
COMPUTER SCIENCE DEPARTMENT

CSX55: DISTRIBUTED SYSTEMS [HDFS]

Shrideep Pallickara

Computer Science

Colorado State University

Why data writes matter …

A write is performed once

 But a read? occurs many times (over)

The writes are a harbinger

 of subsequent resource utilizations

and how fast

 analytics lead to insights

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.2

Frequently asked questions from the previous class

survey

 If partitions are bad, why can’t we prevent them?

 Why doesn’t namenode send all chunks to the client so that it can

simply forget them?

 Is STONITH necessarily require more groundwork (i.e., it is slightly

more difficult to pull off) … and so a last resort?

 Why is client failure an issue for HDFS? Especially, if a part of the

libraries permeates it?

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.3

Topics covered in today’s lecture

 HDFS

 Replica placements

 Coherency model

 Compression

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.4

Network topology and Hadoop

 What does two nodes being close mean?

 For high-volume data processing:

 Limiting factor is the rate at which data transfers take place

 Use bandwidth between the nodes as a measure of distance

 Measuring bandwidth between nodes difficult

 Number of pairs of nodes in a cluster grows as a square of the number of

nodes

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.5

Measuring network distances in Hadoop

 Network is represented as a tree

 The distance between the nodes is the sum of their distances to its

closest common ancestor

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.6

Bandwidth available for the following scenarios gets

progressively less

 Processes on the same node

 Different nodes on the same rack

 Nodes on different racks in the same data center

 Nodes in different data centers

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.7

Distance notation

 A node n1 on rack r1 in data center d1 is represented as /d1/r1/n1

 Distances in the four possible scenarios

▪ distance(/d1/r1/n1, /d1/r1/n1) = 0

◼ Processes on the same node

▪ distance(/d1/r1/n1, /d1/r1/n2) = 2

◼ Different nodes on the same rack

▪ distance(/d1/r1/n1, /d1/r2/n3) = 4

◼ Nodes on different racks in the same data center

▪ distance(/d1/r1/n1, /d2/r3/n4) = 6

◼ Nodes in different data centers

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.8

Network topology and distances

 Hadoop does not divine network topology

 Needs assists for doing so

COMPUTER SCIENCE DEPARTMENT

REPLICA PLACEMENTS

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.10

Replica placement [1/2]

 Trade-off between reliability, read bandwidth, and write bandwidth

 Placing all replicas on a single node?

 Lowest write bandwidth penalty since replication pipeline runs on a single

node

 Offers no redundancy

◼ Correlated failures

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.11

Replica placement [2/2]

 Read bandwidth is high for off-rack reads

 Placing replicas in different data centers

 Maximizes redundancy at the the cost of bandwidth

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.12

Default replication strategy in Hadoop

 Place first replica on the same node as the client

 If client runs outside the cluster, 1st node is chosen at random

 The second replica is placed on a different rack from the first

 Chosen at random

 Third replica is placed on the same rack as the second

 Different node is chosen at random

 Further replicas are placed on random nodes in the cluster

 Avoid placing too many replicas on the same rack

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.13

Default strategy balances

 Reliability

 Blocks are stored on different racks

 Write bandwidth

 Writes traverse a single network switch

 Read bandwidth

 Choice of two racks to read from

 Block distribution across cluster

 Clients write a single block on the local rack

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.14

Once the replica locations have been chosen

 A pipeline is built

 Pipeline takes network topology into account

COMPUTER SCIENCE DEPARTMENT

COHERENCY MODEL

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.16

A quick look at assertThat in JUnit

 Format

▪ assertThat([value], [matcher statement]);

 Examples
▪ assertThat(x, is(3));

▪ assertThat(x, is(not(4)));

▪ assertThat(responseString,

either(containsString("color")).or(containsString("colour")));

▪ assertThat(myList, hasItem("3"));

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.17

Assertion syntax

 Readable

 Think in terms of subject, verb, and object

 Assert “x is 3”

 Matcher statements can be negated, combined, or mapped to a

collection

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.18

Coherency Model

 For a filesystem, coherency describes data visibility of reads and

writes to a file

 HDFS trades-off some POSIX requirements for performance

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.19

Creation of a file

 After creation, it is visible in the file namespace

Path p = new Path("p");
fs.create(p);
assertThat(fs.exists(p), is(true));

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.20

Contents written to the newly created file

 Not guaranteed to be visible

 Even if the stream is flushed

 File may appear to have length of 0

Path p = new Path("p");
OutputStream out = fs.create(p);
out.write("content".getBytes("UTF-8"));
out.flush();
assertThat(fs.getFileStatus(p).getLen(), is(0L));

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.21

Visibility of blocks during writes

 Once more than a block of data is written?

 The first block is visible

 In general, the current block that is being written to is not visible to

other readers

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.22

The HDFS sync method

 Forces all buffers to be synchronized to the datanodes

 After sync() returns successfully?

 All data written up to that point in the file is persisted and visible to all

clients

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.23

When to call sync()

 With no calls to sync()

 Possible to lose up to a block of data due to client or system failure

 However, invocations of sync() do have overheads

 Trade-off between data robustness and throughput

 Frequency of sync() is application dependent

COMPUTER SCIENCE DEPARTMENT

PARALLEL COPYING

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.25

Parallel copying with distcp

 Enables copying large amounts of data to and from the Hadoop

filesystem in parallel

% hadoop distcp hdfs://namenode1/foo hdfs://namenode2/bar

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.26

distcp is implemented as a MapReduce job

 Copying is done by Maps that run in parallel across the cluster

 There are no reducers

 Deciding the number of maps

 Give each map sufficient data to minimize overheads during task setup

 This is specified using the –m argument to distcp

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.27

Keeping an HDFS cluster balanced

 HDFS works best when file blocks are evenly spread across the cluster

 We need to ensure that distcp does not disrupt this feature

 If we are transferring 1000 GB?

 Specifying –m 1 would mean that a single map would do the copy

◼ Will be slow

◼ The first replica of each block would reside on the node running map (till the disk

fills up)

COMPUTER SCIENCE DEPARTMENT

DATA INTEGRITY

Everything

Everything

Everything

In its right place

In its right place

In its right place

Right place

Everything in Its Right Place, Radiohead

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.29

Data Integrity

 I/O operations on disk or network carry a small chance of introducing

errors

 With voluminous data movements the chances of data corruption

become high

 Checksums

 Data is corrupt if there is a mismatch between the original and the newly

computed checksum

 There is also a small chance that the checksum is corrupt

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.30

Data integrity in HDFS

 Datanodes are responsible for verifying received data before storing

the data and checksum

 When clients read data from the datanode, they verify the checksum

 Compare with checksum stored at the datanode

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.31

DataBlockScanner

 Each datanode runs a DataBlockScanner in the background

periodically

 Verifies all blocks stored on the datanode

 Guards against corruption due to bit rot in the physical storage media

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.32

Dealing with corrupted data blocks

 Heal corrupted blocks

 By copying one of the good replicas to produce a new, uncorrupt replica

 When a client detects an error while reading block?

 Report both the bad block and datanode it was reading from

 Throw ChecksumException

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.33

Dealing with corrupted data blocks

 Namenode marks the block replica as corrupt

 Does not direct clients to it

 Does not try to copy replica to another datanode

 Schedules a copy of the block to be replicated on another datanode

 Restore replication level for the block

 Corrupt replica is then deleted

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.34

Disabling checksum

 Useful if you have a corrupt file that you would like to inspect

 Pass false to verifyChecksum() on FileSystem before using

open() to read the file

 From the shell, use the –ignoreCrc option with the –get or the –copyToLocal

command

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.35

Client side checksumming

 Done by the Hadoop LocalFileSystem

 When you write a file filename

 The filesystem client creates a hidden file .filename.crc in the same directory

 Contains checksums for each chunk of the file

◼ Chunk size is stored in the .crc file

 Disable checksums when underlying filesystem supports this natively

 Use RawLocalFileSystem instead of LocalFileSystem

COMPUTER SCIENCE DEPARTMENT

COMPRESSION

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.37

When order turns to chaos

 Entropy is a measure of randomness or unpredictability within data

 Quantified mathematically using Shannon entropy

 Low entropy means patterns

 Plain text is full of them; they are easy to guess and easy to squeeze

 High entropy means randomness

 Encryption and compression both aim to erase the telltale patterns

 High entropy! One to save space, the other to save secrets

 The better you compress, the more it looks encrypted

 Chaos is the price of efficiency!

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.38

Compression

 Reduces space needed to store files

 Speeds up data transfers

 Across network

 Disk I/O

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.39

Compression formats that can be used with Hadoop

Compression

format

Tool Algorithm Filename

extension

Splittable?

DEFLATE N/A DEFLATE .deflate No

Gzip Gzip DEFLATE .gz No

Bzip2 Bzip2 Bzip2 .bz2 Yes

LZO Lzop LZO .lzo No*

Snappy N/A Snappy .snappy No

Pigeonhole principle

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.40

Compression Algorithms

 Exhibit a space-time trade-off

 Faster compression/decompression speeds usually result in smaller space

savings

 Tools give some control over this trade-off at compression time

▪ 9 different options

▪ -1 means optimize for speed

▪ -9 means optimize for space

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.41

Compression characteristics

 gzip is a general purpose compressor

 Middle of the space/time trade-off

 bzip2 compresses more effectively than gzip

 But it is slower

 bzip2 decompression speed is faster than its compression speed

◼ But slower than other formats still

 LZO and Snappy optimize for speed

 Order of magnitude faster but less effective compression than gzip

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.42

A codec is the implementation of a compression-

decompression algorithm in Hadoop

Compression

format

Hadoop CompressionCodec

DEFLATE org.apache.hadoop.io.compress.DefaultCodec

gzip org.apache.hadoop.io.compress.GzipCodec

bzip2 org.apache.hadoop.io.compress.BZip2Codec

LZO com.hadoop.compression.lzo.LzopCodec

Snappy org.apache.hadoop.io.compress.SnappyCodec

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.43

CompressionCodec

 To compress data being written to an output stream

▪ Use codec.createOutputStream(OutputStream out)

 To decompress data being read from an input stream

▪ Use codec.createInputStream(InputStream in)

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.44

Using compression

public class StreamCompressor {

 public static void main(String[] args) throws Exception {
 String codecClassname = args[0];
 Class<?> codecClass = Class.forName(codecClassname);
 Configuration conf = new Configuration();
 CompressionCodec codec = (CompressionCodec)
 ReflectionUtils.newInstance(codecClass, conf);
 CompressionOutputStream out =
 codec.createOutputStream(System.out);
 IOUtils.copyBytes(System.in, out, 4096, false);
 out.finish();
 }
}

Compresses data read from standard input and writes it to standard output

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.45

Compression and input splits

 Let’s look at an uncompressed file stored in HDFS

 With an HFDS block size of 64 MB, a 1 GB file is stored as 16 blocks

 MapReduce job will create 16 input splits

◼ Processed independently as separate map tasks

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.46

If the gzip compressed file is 1 GB

 HDFS stores files as 16 blocks

 Creating a split for each block does not work

 Impossible to start reading at an arbitrary block in the zip stream

 Impossible for map task to read its split independently of others

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.47

Storing gzipped streams

 Gzip uses DEFLATE, which stores data as a series of compressed blocks

 The start of each block is not distinguished in a way that allows:

 Reader positioned at arbitrary point in stream to advance to the beginning

of the next block

◼ There is no self-synchronizing with the stream

 Gzip does not support splitting

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.48

HDFS does not split gzip files

 Single map will process 16 HDFS blocks

 Most of these blocks will not be local to the map

 Loss of locality

 Job is not granular … takes much longer to run

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.49

The same story plays out if you were dealing with

LZO files, but …

 It is possible to preprocess LZO files using an indexer tool

 Build an index of split points

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.50

Bzip2

 This does provide a synchronization marker between blocks

 48-bit approximation of pi

 The marker is used to support splitting

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.51

Dealing with large, unbounded files [Log files]

① Store the files uncompressed

② Use compression format that supports

 Splitting: Bzip2

 Indexing to support splitting: LZO

③ Split the file into chunks in the application and compress each chunk

separately

 Choose chunk sizes such that the compressed chunks are approximately the

size of an HDFS block

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.52

Using compression in MapReduce

 To compress the output of MapReduce job

 In the job config set mapred.output.compress property to true

 Use mapred.output.compression.codec to specify the codec

 Alternatively, we can do this using the FileOutputFormat

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.53

Using the FileOutputFormat

public class MaxTemperatureWithCompression {

 public static void main(String[] args) throws Exception {
 Job job = Job.getInstance();

job.setJarByClass(MaxTemperature.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

FileOutputFormat.setCompressOutput(job, true);
FileOutputFormat.setOutputCompressorClass(job, GzipCodec.class);

job.setMapperClass(MaxTemperatureMapper.class);
job.setCombinerClass(MaxTemperatureReducer.class);
job.setReducerClass(MaxTemperatureReducer.class);
System.exit(job.waitForCompletion(true) ? 0 : 1);

 }

}

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.54

Main reason why Hadoop does not use Java

Serialization

 Deserialization creates new instance of each object being deserialized

 Writable objects can be (and are often) reused

 Large MapReduce jobs often serialize/deserialize billions of records

 Savings from not having to allocate new objects is significant

HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.55

The contents of this slide set are based on the

following references

 Tom White. Hadoop: The Definitive Guide. 3rd Edition. O’Reilly Press. ISBN: 978-1-

449-31152-0. Chapters [3 and 4].

 JUnit release notes for version 4.4 available at

http://junit.sourceforge.net/doc/ReleaseNotes4.4.html

	Slide 1: CSx55: Distributed Systems [HDFS]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in today’s lecture
	Slide 4: Network topology and Hadoop
	Slide 5: Measuring network distances in Hadoop
	Slide 6: Bandwidth available for the following scenarios gets progressively less
	Slide 7: Distance notation
	Slide 8: Network topology and distances
	Slide 9: Replica Placements
	Slide 10: Replica placement [1/2]
	Slide 11: Replica placement [2/2]
	Slide 12: Default replication strategy in Hadoop
	Slide 13: Default strategy balances
	Slide 14: Once the replica locations have been chosen
	Slide 15: Coherency Model
	Slide 16: A quick look at assertThat in JUnit
	Slide 17: Assertion syntax
	Slide 18: Coherency Model
	Slide 19: Creation of a file
	Slide 20: Contents written to the newly created file
	Slide 21: Visibility of blocks during writes
	Slide 22: The HDFS sync method
	Slide 23: When to call sync()
	Slide 24: Parallel copying
	Slide 25: Parallel copying with distcp
	Slide 26: distcp is implemented as a MapReduce job
	Slide 27: Keeping an HDFS cluster balanced
	Slide 28: Data Integrity
	Slide 29: Data Integrity
	Slide 30: Data integrity in HDFS
	Slide 31: DataBlockScanner
	Slide 32: Dealing with corrupted data blocks
	Slide 33: Dealing with corrupted data blocks
	Slide 34: Disabling checksum
	Slide 35: Client side checksumming
	Slide 36: Compression
	Slide 37: When order turns to chaos
	Slide 38: Compression
	Slide 39: Compression formats that can be used with Hadoop
	Slide 40: Compression Algorithms
	Slide 41: Compression characteristics
	Slide 42: A codec is the implementation of a compression-decompression algorithm in Hadoop
	Slide 43: CompressionCodec
	Slide 44: Using compression
	Slide 45: Compression and input splits
	Slide 46: If the gzip compressed file is 1 GB
	Slide 47: Storing gzipped streams
	Slide 48: HDFS does not split gzip files
	Slide 49: The same story plays out if you were dealing with LZO files, but …
	Slide 50: Bzip2
	Slide 51: Dealing with large, unbounded files [Log files]
	Slide 52: Using compression in MapReduce
	Slide 53: Using the FileOutputFormat
	Slide 54: Main reason why Hadoop does not use Java Serialization
	Slide 55: The contents of this slide set are based on the following references

