
COMPUTER SCIENCE DEPARTMENT

CSX55: DISTRIBUTED SYSTEMS [HDFS]

Shrideep Pallickara

Computer Science

Colorado State University

HDFS: When to federate and replicate

A namenode often becomes

 The pinch of the hourglass

 To alleviate federate

To cope with failures

 And other erratic behaviors

 Have a hot standby replicate

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.2

Frequently asked questions from the previous class

survey

 What is used more often strobes or pings?

 Does failure of namenode in HDFS Federation result in loss of data?

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.3

Topics covered in today’s lecture

 HDFS

 Federation (wrap-up)

 High availability

 Reading/writing data

COMPUTER SCIENCE DEPARTMENT

HDFS FEDERATION (WRAP-UP) & HIGH AVAILABILITY

“I am pleased to see that we have

differences. May we together become

greater than the sum of both of us.”

 –Surak, Vulcan Philosopher

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.5

Recovering from a failed namenode [1/2]

 Admin starts a new primary namenode

 With one of the filesystem metadata replicas

 Configure datanodes and clients to use this namenode

 The new namenode is unable to serve requests until:

① Namespace image is loaded into memory

② Replay of edit log is complete

③ Received enough block reports from datanodes to leave safe mode

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.6

Recovering from a failed namenode [2/2]

 Recovery can be really long

 On large clusters with many files and blocks this can be about 30 minutes

 This also impacts routine maintenance

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.7

HDFS High Availability has features to cope with this

 Pair of namenodes in active standby configuration

 During failure of active namenode, standby takes over the servicing of

client requests

 In 10s of seconds

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.8

HDFS High-Availability:

Additional items to get things to work

 Namenodes use a highly-available shared storage to store the edit

log

 Datanodes must send block reports to both namenodes

 Block mappings stored in memory not disk

 Clients must be configured to handle namenode failover

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.9

HDFS HA: Dealing with ungraceful failovers

 Slow network or a network partition can trigger failover transition

 Previously active namenode thinks it is still the active namenode

 The HDFS HA tries to avoid this situation using fencing

 Previously active namenode should be prevented from causing corruptions

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.10

Fencing mechanisms: To shutdown previously active

namenode

 Kill the namenode’s process

 Revoking access to the shared storage directory

 Disabling namenode’s network port

 Using the remote management command

 STONITH

 Use specialized power distribution unit to forcibly power down the host

machine

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.11

Basic Filesystem Operations

 Type hadoop fs –help to get detailed help on commands

 We are invoking Hadoop’s filesystem shell command fs which supports other

subcommands

 Start copying a file from the local filesystem to HDFS

 % hadoop fs –copyFromLocal input/docs/quangle.txt

 /user/tom/quangle.txt

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.12

Basic Filesystem Operations

 Copy file back to the local filesystem

%hadoop fs –copyToLocal /user/tom/quangle.txt
input/docs/quangle.copy.txt

 Verify if the movement of the files have changed the files in any way

% openssl md5 quangle.txt quangle.copy.txt

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.13

Basic Filesystem Operations

% hadoop fs -mkdir books

% hadoop fs -ls .

Found 2 items

drwxr-xr-x - tom supergroup 0 2019-04-02 22:41 /user/tom/books

-rw-r--r-- 1 tom supergroup 118 2019-04-02 22:29 /user/tom/quangle.txt

 Directories are treated as metadata and stored by the namenode not

the datanodes

COMPUTER SCIENCE DEPARTMENT

HADOOP FILE SYSTEMS

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.15

Hadoop filesystems

 Hadoop has an abstract notion of filesystem

 HDFS is just one implementation

 Others include HAR, KFS (Cloud Store), S3 (native and block-based)

 Uses URI scheme to pick correct filesystem instance to communicate with

% hadoop fs –ls file:// to communicate with local file system

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.16

Interacting with the filesystem

 Hadoop has a FileSystem class

 HDFS implementation is accessible through the

DistributedFileSystem

 Write your code against the FileSystem class for maximum portability

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.17

URI and URLs

 A URI (Uniform Resource Identifier) is a string that uniquely identifies a

resource

 Anything that can be named or addressed … on the internet or within a system.

 A URL (Uniform Resource Locator) is a specific type of URI that not only

identifies a resource

 But also provides a way to locate it by describing how to access it (e.g., protocol,

domain, path).

 In summary:

 URI = identifier

 URL = identifier + address

hdfs:// for HDFS

s3a:// for Amazon S3

abfs:// for Azure Blob Storage

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.18

Reading data from a Hadoop URL

InputStream in = null;

try {

 in = new URL("hdfs://host/path").openStream();

 // process in

} finally {

 IOUtils.closeStream(in);

}

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.19

Make Java recognize Hadoop’s URL scheme

 Call setURLStreamHandlerFactory() on URL with an instance of
FsURLStreamHandlerFactory

 Can only be called once per JVM, so it is typically executed in a static

block

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.20

Displaying files from a Hadoop filesystem

public class URLCat {

 static {

 URL.setURLStreamHandlerFactory(

 new FsUrlStreamHandlerFactory());

 }

 public static void main(String[] args) throws Exception {

 InputStream in = null;

 try {

 in = new URL(args[0]).openStream();

 IOUtils.copyBytes(in, System.out, 4096, false);

 } finally {

 IOUtils.closeStream(in);

 }

 }

}

Buffer size used

for copying

Close streams after

copying is complete?

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.21

A sample run of the URLCat

% hadoop URLCat hdfs://localhost/user/tom/quangle.txt

On the top of the Crumpetty Tree
The Quangle Wangle sat,
But his face you could not see,
On account of his Beaver Hat.

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.22

Using the FileSystem API

 A file on the Hadoop filesystem is represented by a Hadoop Path

object

 Not the java.io.File object

 Path has a Hadoop filesystem URI

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.23

Retrieving an instance of the FileSystem

 public static FileSystem

 get(Configuration conf) throws IOException

 Configuration encapsulates client or server’s configuration conf/core-
site.xml

 public static FileSystem

 get(URI uri, Configuration conf)

 throws IOException

 URI scheme identifies the filesystem to use

 public static FileSystem

 get(URI uri, Configuration conf,

 String user) throws IOException

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.24

With a FileSystem instance in hand: Retrieving the

input stream for a file

 public FSDataInputStream

 open(Path f) throws IOException

 public FSDataInputStream

 open(Path f, int bufferSize)

 throws IOException

 FSDataInputStream is a specialization of the java.io.DataInputStream

 Also implements the Seekable interface

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.25

Displaying files using the FileSystem directly

public class FileSystemCat {

 public static void main(String[] args) throws Exception {

 String uri = args[0];

 Configuration conf = new Configuration();

 FileSystem fs = FileSystem.get(URI.create(uri), conf);

 InputStream in = null;

 try {

 in = fs.open(new Path(uri));

 IOUtils.copyBytes(in, System.out, 4096, false);

 } finally {

 IOUtils.closeStream(in);

 }

 }

}

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.26

The execution of the program

% hadoop FileSystemCat hdfs://localhost/user/tom/quangle.txt

On the top of the Crumpetty Tree
The Quangle Wangle sat,
But his face you could not see,
On account of his Beaver Hat.

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.27

Writing Data

 Creation of a file

public FSDataOutputStream create(Path f) throws

IOException

 Other versions of this method allow specification of

 Overwriting existing files

 Replication factor for the file

 Buffer size to use

 Block size

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.28

Alternatively, you can append to an existing file

public FSDataOutputStream

append(Path f) throws IOException

 Allows a single writer to modify an already written file

 Open it and write data starting at the final offset

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.29

FSDataOutputStream

 Unlike FSDataInputStream, this output stream does not permit

seeking

 Only sequential writes or appends to a file are allowed

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.30

Copying a local file to a Hadoop filesystem

public class FileCopyWithProgress {

 public static void main(String[] args) throws Exception {

 String localSrc = args[0];

 String dst = args[1];

 InputStream in =

 new BufferedInputStream(new FileInputStream(localSrc));

 Configuration conf = new Configuration();

 FileSystem fs = FileSystem.get(URI.create(dst), conf);

 OutputStream out = fs.create(new Path(dst),

 new Progressable() {

 public void progress() {

 System.out.print(".");

 }

 });

 IOUtils.copyBytes(in, out, 4096, true);

 }

}

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.31

Directories

 FileSystem supports creation of directories

public boolean mkdirs(Path f)

throws IOException

 Creates all necessary parent directories

 Writing a file by calling create(), automatically creates directories

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.32

FileStatus

 Encapsulates file system metadata for files and directories

 Includes:

 File length

 Block size

 Replication

 Modification time

 Ownership and permission information

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.33

But we often need to list status of multiple files …

 public FileStatus[] listStatus(Path f)

 throws IOException

 public FileStatus[]

 listStatus(Path f, PathFilter filter)

 throws IOException

 public FileStatus[] listStatus(Path[] files)

 throws IOException

 public FileStatus[]

 listStatus(Path[] files, PathFilter filter)

 throws IOException

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.34

File patterns

 Rather than enumerating each file and directory it is convenient to use
wildcards

 Match multiple files with a single expression

◼Globbing

 FileSystem methods for processing globs
 public FileStatus[] globStatus(Path pathPattern)

 throws IOException

 public FileStatus[]

 globStatus(Path pathPattern,

 PathFilter filter)

throws IOException

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.35

Hadoop provides the same glob support as UNIX

Glob Name Matches

* asterisk Matches zero or more characters

? question mark Matches a single character

[ab] character class Matches a single character in the set {a, b}

[^ab] negated

character class

Matches a single character that is not in the set {a, b}

[a-b] character range Matches a single character in the (closed) range [a, b],

where a is lexicographically less than or equal to b

[^a-b] negated

character range

Matches a single character that is not in the (closed) range

[a, b], where a is

lexicographically less than or equal to b

{a,b} alternation Matches either expression a or b

\c Escaped

character

Matches character c when it is a metacharacter

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.36

Looking at an example [1/2]

 /2007/12/30

 /2007/12/31

 /2008/01/01

 /2008/01/02

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.37

Looking at an example [2/2]

 /* /2007 /2008

 /*/* /2007/12 /2008/01

 /*/12/* /2007/12/30 /2007/12/31

 /200? /2007 /2008

 /200[78] /2007 /2008

 /200[7-8] /2007 /2008

 /200[^01234569] /2007 /2008

 /*/*/{31,01} /2007/12/31 /2008/01/01

 /*/*/3{0,1} /2007/12/30 /2007/12/31

 /*/{12/31,01/01} /2007/12/31 /2008/01/01

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.38

Deleting data

 Use the delete() method on FileSystem

 public boolean

 delete(Path f, boolean recursive)

 throws IOException

 If f is a file or an empty directory then recursive is ignored.

 Recursive deletion of directories happens only if recursive is true

COMPUTER SCIENCE DEPARTMENT

DATA FLOW IN HDFS

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.40

Data flow in HDFS [read]

HDFS
Client

Distributed
File System

FSData
InputStream

NameNode

DataNode DataNode DataNode

1: open
2: get block locations

3: read

4: read
5: read

6:close

Client JVM

namenode

datanode datanode datanode

client node

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.41

Reading data

 FSDataInputStream wraps a DFSInputStream

 DFSInputStream manages I/O with the datanode and namenode

 DFSInputStream stores datanode addresses for the first few

blocks

 Namenode returns addresses of datanodes that have a copy of that block

 Datanodes are sorted according to their proximity to the client

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.42

Reading data

 Blocks are read in order

 DFSInputStream opens new connections to datanodes as the

client reads through the stream

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.43

Network topology and Hadoop

 What does two nodes being close mean?

 For high-volume data processing:

 Limiting factor is the rate at which data transfers take place

 Use bandwidth between the nodes as a measure of distance

 Measuring bandwidth between nodes difficult

 Number of pairs of nodes in a cluster grows as a square of the number of

nodes

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.44

Measuring network distances in Hadoop

 Network is represented as a tree

 The distance between the nodes is the sum of their distances to its

closest common ancestor

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.45

Bandwidth available for the following scenarios gets

progressively less

 Processes on the same node

 Different nodes on the same rack

 Nodes on different racks in the same data center

 Nodes in different data centers

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.46

Distance notation

 A node n1 on rack r1 in data center d1 is represented as /d1/r1/n1

 Distances in the four possible scenarios

▪ distance(/d1/r1/n1, /d1/r1/n1) = 0

◼ Processes on the same node

▪ distance(/d1/r1/n1, /d1/r1/n2) = 2

◼ Different nodes on the same rack

▪ distance(/d1/r1/n1, /d1/r2/n3) = 4

◼ Nodes on different racks in the same data center

▪ distance(/d1/r1/n1, /d2/r3/n4) = 6

◼ Nodes in different data centers

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.47

Network topology and distances

 Hadoop does not divine network topology

 Needs assists for doing so

COMPUTER SCIENCE DEPARTMENT

HDFS: WRITING DATA

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.49

File writes

 We will look at creating a new file and writing data to it

 File creation is done using create() on

DistributedFileSystem

 DistributedFileSystem does an RPC to the namenode

 Namenode checks existence of file and permissions

 Creates file in the filesystem’s namespace with no blocks in it

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.50

Data flow in HDFS [writes]

HDFS
Client

Distributed
File System

FSData
OutputStream

NameNode

DataNode DataNode DataNode

1: create
2: create

3: write

4: write packet 5: ack packet

6:close

Client JVM

namenode

datanode datanode datanode

client node

4

5

4

5

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.51

Anatomy of a file write

 DistributedFileSystem returns an FSDataOutputStream

for client to write data to

 FSDataOutputStream wraps a DFSOutputStream

 DFSOutputStream handles communications with the datanodes and the

namenode

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.52

As the client writes data …

 DFSOutputStream splits it into packets

 Written to an internal queue, the data queue

 Data queue is consumed by the DataStreamer

 DataStreamer asks namenode to allocate new blocks

 Pick list of suitable datanodes to store replicas

 List of datanodes forms a pipeline

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.53

Assuming a replication level of 3

 DataStreamer streams packets to the first datanode in the pipeline

 1st datanode stores the packet and forwards it to the 2nd datanode in

pipeline

 The second datanode stores the packet and forwards it to the 3rd (and

last) datanode in pipeline

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.54

Managing acknowledgements

 DFSOutputStream maintains an internal queue of packets waiting

to be ACKed by datanodes

 This is the ack queue

 When is a packet removed from the ACK queue?

 Only when it has been acknowledged by all the datanodes in the pipeline

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.55

Handling datanode failures during writes [1/2]

 The pipeline is closed

 Current block on good datanodes is given a new identity

 Allows partial block on failed node to be deleted if that datanode recovers

later on

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.56

Handling datanode failures during writes [2/2]

 Failed datanode is removed from the pipeline

 Remainder of the block’s data is written to the two good datanodes in

the pipeline

 Namenode notices block is under-replicated

 Arranges for replicas to be created on another node

 Subsequent blocks are treated as normal

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.57

It is possible that multiple datanodes fail while a

block is being written

 As long as dfs.replication.min (default 1) replicas are written,

the write will succeed

 Block is asynchronously replicated across cluster until its target

replication factor is reached

 dfs.replication (default 3)

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.58

When a client has finished writing data

 It calls close() on the stream

 Flushes all remaining packets to the datanode pipeline

 Wait for acknowledgements before contacting the namenode to signal that

file is complete

 Namenode knows about blocks that comprise the file

 DataStreamer requests block allocations

 Client only waits for blocks to be minimally replicated

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.59

The contents of this slide set are based on the

following references

 Tom White. Hadoop: The Definitive Guide. 3rd Edition. Early Access Release. O’Reilly

Press. ISBN: 978-1-449-31152-0. Chapters [2 and 3].

	Slide 1: CSx55: Distributed Systems [HDFS]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in today’s lecture
	Slide 4: HDFS Federation (wrap-up) & High Availability
	Slide 5: Recovering from a failed namenode [1/2]
	Slide 6: Recovering from a failed namenode [2/2]
	Slide 7: HDFS High Availability has features to cope with this
	Slide 8: HDFS High-Availability: Additional items to get things to work
	Slide 9: HDFS HA: Dealing with ungraceful failovers
	Slide 10: Fencing mechanisms: To shutdown previously active namenode
	Slide 11: Basic Filesystem Operations
	Slide 12: Basic Filesystem Operations
	Slide 13: Basic Filesystem Operations
	Slide 14: Hadoop File Systems
	Slide 15: Hadoop filesystems
	Slide 16: Interacting with the filesystem
	Slide 17: URI and URLs
	Slide 18: Reading data from a Hadoop URL
	Slide 19: Make Java recognize Hadoop’s URL scheme
	Slide 20: Displaying files from a Hadoop filesystem
	Slide 21: A sample run of the URLCat
	Slide 22: Using the FileSystem API
	Slide 23: Retrieving an instance of the FileSystem
	Slide 24: With a FileSystem instance in hand: Retrieving the input stream for a file
	Slide 25: Displaying files using the FileSystem directly
	Slide 26: The execution of the program
	Slide 27: Writing Data
	Slide 28: Alternatively, you can append to an existing file
	Slide 29: FSDataOutputStream
	Slide 30: Copying a local file to a Hadoop filesystem
	Slide 31: Directories
	Slide 32: FileStatus
	Slide 33: But we often need to list status of multiple files …
	Slide 34: File patterns
	Slide 35: Hadoop provides the same glob support as UNIX
	Slide 36: Looking at an example [1/2]
	Slide 37: Looking at an example [2/2]
	Slide 38: Deleting data
	Slide 39: Data flow in HDFS
	Slide 40: Data flow in HDFS [read]
	Slide 41: Reading data
	Slide 42: Reading data
	Slide 43: Network topology and Hadoop
	Slide 44: Measuring network distances in Hadoop
	Slide 45: Bandwidth available for the following scenarios gets progressively less
	Slide 46: Distance notation
	Slide 47: Network topology and distances
	Slide 48: HDFS: Writing Data
	Slide 49: File writes
	Slide 50: Data flow in HDFS [writes]
	Slide 51: Anatomy of a file write
	Slide 52: As the client writes data …
	Slide 53: Assuming a replication level of 3
	Slide 54: Managing acknowledgements
	Slide 55: Handling datanode failures during writes [1/2]
	Slide 56: Handling datanode failures during writes [2/2]
	Slide 57: It is possible that multiple datanodes fail while a block is being written
	Slide 58: When a client has finished writing data
	Slide 59: The contents of this slide set are based on the following references

