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Why data writes matter …

A write is performed once 

    But a read?    occurs many times (over)

The writes are a harbinger

    of subsequent resource utilizations

and how fast 

     analytics lead to insights 
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Frequently asked questions from the previous class 

survey

 If partitions are bad, why can’t we prevent them?

 Why doesn’t namenode send all chunks to the client so that it can 

simply forget them?

 Is STONITH necessarily require more groundwork (i.e., it is slightly 

more difficult to pull off) … and so a last resort?

 Why is client failure an issue for HDFS?  Especially, if a part of the 

libraries permeates it?
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Topics covered in today’s lecture

 HDFS

 Replica placements

 Coherency model

 Compression
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Network topology and Hadoop

 What does two nodes being close mean?

 For high-volume data processing:

 Limiting factor is the rate at which data transfers take place

 Use bandwidth between the nodes as a measure of distance

 Measuring bandwidth between nodes difficult

 Number of pairs of nodes in a cluster grows as a square of the number of 

nodes
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Measuring network distances in Hadoop

 Network is represented as a tree

 The distance between the nodes is the sum of their distances to its 

closest common ancestor
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Bandwidth available for the following scenarios gets 

progressively less

 Processes on the same node

 Different nodes on the same rack

 Nodes on different racks in the same data center

 Nodes in different data centers
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Distance notation

 A node n1 on rack r1 in data center d1 is represented as /d1/r1/n1

 Distances in the four possible scenarios

▪ distance(/d1/r1/n1, /d1/r1/n1) = 0

◼ Processes on the same node

▪ distance(/d1/r1/n1, /d1/r1/n2) = 2

◼ Different nodes on the same rack

▪ distance(/d1/r1/n1, /d1/r2/n3) = 4

◼ Nodes on different racks in the same data center

▪ distance(/d1/r1/n1, /d2/r3/n4) = 6

◼ Nodes in different data centers



HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.8

Network topology and distances

 Hadoop does not divine network topology

 Needs assists for doing so
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Replica placement                                  [1/2]

 Trade-off between reliability, read bandwidth, and write bandwidth

 Placing all replicas on a single node?

 Lowest write bandwidth penalty since replication pipeline runs on a single 

node

 Offers no redundancy

◼ Correlated failures
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Replica placement                                  [2/2]

 Read bandwidth is high for off-rack reads

 Placing replicas in different data centers

 Maximizes redundancy at the the cost of bandwidth
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Default replication strategy in Hadoop

 Place first replica on the same node as the client

 If client runs outside the cluster, 1st node is chosen at random

 The second replica is placed on a different rack from the first  

 Chosen at random

 Third replica is placed on the same rack as the second

 Different node is chosen at random

 Further replicas are placed on random nodes in the cluster

 Avoid placing too many replicas on the same rack
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Default strategy balances

 Reliability 

 Blocks are stored on different racks

 Write bandwidth

 Writes traverse a single network switch

 Read bandwidth

 Choice of two racks to read from

 Block distribution across cluster

 Clients write a single block on the local rack
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Once the replica locations have been chosen

 A pipeline is built 

 Pipeline takes network topology into account
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A quick look at assertThat in JUnit

 Format

▪ assertThat([value], [matcher statement]);

 Examples
▪ assertThat(x, is(3));

▪ assertThat(x, is(not(4)));

▪ assertThat(responseString, 

either(containsString("color")).or(containsString("colour")));

▪ assertThat(myList, hasItem("3"));



HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.17

Assertion syntax

 Readable

 Think in terms of subject, verb, and object

 Assert “x is 3”

 Matcher statements can be negated, combined, or mapped to a 

collection
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Coherency Model

 For a filesystem, coherency describes data visibility of reads and 

writes to a file

 HDFS trades-off some POSIX requirements for performance



HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.19

Creation of a file

 After creation, it is visible in the file namespace

Path p = new Path("p");
fs.create(p);
assertThat(fs.exists(p), is(true));
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Contents written to the newly created file

 Not guaranteed to be visible

 Even if the stream is flushed

 File may appear to have length of 0

Path p = new Path("p");
OutputStream out = fs.create(p);
out.write("content".getBytes("UTF-8"));
out.flush();
assertThat(fs.getFileStatus(p).getLen(), is(0L));
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Visibility of blocks during writes

 Once more than a block of data is written?

 The first block is visible

 In general, the current block that is being written to is not visible to 

other readers
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The HDFS sync method

 Forces all buffers to be synchronized to the datanodes

 After sync() returns successfully?

 All data written up to that point in the file is persisted and visible to all 

clients
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When to call sync()

 With no calls to sync()

 Possible to lose up to a block of data due to client or system failure

 However, invocations of sync() do have overheads

 Trade-off between data robustness and throughput

 Frequency of sync() is application dependent
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Parallel copying with distcp

 Enables copying large amounts of data to and from the Hadoop 

filesystem in parallel

% hadoop distcp hdfs://namenode1/foo hdfs://namenode2/bar
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distcp is implemented as a MapReduce job

 Copying is done by Maps that run in parallel across the cluster

 There are no reducers

 Deciding the number of maps

 Give each map sufficient data to minimize overheads during task setup

 This is specified using the –m argument to distcp
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Keeping an HDFS cluster balanced

 HDFS works best when file blocks are evenly spread across the cluster

 We need to ensure that distcp does not disrupt this feature

 If we are transferring 1000 GB?

 Specifying –m 1 would mean that a single map would do the copy

◼ Will be slow

◼ The first replica of each block would reside on the node running map (till the disk 

fills up)  



COMPUTER SCIENCE DEPARTMENT

DATA INTEGRITY

Everything

Everything

Everything

In its right place

In its right place

In its right place

Right place

Everything in Its Right Place, Radiohead
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Data Integrity

 I/O operations on disk or network carry a small chance of introducing 

errors 

 With voluminous data movements the chances of data corruption 

become high

 Checksums

 Data is corrupt if there is a mismatch between the original and the newly 

computed checksum

 There is also a small chance that the checksum is corrupt
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Data integrity in HDFS

 Datanodes are responsible for verifying received data before storing 

the data and checksum

 When clients read data from the datanode,  they verify the checksum

  Compare with checksum stored at the datanode
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DataBlockScanner

 Each datanode runs a DataBlockScanner in the background 

periodically

 Verifies all blocks stored on the datanode

 Guards against corruption due to bit rot in the physical storage media
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Dealing with corrupted data blocks

 Heal corrupted blocks 

 By copying one of the good replicas to produce a new, uncorrupt replica

 When a client detects an error while reading block?

 Report both the bad block and datanode it was reading from

 Throw ChecksumException
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Dealing with corrupted data blocks

 Namenode marks the block replica as corrupt

 Does not direct clients to it

 Does not try to copy replica to another datanode

 Schedules a copy of the block to be replicated on another datanode

 Restore replication level for the block

 Corrupt replica is then deleted
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Disabling checksum

 Useful if you have a corrupt file that you would like to inspect

 Pass false to verifyChecksum() on FileSystem before using 

open() to read the file

 From the shell, use the –ignoreCrc option with the –get or the –copyToLocal 

command
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Client side checksumming 

 Done by the Hadoop LocalFileSystem

 When you write a file filename

 The filesystem client creates a hidden file .filename.crc in the same directory

 Contains checksums for each chunk of the file

◼ Chunk size is stored in the .crc file

 Disable checksums when underlying filesystem supports this natively

 Use RawLocalFileSystem instead of LocalFileSystem
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When order turns to chaos

 Entropy is a measure of randomness or unpredictability within data

 Quantified mathematically using Shannon entropy

 Low entropy means patterns

 Plain text is full of them; they are easy to guess and easy to squeeze

 High entropy means randomness

 Encryption and compression both aim to erase the telltale patterns

 High entropy!   One to save space, the other to save secrets

 The better you compress, the more it looks encrypted

 Chaos is the price of efficiency!



HDFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.38

Compression

 Reduces space needed to store files

 Speeds up data transfers

 Across network

 Disk I/O
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Compression formats that can be used with Hadoop

Compression 

format 

Tool Algorithm Filename 

extension 

Splittable?

DEFLATE N/A DEFLATE .deflate No

Gzip Gzip DEFLATE .gz No

Bzip2 Bzip2 Bzip2 .bz2 Yes

LZO Lzop LZO .lzo No*

Snappy N/A Snappy .snappy No

Pigeonhole principle
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Compression Algorithms 

 Exhibit a space-time trade-off

 Faster compression/decompression speeds usually result in smaller space 

savings

 Tools give some control over this trade-off at compression time

▪ 9 different options

▪ -1 means optimize for speed

▪ -9 means optimize for space
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Compression characteristics

 gzip is a general purpose compressor

 Middle of the space/time trade-off

 bzip2 compresses more effectively than gzip

 But it is slower

 bzip2 decompression speed is faster than its compression speed

◼ But slower than other formats still

 LZO and Snappy optimize for speed

 Order of magnitude faster but less effective compression than gzip
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A codec is the implementation of a compression-

decompression algorithm in Hadoop

Compression 

format 

Hadoop CompressionCodec

DEFLATE org.apache.hadoop.io.compress.DefaultCodec

gzip org.apache.hadoop.io.compress.GzipCodec

bzip2 org.apache.hadoop.io.compress.BZip2Codec

LZO com.hadoop.compression.lzo.LzopCodec

Snappy org.apache.hadoop.io.compress.SnappyCodec
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CompressionCodec

 To compress data being written to an output stream

▪ Use codec.createOutputStream(OutputStream out)

 To decompress data being read from an input stream

▪ Use codec.createInputStream(InputStream in)
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Using compression

public class StreamCompressor {

     public static void main(String[] args) throws Exception {
        String codecClassname = args[0];
        Class<?> codecClass = Class.forName(codecClassname);
        Configuration conf = new Configuration();
        CompressionCodec codec = (CompressionCodec)
          ReflectionUtils.newInstance(codecClass, conf);
        CompressionOutputStream out = 
             codec.createOutputStream(System.out);
        IOUtils.copyBytes(System.in, out, 4096, false);
        out.finish();
     }
}

Compresses data read from standard input and writes it to standard output 
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Compression and input splits

 Let’s look at an uncompressed file stored in HDFS

 With an HFDS block size of 64 MB, a 1 GB file is stored as 16 blocks

 MapReduce job will create 16 input splits

◼ Processed independently as separate map tasks
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If the gzip compressed file is 1 GB

 HDFS stores files as 16 blocks

 Creating a split for each block does not work

 Impossible to start reading at an arbitrary block in the zip stream

 Impossible for map task to read its split independently of others
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Storing gzipped streams

 Gzip uses DEFLATE, which stores data as a series of compressed blocks

 The start of each block is not distinguished in a way that allows: 

 Reader positioned at arbitrary point in stream to advance to the beginning 

of the next block

◼ There is no self-synchronizing with the stream

 Gzip does not support splitting
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HDFS does not split gzip files

 Single map will process 16 HDFS blocks

 Most of these blocks will not be local to the map

 Loss of locality

 Job is not granular … takes much longer to run
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The same story plays out if you were dealing with 

LZO files, but …

 It is possible to preprocess LZO files using an indexer tool

 Build an index of split points
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Bzip2

 This does provide a synchronization marker between blocks

 48-bit approximation of pi

 The marker is used to support splitting
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Dealing with large, unbounded files [Log files]

① Store the files uncompressed

② Use compression format that supports

 Splitting: Bzip2

 Indexing to support splitting: LZO

③ Split the file into chunks in the application and compress each chunk 

separately

 Choose chunk sizes such that the compressed chunks are approximately the 

size of an HDFS block
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Using compression in MapReduce

 To compress the output of MapReduce job

 In the job config set mapred.output.compress property to true

 Use mapred.output.compression.codec to specify the codec

 Alternatively, we can do this using the FileOutputFormat
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Using the FileOutputFormat

public class MaxTemperatureWithCompression {

   public static void main(String[] args) throws Exception {
   Job job = Job.getInstance();

job.setJarByClass(MaxTemperature.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

FileOutputFormat.setCompressOutput(job, true);
FileOutputFormat.setOutputCompressorClass(job, GzipCodec.class);

job.setMapperClass(MaxTemperatureMapper.class);
job.setCombinerClass(MaxTemperatureReducer.class);
job.setReducerClass(MaxTemperatureReducer.class);
System.exit(job.waitForCompletion(true) ? 0 : 1);

   }

}
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Main reason why Hadoop does not use Java 

Serialization

 Deserialization creates new instance of each object being deserialized

 Writable objects can be (and are often) reused

 Large MapReduce jobs often serialize/deserialize billions of records 

 Savings from not having to allocate new objects is significant
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The contents of this slide set are based on the 

following references

 Tom White. Hadoop: The Definitive Guide. 3rd Edition. O’Reilly Press. ISBN: 978-1-

449-31152-0. Chapters [3 and 4].

 JUnit release notes for version 4.4 available at 

http://junit.sourceforge.net/doc/ReleaseNotes4.4.html 
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