CSXx55: DISTRIBUTED SYSTEMS [HDFS]

HDFS: When to federate and replicate

A namenode often becomes
The pinch of the hourglass

To alleviate federate

To cope with failures
And other erratic behaviors

Have a hot standby replicate

Shrideep Pallickara
Computer Science
Colorado State University

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

Frequently asked questions from the previous class

survey
N

7 What is used more often strobes or pings?

1 Does failure of namenode in HDFS Federation result in loss of data?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.2

Topics covered in today’s lecture

I i
o HDFS
o1 Federation (wrap-up)
o High availability
o1 Reading /writing data

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.3

HDFS FEDERATION (WRAP-UP) & HIGH AVAILABILITY

'ﬁr\nfple 1=e ‘see *rhcﬁ we have -
‘ 'Mﬁeerenges qu we fqge’rher become
D71 1\ g?ea’rer than the sum of both of us.”
;\ =Surak, Yulcan Philosopher

.

Recovering from a failed namenode [1/2]

Admin starts a new primary namenode
With one of the filesystem metadata replicas

Configure datanodes and clients to use this namenode

The new namenode is unable to serve requests until:
(1) Namespace image is loaded infto memory

(2) Replay of edit log is complete

(3) Received enough block reports from datanodes to leave safe mode

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.5

Recovering from a failed namenode [2/2]

Recovery can be really long

On large clusters with many files and blocks this can be about 30 minutes

This also impacts routine maintenance

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.6

HDFS High Availability has features to cope with this

Pair of namenodes in active standby configuration

During failure of active namenode, standby takes over the servicing of
client requests

In 10s of seconds

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.7

HDFS High-Availability:
Additional items to get things to work

Namenodes use a highly-available shared storage to store the edit
log

Datanodes must send block reports to both namenodes

Block mappings stored in memory not disk

Clients must be configured to handle namenode failover

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.8

HDFS HA: Dealing with ungraceful failovers

Slow network or a network partition can trigger failover transition

Previously active namenode thinks it is still the active namenode

The HDFS HA tries to avoid this situation using fencing

Previously active namenode should be prevented from causing corruptions

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.9

Fencing mechanisms: To shutdown previously active
namenode

Kill the namenode’s process
Revoking access to the shared storage directory

Disabling namenode’s network port

Using the remote management command

STONITH

Use specialized power distribution unit to forcibly power down the host
machine

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.10

Basic Filesystem Operations

Type hadoop fs —help to get detailed help on commands

We are invoking Hadoop’s filesystem shell command fs which supports other
subcommands

Start copying a file from the local filesystem to HDFS

% hadoop fs —copyFromLocal input/docs/quangle.txt
Juser/tom/quangle.txt

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.11

Basic Filesystem Operations

Copy file back to the local filesystem

%hadoop fs —copyToLocal /user/tom/quangle.txt
input/docs/quangle.copy.txt

Verify if the movement of the files have changed the files in any way

% openssl md5 quangle.txt quangle.copy.txt

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.12

Basic Filesystem Operations

% hadoop fs -mkdir books

% hadoop fs -Is .

Found 2 items
drwxr-xr-x - tom supergroup 0 2019-04-02 22:41 /user/tom/books
-rw-r--r-- 1 tom supergroup 118 2019-04-02 22:29 /user/tom/quangle.txt

Directories are treated as metadata and stored by the namenode not

the datanodes

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.13

HADOOP FILE SYSTEMS

COMPUTER SCIENCE DEPARTMENT (®%%) COLORADO STATE UNIVERSITY

Hadoop filesystems

Hadoop has an abstract notion of filesystem

HDFS is just one implementation
Others include HAR, KFS (Cloud Store), S3 (native and block-based)

Uses URI scheme to pick correct filesystem instance to communicate with

% hadoop fs —Is file:// to communicate with local file system

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.15

Interacting with the filesystem

Hadoop has a FileSystem class

HDFS implementation is accessible through the
DistributedFileSystem

Write your code against the FileSystem class for maximum portability

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.16

URI and URLs

A URI (Uniform Resource ldentifier) is a string that uniquely identifies a
resource

Anything that can be named or addressed ... on the internet or within a system.

A URL (Uniform Resource Locator) is a specific type of URI that not only
identifies a resource

But also provides a way to locate it by describing how to access it (e.g., protocol,
domain, path).

In summary: hdfs:// for HDFS
URI = identifier s3a:// for Amazon S3

abfs:// for Azure Blob Storage
URL = identifier + address

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY 5uPUTER SCIENCE DEPARTMENT HDFS 125.17

Reading data from a Hadoop URL
N

InputStream in = null;

try {
in = new URL("hdfs://host/path") .openStream() ;
// process in

} finally {
TOUtils.closeStream(1in) ;

}

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.18

Make Java recognize Hadoop’s URL scheme
—

1 Call setURLStreamHandlerFactory () on URL with an instance of
FsURLStreamHandlerFactory

1 Can only be called once per JVM, so it is typically executed in a static
block

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.19

Displaying files from a Hadoop filesystem

public class URLCat {
static {
URL.setURLStreamHandlerFactory (

new FsUrlStreamHandlerFactory());

public static void main(String[] args) throws Exception {

InputStream in = null;
try {
in = new URL(args[0]) .openStream()

IOUtils.copyBytes (in, System.out, 4096,
} finally {
IOUtils.closeStream(in) ;

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

false);

C__

HDFS

Buffer size used
for copying

Close streams after
copying is complete?

125.20

A sample run of the URLCat
—

% hadoop URLCat hdfs://localhost/user/tom/quangle.txt

On the top of the Crumpetty Tree
The Quangle Wangle sat,

But his face you could not see,
On account of his Beaver Hat.

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.21

Using the FileSystem API

A file on the Hadoop filesystem is represented by a Hadoop Path
object

Not the java.io.File object

Path has a Hadoop filesystem URI

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.22

Retrieving an instance of the FileSystem

public static FileSystem
get (Configuration conf) throws IOException

Configuration encapsulates client or server’s configuration conf/core-
site.xml

public static FileSystem
get (URI uri, Configuration conf)
throws IOException

URI scheme identifies the filesystem to use

public static FileSystem
get (URI uri, Configuration conf,
String user) throws IOException

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.23

With a FileSystem instance in hand: Retrieving the

input stream for a file
——

0 public FSDatalnputStream
open (Path f) throws IOException

0 public FSDatalInputStream
open (Path f, int bufferSize)
throws IOException

0 FSDataInputStream is a specialization of the java.io.DataInputStream

Also implements the Seekable interface

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.24

Displaying files using the FileSystem directly

_
public class FileSystemCat {

public static void main(String[] args) throws Exception {
String uri = args[0];
Configuration conf = new Configuration ()
FileSystem fs = FileSystem.get (URI.create(uri), conf);
InputStream in = null;
try {

in = fs.open(new Path(uri));

I0OUt1ils
} finally
TOUt1ls

COLORADO STATE UNIVERSITY

.copyBytes (1n, System.out, 4096, false);
{

.closeStream(in) ;

Professor: SHRIDEEP PALLICKARA
COMPUTER SCIENCE DEPARTMENT HDFS 1.25.25

The execution of the program
—

% hadoop FileSystemCat hdfs://localhost/user/tom/quangle.txt

On the top of the Crumpetty Tree
The Quangle Wangle sat,

But his face you could not see,
On account of his Beaver Hat.

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.26

Writing Data

Creation of a file

public FSDataOutputStream create (Path f) throws
TOException

Other versions of this method allow specification of
Overwriting existing files
Replication factor for the file
Buffer size to use

Block size

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.27

Alternatively, you can append to an existing file

public FSDataOutputStream
append (Path f) throws IOException

7 Allows a single writer to modify an already written file

Open it and write data starting at the final offset

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.28

FSDataOutputStream

Unlike FSDataInputStream, this output stream does not permit
seeking

Only sequential writes or appends to a file are allowed

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.29

Copying a local file to a Hadoop filesystem
—

public class FileCopyWithProgress {
public static void main(String[] args) throws Exception {
String localSrc = args[0];
String dst = args[1l];
InputStream in =
new BufferedInputStream(new FileInputStream(localSrc));

Configuration conf = new Configuration () ;
FileSystem fs = FileSystem.get (URI.create(dst), conf);
OutputStream out = fs.create(new Path(dst),
new Progressable() {
public void progress () {
System.out.print (".");

b) g
TOUtils.copyBytes (in, out, 4096, true);

}

Professor: SHRIDEEP PALLICKARA
IZ:EILIIIRAIJEE STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.30

Directories

F'ileSystem supports creation of directories

public boolean mkdirs (Path f)
throws IOException

Creates all necessary parent directories

Writing a file by calling create (), automatically creates directories

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.31

FileStatus

Encapsulates file system metadata for files and directories

Includes:
File length
Block size
Replication
Modification time

Ownership and permission information

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.32

public FileStatus[] listStatus (Path f)
throws IOException

public FileStatus]|]
listStatus (Path f, PathFilter filter)
throws IOException

public FileStatus[] listStatus (Path[] files)
throws IOException

public FileStatus/|]
listStatus (Path[] files, PathFilter filter)
throws IOException

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY 5uPUTER SCIENCE DEPARTMENT HDFS

But we often need to list status of multiple files ...

125.33

File patterns

Rather than enumerating each file and directory it is convenient to use
wildcards

Match multiple files with a single expression

Globbing

F'ileSystem methods for processing globs

public FileStatus|[] globStatus (Path pathPattern)
throws IOException

public FileStatus/|]
globStatus (Path pathPattern,
PathFilter filter)

throws IOException

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.34

Hadoop provides the same glob support as UNIX

Glob

2
2
[ab]
[Mab]

[a-b]

["a-b]

{a,b}
\c

Name
asterisk
question mark
character class

negated
character class

character range

negated
character range

alternation

Escaped
character

Matches

Matches zero or more characters

Matches a single character

Matches a single character in the set {a, b}

Matches a single character that is not in the set {a, b}

Matches a single character in the (closed) range [a, b],
where a is lexicographically less than or equal to b

Matches a single character that is not in the (closed) range
[a, b], where a is
lexicographically less than or equal to b

Matches either expression a or b

Matches character ¢ when it is a metacharacter

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

HDFS

125.35

Looking at an example [1/2]
B
- /2007/12/30
- /2007/12/31
- /2008/01/01
- /2008/01/02

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.36

Looking at an example [2/2]

/3 /2007 /2008

/3 /% /2007/12 /2008/01
vy /2007/12/30 /2007/12/31
/2002 /2007 /2008

/200[78] /2007 /2008

/200[7-8] /2007 /2008
/200[01234569] /2007 /2008

/% /% /131,01) /2007/12/31 /2008/01/01
/% /% /3{0,1} /2007/12/30 /2007/12/31
/*%/{12/31,01/01} /2007/12/31 /2008/01/01

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.37

Deleting data

Use the delete () method on FileSystem

public boolean
delete (Path f, boolean recursive)
throws IOException

If £is afile or an empty directory then recursive is ignored.

Recursive deletion of directories happens only if recursive is true

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.38

DATA FLOW IN HDFS

COMPUTER SCIENCE DEPARTMENT (®%%) COLORADO STATE UNIVERSITY

Data flow in HDFS [read]

R V-,

et block locatio

|

Client JVM
client node

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.40

Reading data

FSDatalnputStream wraps a DESInputStream

DFSInputStream manages | /O with the datanode and namenode

DFSInputStream stores datanode addresses for the first few
blocks

Namenode returns addresses of datanodes that have a copy of that block

Datanodes are sorted according to their proximity to the client

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.41

Reading data
—

1 Blocks are read in order

0 DEFSInputStream opens new connections to datanodes as the
client reads through the stream

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.42

Network topology and Hadoop

What does two nodes being close mean?

For high-volume data processing:
Limiting factor is the rate at which data fransfers take place

Use bandwidth between the nodes as a measure of distance

Measuring bandwidth between nodes difficult

Number of pairs of nodes in a cluster grows as a square of the number of
nodes

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.43

Measuring network distances in Hadoop
=

1 Network is represented as a tree

1 The distance between the nodes is the sum of their distances to its
closest common ancestor

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.44

Bandwidth available for the following scenarios gets

progressively less
=

1 Processes on the same node
1 Different nodes on the same rack

1 Nodes on different racks in the same data center

1 Nodes in different data centers

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.45

Distance notation

A node nl on rack 7/ in data center d/ is represented as /d1/ri/nl

Distances in the four possible scenarios
distance(/d1l/ri/nl, /d1/ri/ml) =0

Processes on the same node

distance(/dl/ri/nl, /d1/ri/m2) =2

Different nodes on the same rack

distance(/d1/ri/nl, /d1/r2/n3) =4

Nodes on different racks in the same data center

distance(/d1/ri/nl, /d2/r3/n4) = 6

Nodes in different data centers

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.46

Network topology and distances

I ==
7 Hadoop does not divine network topology

1 Needs assists for doing so

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.47

RITING DATA

File writes

We will look at creating a new file and writing data to it

File creation is done using create () on
DistributedFileSystem

DistributedFileSystem does an RPC to the namenode

Namenode checks existence of file and permissions

Creates file in the filesystem’s namespace with no blocks in it

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.49

Data flow in HDFS [writes]

2. create

Client JVM
client node

4: write packet 5: ack packet

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.50

Anatomy of a file write

DistributedFileSystemreturns an FSDataOutputStream
for client to write data to

FSDataOutputStream wraps a DESOutputStream

DESOutputStream handles communications with the datanodes and the
namenode

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.51

As the client writes data ...

DEFSOutputStream splits it into packets

Written to an internal queue, the data queue

Data queue is consumed by the DataStreamer

DataStreamer asks namenode to allocate new blocks
Pick list of suitable datanodes to store replicas

List of datanodes forms a pipeline

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.52

Assuming a replication level of 3

DataStreamer streams packets to the first datanode in the pipeline

15" datanode stores the packet and forwards it to the 2" datanode in
pipeline

The second datanode stores the packet and forwards it to the 3@ (and
last) datanode in pipeline

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.53

Managing acknowledgements

DESOutputStream maintains an internal queuve of packets waiting
to be ACKed by datanodes

This is the ack queuve

When is a packet removed from the ACK queue?
Only when it has been acknowledged by all the datanodes in the pipeline

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.54

Handling datanode failures during writes [1/2]
—

71 The pipeline is closed

-1 Current block on good datanodes is given a new identity

Allows partial block on failed node to be deleted if that datanode recovers
later on

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.55

Handling datanode failures during writes [2/2]

Failed datanode is removed from the pipeline

Remainder of the block’s data is written to the two good datanodes in
the pipeline

Namenode notices block is under-replicated

Arranges for replicas to be created on another node

Subsequent blocks are treated as normal

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.56

It is possible that multiple datanodes fail while a
block is being written

As long as dfs.replication.min (default 1) replicas are written,
the write will succeed

Block is asynchronously replicated across cluster until its target
replication factor is reached

dfs.replication (default 3)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.57

When a client has finished writing data

It calls close () on the stream

Flushes all remaining packets to the datanode pipeline

Wait for acknowledgements before contacting the namenode to signal that
file is complete

Namenode knows about blocks that comprise the file
DataStreamer requests block allocations

Client only waits for blocks to be minimally replicated

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.58

The contents of this slide set are based on the

following references
——

o1 Tom White. Hadoop: The Definitive Guide. 3™ Edition. Early Access Release. O’Reilly
Press. ISBN: 978-1-449-31152-0. Chapters [2 and 3].

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.59

	Slide 1: CSx55: Distributed Systems [HDFS]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in today’s lecture
	Slide 4: HDFS Federation (wrap-up) & High Availability
	Slide 5: Recovering from a failed namenode [1/2]
	Slide 6: Recovering from a failed namenode [2/2]
	Slide 7: HDFS High Availability has features to cope with this
	Slide 8: HDFS High-Availability: Additional items to get things to work
	Slide 9: HDFS HA: Dealing with ungraceful failovers
	Slide 10: Fencing mechanisms: To shutdown previously active namenode
	Slide 11: Basic Filesystem Operations
	Slide 12: Basic Filesystem Operations
	Slide 13: Basic Filesystem Operations
	Slide 14: Hadoop File Systems
	Slide 15: Hadoop filesystems
	Slide 16: Interacting with the filesystem
	Slide 17: URI and URLs
	Slide 18: Reading data from a Hadoop URL
	Slide 19: Make Java recognize Hadoop’s URL scheme
	Slide 20: Displaying files from a Hadoop filesystem
	Slide 21: A sample run of the URLCat
	Slide 22: Using the FileSystem API
	Slide 23: Retrieving an instance of the FileSystem
	Slide 24: With a FileSystem instance in hand: Retrieving the input stream for a file
	Slide 25: Displaying files using the FileSystem directly
	Slide 26: The execution of the program
	Slide 27: Writing Data
	Slide 28: Alternatively, you can append to an existing file
	Slide 29: FSDataOutputStream
	Slide 30: Copying a local file to a Hadoop filesystem
	Slide 31: Directories
	Slide 32: FileStatus
	Slide 33: But we often need to list status of multiple files …
	Slide 34: File patterns
	Slide 35: Hadoop provides the same glob support as UNIX
	Slide 36: Looking at an example [1/2]
	Slide 37: Looking at an example [2/2]
	Slide 38: Deleting data
	Slide 39: Data flow in HDFS
	Slide 40: Data flow in HDFS [read]
	Slide 41: Reading data
	Slide 42: Reading data
	Slide 43: Network topology and Hadoop
	Slide 44: Measuring network distances in Hadoop
	Slide 45: Bandwidth available for the following scenarios gets progressively less
	Slide 46: Distance notation
	Slide 47: Network topology and distances
	Slide 48: HDFS: Writing Data
	Slide 49: File writes
	Slide 50: Data flow in HDFS [writes]
	Slide 51: Anatomy of a file write
	Slide 52: As the client writes data …
	Slide 53: Assuming a replication level of 3
	Slide 54: Managing acknowledgements
	Slide 55: Handling datanode failures during writes [1/2]
	Slide 56: Handling datanode failures during writes [2/2]
	Slide 57: It is possible that multiple datanodes fail while a block is being written
	Slide 58: When a client has finished writing data
	Slide 59: The contents of this slide set are based on the following references

