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HDFS: When to federate and replicate

A namenode often becomes 

    The pinch of the hourglass

       To alleviate federate 

To cope with failures

    And other erratic behaviors  

       Have a hot standby replicate 
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Frequently asked questions from the previous class 

survey

 What is used more often strobes or pings?

 Does failure of namenode in HDFS Federation result in loss of data?
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Topics covered in today’s lecture

 HDFS

 Federation (wrap-up)

 High availability

 Reading/writing data 
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HDFS FEDERATION (WRAP-UP) & HIGH AVAILABILITY

“I am pleased to see that we have 

differences. May we together become 

greater than the sum of both of us.”

                   –Surak, Vulcan Philosopher
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Recovering from a failed namenode                         [1/2]

 Admin starts a new primary namenode

 With one of the filesystem metadata replicas

 Configure datanodes and clients to use this namenode

 The new namenode is unable to serve requests until:

① Namespace image is loaded into memory

② Replay of edit log is complete

③ Received enough block reports from datanodes to leave safe mode
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Recovering from a failed namenode                         [2/2]

 Recovery can be really long

 On large clusters with many files and blocks this can be about 30 minutes

 This also impacts routine maintenance
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HDFS High Availability has features to cope with this 

 Pair of namenodes in active standby configuration

 During failure of active namenode, standby takes over the servicing of 

client requests

 In 10s of seconds
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HDFS High-Availability:

Additional items to get things to work

 Namenodes use a highly-available shared storage to store the edit 

log

 Datanodes must send block reports to both namenodes

 Block mappings stored in memory not disk

 Clients must be configured to handle namenode failover
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HDFS HA: Dealing with ungraceful failovers

 Slow network or a network partition can trigger failover transition

 Previously active namenode thinks it is still the active namenode

 The HDFS HA tries to avoid this situation using fencing

 Previously active namenode should be prevented from causing corruptions
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Fencing mechanisms: To shutdown previously active 

namenode

 Kill the namenode’s process

 Revoking access to the shared storage directory

 Disabling namenode’s network port

 Using the remote management command 

 STONITH

 Use specialized power distribution unit to forcibly power down the host 

machine
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Basic Filesystem Operations

 Type hadoop fs –help to get detailed help on commands

 We are invoking Hadoop’s filesystem shell command fs which supports other 

subcommands

 Start copying a file from the local filesystem to HDFS

 % hadoop fs –copyFromLocal input/docs/quangle.txt 

      /user/tom/quangle.txt 
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Basic Filesystem Operations

 Copy file back to the local filesystem

%hadoop fs –copyToLocal /user/tom/quangle.txt 
input/docs/quangle.copy.txt

 Verify if the movement of the files have changed the files in any way

% openssl md5 quangle.txt quangle.copy.txt 
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Basic Filesystem Operations

% hadoop fs -mkdir books

% hadoop fs -ls .

Found 2 items

drwxr-xr-x - tom supergroup 0 2019-04-02 22:41 /user/tom/books

-rw-r--r-- 1 tom supergroup 118 2019-04-02 22:29 /user/tom/quangle.txt 

 Directories are treated as metadata and stored by the namenode not 

the datanodes



COMPUTER SCIENCE DEPARTMENT

HADOOP FILE SYSTEMS



HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.15

Hadoop filesystems

 Hadoop has an abstract notion of filesystem

 HDFS is just one implementation

 Others include HAR, KFS (Cloud Store), S3 (native and block-based)

 Uses URI scheme to pick correct filesystem instance to communicate with

% hadoop fs –ls  file:// to communicate with local file system
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Interacting with the filesystem

 Hadoop has a FileSystem class

 HDFS implementation is accessible through the 

DistributedFileSystem

 Write your code against the FileSystem class for maximum portability
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URI and URLs

 A URI (Uniform Resource Identifier) is a string that uniquely identifies a 

resource 

 Anything that can be named or addressed  … on the internet or within a system.

 A URL (Uniform Resource Locator) is a specific type of URI that not only 

identifies a resource 

 But also provides a way to locate it by describing how to access it (e.g., protocol, 

domain, path).

 In summary:

 URI = identifier

 URL = identifier + address

hdfs:// for HDFS

s3a:// for Amazon S3

abfs:// for Azure Blob Storage
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Reading data from a Hadoop URL

InputStream in = null;

try {

    in = new URL("hdfs://host/path").openStream();

    // process in

} finally {

    IOUtils.closeStream(in);

}
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Make Java recognize Hadoop’s URL scheme

 Call setURLStreamHandlerFactory() on URL with an instance of 
FsURLStreamHandlerFactory

 Can only be called once per JVM, so it is typically executed in a static 

block
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Displaying files from a Hadoop filesystem

public class URLCat {

  static {

       URL.setURLStreamHandlerFactory(

                      new FsUrlStreamHandlerFactory());

  }

 

 public static void main(String[] args) throws Exception {

    InputStream in = null;

    try {

       in = new URL(args[0]).openStream();

       IOUtils.copyBytes(in, System.out, 4096, false);

    } finally {

      IOUtils.closeStream(in);

    }

 }

}

Buffer size used 

for copying

Close streams after

copying is complete?
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A sample run of the URLCat 

% hadoop URLCat hdfs://localhost/user/tom/quangle.txt

On the top of the Crumpetty Tree
The Quangle Wangle sat,
But his face you could not see,
On account of his Beaver Hat.
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Using the FileSystem API

 A file on the Hadoop filesystem is represented by a Hadoop Path 

object

 Not the java.io.File object

 Path has a Hadoop filesystem URI
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Retrieving an instance of the FileSystem

 public static FileSystem 

   get(Configuration conf) throws IOException

 Configuration encapsulates client or server’s configuration conf/core-
site.xml

 public static FileSystem 

   get(URI uri, Configuration conf)

     throws IOException

 URI scheme identifies the filesystem to use

 public static FileSystem 

   get(URI uri, Configuration conf, 

       String user) throws IOException
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With a FileSystem instance in hand: Retrieving the 

input stream for a file

 public FSDataInputStream 

        open(Path f) throws IOException

 public FSDataInputStream 

    open(Path f, int bufferSize) 

      throws IOException

 FSDataInputStream is a specialization of the  java.io.DataInputStream

 Also implements the Seekable interface
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Displaying files using the FileSystem directly

public class FileSystemCat {

  public static void main(String[] args) throws Exception {

     String uri = args[0];

     Configuration conf = new Configuration();

     FileSystem fs = FileSystem.get(URI.create(uri), conf);

     InputStream in = null;

     try {

       in = fs.open(new Path(uri));

       IOUtils.copyBytes(in, System.out, 4096, false);

     } finally {

       IOUtils.closeStream(in);

     }

  }

}
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The execution of the program

% hadoop FileSystemCat hdfs://localhost/user/tom/quangle.txt

On the top of the Crumpetty Tree
The Quangle Wangle sat,
But his face you could not see,
On account of his Beaver Hat.
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Writing Data

 Creation of a file

public FSDataOutputStream create(Path f) throws 

IOException

 Other versions of this method allow specification of 

 Overwriting existing files

 Replication factor for the file

 Buffer size to use

 Block size
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Alternatively, you can append to an existing file

public FSDataOutputStream 

append(Path f) throws IOException

 Allows a single writer to modify an already written file

 Open it and write data starting at the final offset
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FSDataOutputStream

 Unlike FSDataInputStream, this output stream does not permit 

seeking

 Only sequential writes or appends to a file are allowed 
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Copying a local file to a Hadoop filesystem

public class FileCopyWithProgress {

   public static void main(String[] args) throws Exception {

      String localSrc = args[0];

      String dst = args[1];

      InputStream in = 

         new BufferedInputStream(new FileInputStream(localSrc));

      Configuration conf = new Configuration();

      FileSystem fs = FileSystem.get(URI.create(dst), conf);

      OutputStream out = fs.create(new Path(dst), 

         new Progressable() {

             public void progress() {

               System.out.print(".");

             }

         });

     IOUtils.copyBytes(in, out, 4096, true);

   }

}  
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Directories

 FileSystem supports creation of directories

public boolean mkdirs(Path f) 

throws IOException

 Creates all necessary parent directories 

 Writing a file by calling create(), automatically creates directories
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FileStatus

 Encapsulates file system metadata for files and directories

 Includes:

 File length

 Block size

 Replication

 Modification time

 Ownership and permission information
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But we often need to list status of multiple files …

 public FileStatus[] listStatus(Path f)

     throws IOException

 public FileStatus[] 

  listStatus(Path f, PathFilter filter)    

     throws IOException

 public FileStatus[] listStatus(Path[] files) 

     throws IOException

 public FileStatus[] 

  listStatus(Path[] files, PathFilter filter) 

   throws IOException
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File patterns

 Rather than enumerating each file and directory it is convenient to use 
wildcards

 Match multiple files with a single expression

◼Globbing

 FileSystem methods for processing globs
 public FileStatus[] globStatus(Path pathPattern) 

  throws IOException

 public FileStatus[] 

   globStatus(Path pathPattern, 

              PathFilter filter) 

throws IOException
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Hadoop provides the same glob support as UNIX

Glob Name Matches

* asterisk Matches zero or more characters

? question mark Matches a single character

[ab] character class Matches a single character in the set {a, b}

[^ab] negated 

character class

Matches a single character that is not in the set {a, b}

[a-b] character range Matches a single character in the (closed) range [a, b], 

where a is lexicographically less than or equal to b

[^a-b] negated 

character range

Matches a single character that is not in the (closed) range 

[a, b], where a is

lexicographically less than or equal to b

{a,b} alternation Matches either expression a or b

\c Escaped 

character

Matches character c when it is a metacharacter
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Looking at an example                [1/2]

 /2007/12/30

 /2007/12/31

 /2008/01/01

 /2008/01/02
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Looking at an example                [2/2]

 /*     /2007 /2008

 /*/*    /2007/12 /2008/01

 /*/12/*    /2007/12/30 /2007/12/31

 /200?    /2007 /2008

 /200[78]    /2007 /2008

 /200[7-8]   /2007 /2008

 /200[^01234569]  /2007 /2008

 /*/*/{31,01}   /2007/12/31 /2008/01/01

 /*/*/3{0,1}   /2007/12/30 /2007/12/31

 /*/{12/31,01/01}  /2007/12/31 /2008/01/01
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Deleting data

 Use the delete() method on FileSystem

 public boolean 

    delete(Path f, boolean recursive)   

  throws IOException

 If f is a file or an empty directory then recursive is ignored. 

 Recursive deletion of directories happens only if recursive is true 
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Data flow in HDFS  [read]

HDFS 
Client

Distributed 
File System

FSData
InputStream

NameNode

DataNode DataNode DataNode

1: open
2: get block locations

3: read

4: read
5: read

6:close

Client JVM

namenode

datanode datanode datanode

client node
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Reading data

 FSDataInputStream wraps a DFSInputStream 

 DFSInputStream manages I/O with the datanode and namenode

 DFSInputStream stores datanode addresses for the first few 

blocks

 Namenode returns addresses of datanodes that have a copy of that block

 Datanodes are sorted according to their proximity to the client
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Reading data

 Blocks are read in order

 DFSInputStream opens new connections to datanodes as the 

client reads through the stream
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Network topology and Hadoop

 What does two nodes being close mean?

 For high-volume data processing:

 Limiting factor is the rate at which data transfers take place

 Use bandwidth between the nodes as a measure of distance

 Measuring bandwidth between nodes difficult

 Number of pairs of nodes in a cluster grows as a square of the number of 

nodes
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Measuring network distances in Hadoop

 Network is represented as a tree

 The distance between the nodes is the sum of their distances to its 

closest common ancestor
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Bandwidth available for the following scenarios gets 

progressively less

 Processes on the same node

 Different nodes on the same rack

 Nodes on different racks in the same data center

 Nodes in different data centers
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Distance notation

 A node n1 on rack r1 in data center d1 is represented as /d1/r1/n1

 Distances in the four possible scenarios

▪ distance(/d1/r1/n1, /d1/r1/n1) = 0

◼ Processes on the same node

▪ distance(/d1/r1/n1, /d1/r1/n2) = 2

◼ Different nodes on the same rack

▪ distance(/d1/r1/n1, /d1/r2/n3) = 4

◼ Nodes on different racks in the same data center

▪ distance(/d1/r1/n1, /d2/r3/n4) = 6

◼ Nodes in different data centers
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Network topology and distances

 Hadoop does not divine network topology

 Needs assists for doing so
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File writes

 We will look at creating a new file and writing data to it

 File creation is done using create() on 

DistributedFileSystem

 DistributedFileSystem does an RPC to the namenode

 Namenode checks existence of file and permissions

 Creates file in the filesystem’s namespace with no blocks in it
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Data flow in HDFS  [writes]

HDFS 
Client

Distributed 
File System

FSData
OutputStream

NameNode

DataNode DataNode DataNode

1: create
2: create

3: write

4: write packet 5: ack packet

6:close

Client JVM

namenode

datanode datanode datanode

client node

4

5

4

5
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Anatomy of a file write

 DistributedFileSystem returns an FSDataOutputStream 

for client to write data to

 FSDataOutputStream wraps a DFSOutputStream

 DFSOutputStream handles communications with the datanodes and the 

namenode
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As the client writes data …

 DFSOutputStream splits it into packets

 Written to an internal queue, the data queue

 Data queue is consumed by the DataStreamer

 DataStreamer asks namenode to allocate new blocks

 Pick list of suitable datanodes to store replicas

 List of datanodes forms a pipeline 
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Assuming a replication level of 3

 DataStreamer streams packets to the first datanode in the pipeline

 1st datanode stores the packet and forwards it to the 2nd datanode in 

pipeline

 The second datanode stores the packet and forwards it to the 3rd (and 

last) datanode in pipeline
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Managing acknowledgements

 DFSOutputStream maintains an internal queue of packets waiting 

to be ACKed by datanodes

 This is the ack queue

 When is a packet removed from the ACK queue?

 Only when it has been acknowledged by all the datanodes in the pipeline
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Handling datanode failures during writes         [1/2]

 The pipeline is closed

 Current block on good datanodes is given a new identity

 Allows partial block on failed node to be deleted if that datanode recovers 

later on
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Handling datanode failures during writes         [2/2]

 Failed datanode is removed from the pipeline

 Remainder of the block’s data is written to the two good datanodes in 

the pipeline

 Namenode notices block is under-replicated

 Arranges for replicas to be created on another node

 Subsequent blocks are treated as normal
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It is possible that multiple datanodes fail while a 

block is being written

 As long as dfs.replication.min (default 1) replicas are written, 

the write will succeed

 Block is asynchronously replicated across cluster until its target 

replication factor is reached

 dfs.replication (default 3)
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When a client has finished writing data

 It calls close() on the stream

 Flushes all remaining packets to the datanode pipeline

 Wait for acknowledgements before contacting the  namenode to signal that 

file is complete

 Namenode knows about blocks that comprise the file

 DataStreamer requests block allocations

 Client only waits for blocks to be minimally replicated



HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L25.59

The contents of this slide set are based on the 

following references

 Tom White. Hadoop: The Definitive Guide. 3rd Edition. Early Access Release. O’Reilly 

Press. ISBN: 978-1-449-31152-0. Chapters [2 and 3]. 
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