CSXx55: DISTRIBUTED SYSTEMS [HDFS]

HDFS: When to federate and replicate

A namenode often becomes
The pinch of the hourglass

To alleviate federate

To cope with failures
And other erratic behaviors

Have a hot standby replicate
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Frequently asked questions from the previous class

survey
N

7 What is used more often strobes or pings?

1 Does failure of namenode in HDFS Federation result in loss of data?
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Topics covered in today’s lecture

I i
o HDFS
o1 Federation (wrap-up)
o High availability
o1 Reading /writing data
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HDFS FEDERATION (WRAP-UP) & HIGH AVAILABILITY
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Recovering from a failed namenode [1/2]

Admin starts a new primary namenode
With one of the filesystem metadata replicas

Configure datanodes and clients to use this namenode

The new namenode is unable to serve requests until:
(1) Namespace image is loaded infto memory

(2) Replay of edit log is complete

(3) Received enough block reports from datanodes to leave safe mode
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Recovering from a failed namenode [2/2]

Recovery can be really long

On large clusters with many files and blocks this can be about 30 minutes

This also impacts routine maintenance
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HDFS High Availability has features to cope with this

Pair of namenodes in active standby configuration

During failure of active namenode, standby takes over the servicing of
client requests

In 10s of seconds
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HDFS High-Availability:
Additional items to get things to work

Namenodes use a highly-available shared storage to store the edit
log

Datanodes must send block reports to both namenodes

Block mappings stored in memory not disk

Clients must be configured to handle namenode failover
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HDFS HA: Dealing with ungraceful failovers

Slow network or a network partition can trigger failover transition

Previously active namenode thinks it is still the active namenode

The HDFS HA tries to avoid this situation using fencing

Previously active namenode should be prevented from causing corruptions
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Fencing mechanisms: To shutdown previously active
namenode

Kill the namenode’s process
Revoking access to the shared storage directory

Disabling namenode’s network port

Using the remote management command

STONITH

Use specialized power distribution unit to forcibly power down the host
machine
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Basic Filesystem Operations

Type hadoop fs —help to get detailed help on commands

We are invoking Hadoop’s filesystem shell command fs which supports other
subcommands

Start copying a file from the local filesystem to HDFS

% hadoop fs —copyFromLocal input/docs/quangle.txt
Juser/tom/quangle.txt
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Basic Filesystem Operations

Copy file back to the local filesystem

%hadoop fs —copyToLocal /user/tom/quangle.txt
input/docs/quangle.copy.txt

Verify if the movement of the files have changed the files in any way

% openssl md5 quangle.txt quangle.copy.txt
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Basic Filesystem Operations

% hadoop fs -mkdir books

% hadoop fs -Is .

Found 2 items
drwxr-xr-x - tom supergroup 0 2019-04-02 22:41 /user/tom/books
-rw-r--r-- 1 tom supergroup 118 2019-04-02 22:29 /user/tom/quangle.txt

Directories are treated as metadata and stored by the namenode not

the datanodes
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HADOOP FILE SYSTEMS
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Hadoop filesystems

Hadoop has an abstract notion of filesystem

HDFS is just one implementation
Others include HAR, KFS (Cloud Store), S3 (native and block-based)

Uses URI scheme to pick correct filesystem instance to communicate with

% hadoop fs —Is file:// to communicate with local file system
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Interacting with the filesystem

Hadoop has a FileSystem class

HDFS implementation is accessible through the
DistributedFileSystem

Write your code against the FileSystem class for maximum portability
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URI and URLs

A URI (Uniform Resource ldentifier) is a string that uniquely identifies a
resource

Anything that can be named or addressed ... on the internet or within a system.

A URL (Uniform Resource Locator) is a specific type of URI that not only
identifies a resource

But also provides a way to locate it by describing how to access it (e.g., protocol,
domain, path).

In summary: hdfs:// for HDFS
URI = identifier s3a:// for Amazon S3

abfs:// for Azure Blob Storage
URL = identifier + address
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Reading data from a Hadoop URL
N

InputStream in = null;

try {
in = new URL("hdfs://host/path") .openStream() ;
// process in

} finally {
TOUtils.closeStream(1in) ;

}
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Make Java recognize Hadoop’s URL scheme
—

1 Call setURLStreamHandlerFactory () on URL with an instance of
FsURLStreamHandlerFactory

1 Can only be called once per JVM, so it is typically executed in a static
block
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Displaying files from a Hadoop filesystem

public class URLCat {
static {
URL.setURLStreamHandlerFactory (

new FsUrlStreamHandlerFactory());

public static void main(String[] args) throws Exception {

InputStream in = null;
try {
in = new URL(args[0]) .openStream()

IOUtils.copyBytes (in, System.out, 4096,
} finally {
IOUtils.closeStream(in) ;
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for copying
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A sample run of the URLCat
—

% hadoop URLCat hdfs://localhost/user/tom/quangle.txt

On the top of the Crumpetty Tree
The Quangle Wangle sat,

But his face you could not see,
On account of his Beaver Hat.
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Using the FileSystem API

A file on the Hadoop filesystem is represented by a Hadoop Path
object

Not the java.io.File object

Path has a Hadoop filesystem URI
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Retrieving an instance of the FileSystem

public static FileSystem
get (Configuration conf) throws IOException

Configuration encapsulates client or server’s configuration conf/core-
site.xml

public static FileSystem
get (URI uri, Configuration conf)
throws IOException

URI scheme identifies the filesystem to use

public static FileSystem
get (URI uri, Configuration conf,
String user) throws IOException
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With a FileSystem instance in hand: Retrieving the

input stream for a file
——

0 public FSDatalnputStream
open (Path f) throws IOException

0 public FSDatalInputStream
open (Path f, int bufferSize)
throws IOException

0 FSDataInputStream is a specialization of the java.io.DataInputStream

Also implements the Seekable interface
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Displaying files using the FileSystem directly

_
public class FileSystemCat {

public static void main(String[] args) throws Exception {
String uri = args[0];
Configuration conf = new Configuration ()
FileSystem fs = FileSystem.get (URI.create(uri), conf);
InputStream in = null;
try {

in = fs.open(new Path(uri));

I0OUt1ils
} finally
TOUt1ls

COLORADO STATE UNIVERSITY

.copyBytes (1n, System.out, 4096, false);
{

.closeStream(in) ;
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The execution of the program
—

% hadoop FileSystemCat hdfs://localhost/user/tom/quangle.txt

On the top of the Crumpetty Tree
The Quangle Wangle sat,

But his face you could not see,
On account of his Beaver Hat.
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Writing Data

Creation of a file

public FSDataOutputStream create (Path f) throws
TOException

Other versions of this method allow specification of
Overwriting existing files
Replication factor for the file
Buffer size to use

Block size
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Alternatively, you can append to an existing file

public FSDataOutputStream
append (Path f) throws IOException

7 Allows a single writer to modify an already written file

Open it and write data starting at the final offset
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FSDataOutputStream

Unlike FSDataInputStream, this output stream does not permit
seeking

Only sequential writes or appends to a file are allowed
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Copying a local file to a Hadoop filesystem
—

public class FileCopyWithProgress {
public static void main(String[] args) throws Exception {
String localSrc = args[0];
String dst = args[1l];
InputStream in =
new BufferedInputStream(new FileInputStream(localSrc));

Configuration conf = new Configuration () ;
FileSystem fs = FileSystem.get (URI.create(dst), conf);
OutputStream out = fs.create(new Path(dst),
new Progressable() {
public void progress () {
System.out.print (".");

b) g
TOUtils.copyBytes (in, out, 4096, true);

}
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Directories

F'ileSystem supports creation of directories

public boolean mkdirs (Path f)
throws IOException

Creates all necessary parent directories

Writing a file by calling create (), automatically creates directories
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FileStatus

Encapsulates file system metadata for files and directories

Includes:
File length
Block size
Replication
Modification time

Ownership and permission information
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public FileStatus[] listStatus (Path f)
throws IOException

public FileStatus]|]
listStatus (Path f, PathFilter filter)
throws IOException

public FileStatus[] listStatus (Path[] files)
throws IOException

public FileStatus/|]
listStatus (Path[] files, PathFilter filter)
throws IOException
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File patterns

Rather than enumerating each file and directory it is convenient to use
wildcards

Match multiple files with a single expression

Globbing

F'ileSystem methods for processing globs

public FileStatus|[] globStatus (Path pathPattern)
throws IOException

public FileStatus/|]
globStatus (Path pathPattern,
PathFilter filter)

throws IOException
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Hadoop provides the same glob support as UNIX

Glob

2
2
[ab]
[Mab]

[a-b]

["a-b]

{a,b}
\c

Name
asterisk
question mark
character class

negated
character class

character range

negated
character range

alternation

Escaped
character

Matches

Matches zero or more characters

Matches a single character

Matches a single character in the set {a, b}

Matches a single character that is not in the set {a, b}

Matches a single character in the (closed) range [a, b],
where a is lexicographically less than or equal to b

Matches a single character that is not in the (closed) range
[a, b], where a is
lexicographically less than or equal to b

Matches either expression a or b

Matches character ¢ when it is a metacharacter
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Looking at an example [1/2]
B
- /2007/12/30
- /2007/12/31
- /2008/01/01
- /2008/01/02
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Looking at an example [2/2]

/3 /2007 /2008

/3 /% /2007/12 /2008/01
vy /2007/12/30 /2007/12/31
/2002 /2007 /2008

/200[78] /2007 /2008

/200[7-8] /2007 /2008
/200[01234569] /2007 /2008

/% /% /131,01) /2007/12/31 /2008/01/01
/% /% /3{0,1} /2007/12/30 /2007/12/31
/*%/{12/31,01/01} /2007/12/31 /2008/01/01
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Deleting data

Use the delete () method on FileSystem

public boolean
delete (Path f, boolean recursive)
throws IOException

If £is afile or an empty directory then recursive is ignored.

Recursive deletion of directories happens only if recursive is true
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Data flow in HDFS [read]

R V-,

et block locatio

|

Client JVM
client node
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Reading data

FSDatalnputStream wraps a DESInputStream

DFSInputStream manages | /O with the datanode and namenode

DFSInputStream stores datanode addresses for the first few
blocks

Namenode returns addresses of datanodes that have a copy of that block

Datanodes are sorted according to their proximity to the client
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Reading data
—

1 Blocks are read in order

0 DEFSInputStream opens new connections to datanodes as the
client reads through the stream

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.42



Network topology and Hadoop

What does two nodes being close mean?

For high-volume data processing:
Limiting factor is the rate at which data fransfers take place

Use bandwidth between the nodes as a measure of distance

Measuring bandwidth between nodes difficult

Number of pairs of nodes in a cluster grows as a square of the number of
nodes
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Measuring network distances in Hadoop
=

1 Network is represented as a tree

1 The distance between the nodes is the sum of their distances to its
closest common ancestor

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L25.44



Bandwidth available for the following scenarios gets

progressively less
=

1 Processes on the same node
1 Different nodes on the same rack

1 Nodes on different racks in the same data center

1 Nodes in different data centers
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Distance notation

A node nl on rack 7/ in data center d/ is represented as /d1/ri/nl

Distances in the four possible scenarios
distance(/d1l/ri/nl, /d1/ri/ml) =0

Processes on the same node

distance(/dl/ri/nl, /d1/ri/m2) =2

Different nodes on the same rack

distance(/d1/ri/nl, /d1/r2/n3) =4

Nodes on different racks in the same data center

distance(/d1/ri/nl, /d2/r3/n4) = 6

Nodes in different data centers
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Network topology and distances

I ==
7 Hadoop does not divine network topology

1 Needs assists for doing so
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File writes

We will look at creating a new file and writing data to it

File creation is done using create () on
DistributedFileSystem

DistributedFileSystem does an RPC to the namenode

Namenode checks existence of file and permissions

Creates file in the filesystem’s namespace with no blocks in it
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Data flow in HDFS [writes]

2. create

Client JVM
client node

4: write packet 5: ack packet
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Anatomy of a file write

DistributedFileSystemreturns an FSDataOutputStream
for client to write data to

FSDataOutputStream wraps a DESOutputStream

DESOutputStream handles communications with the datanodes and the
namenode
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As the client writes data ...

DEFSOutputStream splits it into packets

Written to an internal queue, the data queue

Data queue is consumed by the DataStreamer

DataStreamer asks namenode to allocate new blocks
Pick list of suitable datanodes to store replicas

List of datanodes forms a pipeline
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Assuming a replication level of 3

DataStreamer streams packets to the first datanode in the pipeline

15" datanode stores the packet and forwards it to the 2" datanode in
pipeline

The second datanode stores the packet and forwards it to the 3@ (and
last) datanode in pipeline
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Managing acknowledgements

DESOutputStream maintains an internal queuve of packets waiting
to be ACKed by datanodes

This is the ack queuve

When is a packet removed from the ACK queue?
Only when it has been acknowledged by all the datanodes in the pipeline
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Handling datanode failures during writes [1/2]
—

71 The pipeline is closed

-1 Current block on good datanodes is given a new identity

Allows partial block on failed node to be deleted if that datanode recovers
later on
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Handling datanode failures during writes [2/2]

Failed datanode is removed from the pipeline

Remainder of the block’s data is written to the two good datanodes in
the pipeline

Namenode notices block is under-replicated

Arranges for replicas to be created on another node

Subsequent blocks are treated as normal
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It is possible that multiple datanodes fail while a
block is being written

As long as dfs.replication.min (default 1) replicas are written,
the write will succeed

Block is asynchronously replicated across cluster until its target
replication factor is reached

dfs.replication (default 3)
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When a client has finished writing data

It calls close () on the stream

Flushes all remaining packets to the datanode pipeline

Wait for acknowledgements before contacting the namenode to signal that
file is complete

Namenode knows about blocks that comprise the file
DataStreamer requests block allocations

Client only waits for blocks to be minimally replicated
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The contents of this slide set are based on the

following references
——

o1 Tom White. Hadoop: The Definitive Guide. 3™ Edition. Early Access Release. O’Reilly
Press. ISBN: 978-1-449-31152-0. Chapters [2 and 3].
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