisms: To shutdown previously active
namenode

Kill the namenode’s process
Revoking access to the shared storage directory

Disabling namenode’s network port

Using the remote management command

STONITH

Use specialized power distribution unit to forcibly power down the host
machine
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Basic Filesystem Operations

Type hadoop fs —help to get detailed help on commands

We are invoking Hadoop’s filesystem shell command fs which supports other
subcommands

Start copying a file from the local filesystem to HDFS

% hadoop fs —copyFromLocal input/docs/quangle.txt
Juser/tom/quangle.txt
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Basic Filesystem Operations

Copy file back to the local filesystem

%hadoop fs —copyToLocal /user/tom/quangle.txt
input/docs/quangle.copy.txt

Verify if the movement of the files have changed the files in any way

% openssl md5 quangle.txt quangle.copy.txt

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADoor/ HDFS L21.52



Basic Filesystem Operations

% hadoop fs -mkdir books

% hadoop fs -Is .

Found 2 items
drwxr-xr-x - tom supergroup 0 2019-04-02 22:41 /user/tom/books
-rw-r--r-- 1 tom supergroup 118 2019-04-02 22:29 /user/tom/quangle.txt

Directories are treated as metadata and stored by the namenode not

the datanodes
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Hadoop filesystems

Hadoop has an abstract notion of filesystem

HDFS is just one implementation
Others include HAR, KFS (Cloud Store), S3 (native and block-based)

Uses URI scheme to pick correct filesystem instance to communicate with

% hadoop fs —Is file:// to communicate with local file system
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Interacting with the filesystem

Hadoop has a FileSystem class

HDFS implementation is accessible through the
DistributedFileSystem

Write your code against the FileSystem class for maximum portability
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Reading data from a Hadoop URL
N

InputStream in = null;

try {
in = new URL("hdfs://host/path") .openStream() ;
// process in

} finally {
TOUtils.closeStream(1in) ;

}
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Make Java recognize Hadoop’s URL scheme

0 Call setURLStreamHandlerFactory () on URL with an instance
of FsURLStreamHandlerFactory

1 Can only be called once per JVM, so it is typically executed in a static
block

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HADoor/ HDFS L21.58



Displaying files from a Hadoop filesystem

public class URLCat {
static {
URL.setURLStreamHandlerFactory (

new FsUrlStreamHandlerFactory());

public static void main(String[] args) throws Exception {

InputStream in = null;
try {
in = new URL(args[0]) .openStream()

IOUtils.copyBytes (in, System.out, 4096,
} finally {
IOUtils.closeStream(in) ;
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A sample run of the URLCat
—

% hadoop URLCat hdfs://localhost/user/tom/quangle.txt

On the top of the Crumpetty Tree
The Quangle Wangle sat,

But his face you could not see,
On account of his Beaver Hat.
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The contents of this slide set are based on the

following references
——

o1 Tom White. Hadoop: The Definitive Guide. 3™ Edition. Early Access Release. O’Reilly
Press. ISBN: 978-1-449-31152-0. Chapters [2 and 3].
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