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Circumventing The Perils of Doing Too Much

To sidestep the curse of overreach

    the namenode needs gumption and guardrails alike

What’s not an option? 

    Playing it by ear

With data volumes on an upward trajectory

   avoid the bottleneck strain

A way out?  This ain’t much of a mystery

   separate data from the control plane
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Frequently asked questions from the previous class 

survey

 How are splits/blocks/chunks assigned to different machines in a way 

that is commensurate with their capabilities?

 Where is the combiner?

 Right next to the mapper!
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Topics covered in today’s lecture

 Hadoop MapReduce 

    (wrap-up)

 HDFS

Matrix Cup

Final Standings
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In Hadoop a Reduce task has 4 phases

 Shuffle

 Sort

 Reducer

 Output format
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Reduce task phases: Shuffle and sort

 Shuffle

 Takes the output files written by all of the partitioners and downloads them 

to the local machine in which the reducer is running

 Sort

 Individual data pieces are then sorted by key into one larger data list 

 Groups equivalent keys together so that their values can be iterated over 

easily in the reduce task 

 Shuffle brings it all home; sort lines it up for the reducer
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Reduce task phases: Shuffle and sort

 This phase is not customizable and the framework handles everything 

automatically

 The only control a developer has is how the keys are sorted and 

grouped by specifying a custom Comparator object

 A Comparator in Java defines how two objects are compared

◼ It is the rulebook that tells the sorting algorithm what “comes before” what
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Reduce task phases: Reducer

 Takes the grouped data as input and runs a reduce function once per 
key grouping 

 The function is passed the key and an iterator/iterable over all of the 
values associated with that key 

 A wide range of processing can happen in this function: data can be 
aggregated, filtered, and combined etc.

 Once the reduce function is done, it sends zero or more key/value 
pairs to the final step, the output format 

 N.B.: map & reduce functions will change from job to job
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Reduce task phases: Output format

 Translates the final key/value pair from the reduce function and writes 

it out to a file using a record writer

 By default:

 Separate the key and value with a tab 

 Separates records with a newline character 

 Can typically be customized to provide richer output formats

 But in the end, the data is written out to HDFS, regardless of format 
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Combiner functions

 Many MapReduce jobs are limited by the available network 

bandwidth

 Framework has mechanisms to minimize the data transferred between map 

and reduce tasks

 A combiner function is run on the map output

 Combiner output fed to the reduce task
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Combiner function

 No guarantees on how many times Hadoop will call this on a map 

output record

 The combiner should, however, result in the same output from the reducer

 Contract for the combiner constrains the type of function that can be 

used
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Combiner function: Let’s look at the maximum 

temperature example                                     [1/2]

(1950, 0)
(1950, 20)
(1950, 10)
Map 1

(1950, 25)
(1950, 15)
Map 2

(1950, 
[0, 20, 10, 25, 15]) Reduce (1950, 25)
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Combiner function: Let’s look at the maximum 

temperature example                                     [2/2]

(1950, 0)
(1950, 20)
(1950, 10)
Map 1

(1950, 25)
(1950, 15)
Map 2

(1950, [20, 25]) Reduce (1950, 25)

Combiner

Combiner
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A closer look at the function calls

 max(0, 20, 10, 25, 15) =

max (max(0, 20, 10), max(25, 15)) =

max (20, 25) = 25

 Functions with this property are called commutative and associative

 Commutative: Order of operands (5+2) = (2 + 5) 

◼ Division and subtraction are not commutative

 Associative: Order of operators 5 x (5x3) = (5x5)x3

◼ Vector cross products are not; also note that division/subtraction aren’t for e.g., 

𝑎 ÷ 𝑏 ÷ 𝑐 ≠  𝑎 ÷ (𝑏 ÷ 𝑐)
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Not all functions posses the commutative and 

associative properties

 What if we were computing the mean temperatures?

 We can cannot use mean as our combiner function

  mean(0, 20, 10, 25, 15) = 14

BUT

mean(mean(0, 20, 10), mean(25, 15)) =

   mean(10, 20) = 15
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Combiner: Summary

 The combiner does not replace the reduce function

 Reduce is still needed to process records from different maps

 But it is useful for cutting down traffic from maps to the reducer
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Specifying a combiner function

public class MaxTemperatureWithCombiner {

   public static main(String[] args) throws Exception {
      Job job = Job.getInstance();
      job.setJarByClass(MaxTemperature.class);
      job.setJobName(“Max temperature”);

      FileInputFormat.addInputPath(job, new Path(args[0]));
      FileOutputFormat.setOutputPath(job, new Path(args[1]));

      job.setMapperClass(MaxTemperatureMapper.class);
      job.setCombinerClass(MaxTemperatureReducer.class);
      job.setReducerClass(MaxTemperatureReducer.class);

      job.setOutputKey(Text.class);
      job.setOutputValueClass(IntWritable.class);

      System.exit(job.waitForCompletion(true) ? 0: 1);     

   }
}
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Another example with StackOverflow  [1/2] 

 Given a list of user’s comment determine the average comment length 

per-hour

 To calculate the average, we need two things:

 Sum values that we want to average 

 Number of values that went into the sum
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Another example with StackOverflow  [2/2] 

 Reducer can do this very easily by iterating through each value in the 

set and adding to a running sum while keeping count

 But if you do this you cannot use the reducer as your combiner!

 Calculating an average is not an associative operation

◼ You cannot change the order of the operators

◼ mean(0, 20, 10, 25, 15) = 14  BUT ..

◼ mean(mean(0, 20, 10), mean(25, 15)) = mean(10, 20) = 15
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Approach to ensuring code reuse at the combiner

 Mapper will output two columns of data

 Count and average

 Reducer will multiply “count” field by the “average” field to add to a 

running count     and     add “count” to the running count

 Then divide the running sum with running count

◼ Output the count with the calculated average
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Mapper code

public static class AverageMapper extends 

    Mapper < Object, Text, IntWritable, CountAverageTuple > {

   private CountAverageTuple outCountAverage = new CountAverageTuple();

   public void map( Object key, Text value, Context context) 

      throws IOException, InterruptedException { 

     Map < String, String > parsed =  

            MRDPUtils.transformXmlToMap( value.toString()); 

     String strDate = parsed.get(" CreationDate"); 

     String text = parsed.get(" Text"); 

     // get the hour this comment was posted in 

     Date creationDate = frmt.parse( strDate); 

    outHour.set( creationDate.getHours()); 

    outCountAverage.setCount( 1); 

    outCountAverage.setAverage( text.length()); 

     // write out the hour with the comment length 

     context.write( outHour, outCountAverage); 

   } 

}
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Reducer code

public class AverageReducer extends Reducer < IntWritable, 

CountAverageTuple, IntWritable, CountAverageTuple > { 

    private CountAverageTuple result = new CountAverageTuple();

    public void 

    reduce(IntWritable key, Iterable < CountAverageTuple > values, 

        Context context) throws IOException, InterruptedException { 

       float sum = 0; float count = 0; 

       // Iterate through all input values for this key 

       for (CountAverageTuple val : values) { 

          sum +=  val.getCount() * val.getAverage(); 

          count += val.getCount(); 

       } 

       result.setCount( count); 

       result.setAverage( sum / count); 

       context.write( key, result); 

     } 

}
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Data flow for the average example

Hour Count Average

4 1 10

4 1 8

4 1 21

3 1 1

3 1 19

9 1 7

9 1 12

Hour Count Average

3 2 10

4 3 13

9 1 7

9 1 12

G
ro

u
p

 1
G

ro
u
p

 2
Setting:

Combiner executes over Groups 1 and 2

DOES NOT execute on the last two rows

Combiner Output/ Reducer Input

Input key Input Value

Output key Output Value
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Block

 Filesystems for a single disk deal with data in blocks

 Integral number of the HDD block size

 Block sizes

 Filesystem blocks are a few KB

 Disk blocks are normally 512 bytes 



HADOOP/ HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L21.28

HDFS Blocks

 Have a much larger size: 256 MB [default was 64 till version 1.x]

 Files are broken into block-sized chunks

 Each block is stored as an independent unit

 If the last chunk is less than the HDFS block size?

 No space is wasted because the blocks are themselves stored as files
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Why is the block-size so big?

 Time to transfer data from disk can be made significantly larger than 

the time to seek first block

 If the seek time is 10 ms and transfer rate is 100 MB/sec?

 To make seek time 1% of the transfer time, block size should be 100 MB

 Must be careful not to overdo block size increase

 Since tasks operate on blocks, the number of tasks could reduce 
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Benefits of the block abstraction in distributed file 

systems

 File can be larger than any single disk in the cluster

 Simplifies the storage subsystem

 File metadata (including permissions) handled by another subsystem and not 

stored with the block
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Blocks and replication

 Each block is replicated on a small number of physically separate 

machines

 If a block becomes unavailable?

① Copy read from another location transparently

② That block is also replicated from its alternative locations to other live 

machines

◼ Bring replication factor back to the desired level
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HDFS’ fsck command

 List blocks that make up each file in the filesystem

% hadoop fsck / -files -blocks
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Nodes in the HDFS

 Namenode {master}

 Datanode {worker}
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Namenode

 Manages filesystem namespace

 Maintains filesystem tree and metadata

 For all files and directories in the tree

 Information stored persistently on local disk in two files

 Namespace image and the edit log
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Tracking location of blocks comprising files

 Namenode knows about datanodes on which all blocks of a file are 

located

 The locations of the blocks are not stored persistently

 Information reconstructed from datanodes during start up
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Interacting with HDFS

 HDFS presents a POSIX-like file system interface

 Client code does not need to know about the namenode and 

datanode to function
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Datanodes

 Store and retrieve blocks

 Initiated by the client or the namenode

 Periodically reports back to the namenode with the list of blocks that 

they store
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Failure of the namenode

 Decimates the filesystem

 All files on the filesystem are lost

 No way of knowing how to reconstitute the files from the blocks
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Guarding against namenode failures

 Backup files comprising the persistent state of the filesystem 

metadata

 Hadoop can be configured so that the namenode writes its persistent state 

to multiple filesystems

◼ Writes are synchronous and atomic

 Run a secondary namenode

 Does not act as a namenode

 Periodically merges namespace image with edit log
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Secondary namenode

 Runs on a separate physical machine

 Requires as much memory as the namenode to perform the merge operation

 Keeps a copy of the merged namespace image

 Can be used if the namenode fails

 However, the secondary namenode lags the primary

 Data loss is almost certain
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SCALING THE NAMENODES

Though my soul may set in darkness, it will rise in perfect light;

I have loved the stars too fondly to be fearful of the night.

Poem: The Old Astronomer;  Sarah Williams (1837-1868)
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Too many files, not enough memory: Enter federation

 On large clusters with many files, memory is a limiting factor for 

scaling

 HDFS federation allows scaling with the addition of namenodes

 Each manages a portion of the filesystem namespace

◼ For e.g., one namenode for /user and another for /share
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HDFS Federation                                    [1/2] 

 Each namenode manages a namespace volume

 Metadata for the namespace and block pool

 Namespace volumes are independent of each other

 No communications between namenodes

 Failure of one namenode does not affect availability of another
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HDFS Federation                                     [2/2] 

 Block pool storage is not partitioned

 Datanodes register with each namenode in the cluster

 Store blocks from multiple blockpools
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Recovering from a failed namenode                         [1/2]

 Admin starts a new primary namenode

 With one of the filesystem metadata replicas

 Configure datanodes and clients to use this namenode

 New namenode unable to serve requests until:

① Namespace image is loaded into memory

② Replay of edit log is complete

③ Received enough block reports from datanodes to leave safe mode
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Recovering from a failed namenode                         [2/2]

 Recovery can be really long

 On large clusters with many files and blocks this can be about 30 minutes

 This also impacts routine maintenance
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HDFS High Availability has features to cope with this 

 Pair of namenodes in active standby configuration

 During failure of active namenode, standby takes over the servicing of 

client requests

 In 10s of seconds
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HDFS High-Availability:

Additional items to get things to work

 Namenodes use a highly-available shared storage to store the edit 

log

 Datanodes must send block reports to both namenodes

 Block mappings stored in memory not disk

 Clients must be configured to handle namenode failover
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HDFS HA: Dealing with ungraceful failovers

 Slow network or a network partition can trigger failover transition

 Previously active namenode thinks it is still the active namenode

 The HDFS HA tries to avoid this situation using fencing

 Previously active namenode should be prevented from causing corruptions
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Fencing mechanisms: To shutdown previously active 

namenode

 Kill the namenode’s process

 Revoking access to the shared storage directory

 Disabling namenode’s network port

 Using the remote management command 

 STONITH

 Use specialized power distribution unit to forcibly power down the host 

machine
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Basic Filesystem Operations

 Type hadoop fs –help to get detailed help on commands

 We are invoking Hadoop’s filesystem shell command fs which supports other 

subcommands

 Start copying a file from the local filesystem to HDFS

 % hadoop fs –copyFromLocal input/docs/quangle.txt 

      /user/tom/quangle.txt 
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Basic Filesystem Operations

 Copy file back to the local filesystem

%hadoop fs –copyToLocal /user/tom/quangle.txt 
input/docs/quangle.copy.txt

 Verify if the movement of the files have changed the files in any way

% openssl md5 quangle.txt quangle.copy.txt 
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Basic Filesystem Operations

% hadoop fs -mkdir books

% hadoop fs -ls .

Found 2 items

drwxr-xr-x - tom supergroup 0 2019-04-02 22:41 /user/tom/books

-rw-r--r-- 1 tom supergroup 118 2019-04-02 22:29 /user/tom/quangle.txt 

 Directories are treated as metadata and stored by the namenode not 

the datanodes
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Hadoop filesystems

 Hadoop has an abstract notion of filesystem

 HDFS is just one implementation

 Others include HAR, KFS (Cloud Store), S3 (native and block-based)

 Uses URI scheme to pick correct filesystem instance to communicate with

% hadoop fs –ls  file:// to communicate with local file system
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Interacting with the filesystem

 Hadoop has a FileSystem class

 HDFS implementation is accessible through the 

DistributedFileSystem

 Write your code against the FileSystem class for maximum portability
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Reading data from a Hadoop URL

InputStream in = null;

try {

    in = new URL("hdfs://host/path").openStream();

    // process in

} finally {

    IOUtils.closeStream(in);

}
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Make Java recognize Hadoop’s URL scheme

 Call setURLStreamHandlerFactory() on URL with an instance 

of FsURLStreamHandlerFactory

 Can only be called once per JVM, so it is typically executed in a static 

block
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Displaying files from a Hadoop filesystem

public class URLCat {

  static {

       URL.setURLStreamHandlerFactory(

                      new FsUrlStreamHandlerFactory());

  }

 

 public static void main(String[] args) throws Exception {

    InputStream in = null;

    try {

       in = new URL(args[0]).openStream();

       IOUtils.copyBytes(in, System.out, 4096, false);

    } finally {

      IOUtils.closeStream(in);

    }

 }

}

Buffer size used 

for copying

Close streams after

copying is complete?
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A sample run of the URLCat 

% hadoop URLCat hdfs://localhost/user/tom/quangle.txt

On the top of the Crumpetty Tree
The Quangle Wangle sat,
But his face you could not see,
On account of his Beaver Hat.
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The contents of this slide set are based on the 

following references

 Tom White. Hadoop: The Definitive Guide. 3rd Edition. Early Access Release. O’Reilly 

Press. ISBN: 978-1-449-31152-0. Chapters [2 and 3]. 
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