CSXx55: DISTRIBUTED SYSTEMS [HDFS]

Why data writes matter ...

A write is performed once

But a read? occurs many times (over)
The writes are a harbinger

of subsequent resource utilizations

and how fast Shrideep Pallickara

analytics lead to insights

Computer Science
Colorado State University

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

Frequently asked questions from the previous class
survey

If partitions are bad, why can’t we prevent them?

Why doesn’t namenode send all chunks to the client so that it can
simply forget them?

Is STONITH necessarily require more groundwork (i.e., it is slightly

more difficult to pull off) ... and so a last resort?

Why is client failure an issue for HDFS? Especially, if a part of the
libraries permeates it¢

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.2

Topics covered in today’s lecture

I i
o HDFS
o Replica placements
o1 Coherency model

o1 Compression

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.3

Network topology and Hadoop

What does two nodes being close mean?

For high-volume data processing:
Limiting factor is the rate at which data fransfers take place

Use bandwidth between the nodes as a measure of distance

Measuring bandwidth between nodes difficult

Number of pairs of nodes in a cluster grows as a square of the number of
nodes

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.4

Measuring network distances in Hadoop
=

1 Network is represented as a tree

1 The distance between the nodes is the sum of their distances to its
closest common ancestor

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.5

Bandwidth available for the following scenarios gets

progressively less
=

1 Processes on the same node
1 Different nodes on the same rack

1 Nodes on different racks in the same data center

1 Nodes in different data centers

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.6

Distance notation

A node nl on rack 7/ in data center d/ is represented as /d1/ri/nl

Distances in the four possible scenarios
distance(/d1l/ri/nl, /d1/ri/ml) =0

Processes on the same node

distance(/dl/ri/nl, /d1/ri/m2) =2

Different nodes on the same rack

distance(/d1/ri/nl, /d1/r2/n3) =4

Nodes on different racks in the same data center

distance(/d1/ri/nl, /d2/r3/n4) = 6

Nodes in different data centers

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.7

Network topology and distances

I ==
7 Hadoop does not divine network topology

1 Needs assists for doing so

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.8

REPLICA PLACEMENTS

COMPUTER SCIENCE DEPARTMENT (®%%) COLORADO STATE UNIVERSITY

Replica placement [1/2]

Trade-off between reliability, read bandwidth, and write bandwidth

Placing all replicas on a single node?

Lowest write bandwidth penalty since replication pipeline runs on a single
node

Offers no redundancy

Correlated failures

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.10

Replica placement [2/2]

Read bandwidth is high for off-rack reads

Placing replicas in different data centers

Maximizes redundancy at the the cost of bandwidth

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.11

Default replication strategy in Hadoop

Place first replica on the same node as the client

If client runs outside the cluster, 15" node is chosen at random

The second replica is placed on a different rack from the first

Chosen at random

Third replica is placed on the same rack as the second

Different node is chosen at random

Further replicas are placed on random nodes in the cluster

Avoid placing too many replicas on the same rack

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.12

Default strategy balances

Reliability

Blocks are stored on different racks

Write bandwidth

Writes traverse a single network switch

Read bandwidth

Choice of two racks to read from

Block distribution across cluster

Clients write a single block on the local rack

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS

128.13

Once the replica locations have been chosen

S 1 —
o1 A pipeline is built

o1 Pipeline takes network topology into account

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.14

COHERENCY MODEL

A quick look at assertThat in JUnit
—

1 Format

assertThat([value], [matcher statement]);

1 Examples
assertThat (x, 1s(3));
assertThat (x, is(not(4)));

assertThat (responseString,
either (containsString("color")) .or (containsString("colour")));

assertThat (myList, hasItem("3"));

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.16

Assertion syntax

Readable

Think in terms of subject, verb, and object

Assert “x is 3”

Matcher statements can be negated, combined, or mapped to a

collection

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.17

Coherency Model

For a filesystem, coherency describes data visibility of reads and

writes to a file

HDFS trades-off some POSIX requirements for performance

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.18

Creation of a file
S 15

01 After creation, it is visible in the file namespace

Path p = new Path("p");
fs.create(p);
assertThat(fs.exists(p), is(true));

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.19

Contents written to the newly created file

Not guaranteed to be visible

Even if the stream is flushed

File may appear to have length of 0

Path p = new Path("p");

OutputStream out = fs.create(p);
out.write("content".getBytes("UTF-8"));
out.flush();
assertThat(fs.getFileStatus(p).getLen(), is(OL));

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.20

Visibility of blocks during writes

Once more than a block of data is written?
The first block is visible

In general, the current block that is being written to is not visible to

other readers

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.21

The HDFS sync method

Forces all buffers to be synchronized to the datanodes

After sync () returns successfully?

All data written up to that point in the file is persisted and visible to all
clients

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.22

When to call sync ()

With no calls to sync ()

Possible to lose up to a block of data due to client or system failure

However, invocations of sync () do have overheads

Trade-off between data robustness and throughput

Frequency of sync () is application dependent

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.23

PARALLEL COPYING

nﬁﬂ COLORADO STATE UNIVERSITY

COMPUTER SCIENCE DEPARTMENT

Parallel copying with distcp

Enables copying large amounts of data to and from the Hadoop
filesystem in parallel

% hadoop distcp hdfs://namenodel/foo hdfs://namenode2/bar

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.25

distcp is implemented as a MapReduce job

Copying is done by Maps that run in parallel across the cluster

There are no reducers

Deciding the number of maps
Give each map sufficient data to minimize overheads during task setup

This is specified using the —m argument to distcp

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.26

Keeping an HDFS cluster balanced

HDFS works best when file blocks are evenly spread across the cluster
We need to ensure that distcp does not disrupt this feature

If we are transferring 1000 GB?

Specifying =m 1 would mean that a single map would do the copy
Will be slow

The first replica of each block would reside on the node running map (till the disk
fills up)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.27

COMPUTER SCIENCE DEPARTMENT

DATA INTEGRITY

Everything
Everything
Everything
In its right place
In its right place
In its right place
Right place

Everything in Its Right Place, Radiohead

@ COLORADO STATE UNIVERSITY

Data Integrity

| /O operations on disk or network carry a small chance of introducing
errors

With voluminous data movements the chances of data corruption
become high

Checksums

Data is corrupt if there is a mismatch between the original and the newly
computed checksum

There is also a small chance that the checksum is corrupt

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.29

Data integrity in HDFS

Datanodes are responsible for verifying received data before storing
the data and checksum

When clients read data from the datanode, they verify the checksum

Compare with checksum stored at the datanode

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS 1L28.30

DataBlockScanner

Each datanode runs a DataBlockScanner in the background
periodically

Verifies all blocks stored on the datanode

Guards against corruption due to bit rot in the physical storage media

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.31

Dealing with corrupted data blocks

Heal corrupted blocks

By copying one of the good replicas to produce a new, uncorrupt replica

When a client detects an error while reading block?
Report both the bad block and datanode it was reading from

Throw ChecksumException

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.32

Dealing with corrupted data blocks

Namenode marks the block replica as corrupt
Does not direct clients to it

Does not try to copy replica to another datanode

Schedules a copy of the block to be replicated on another datanode

Restore replication level for the block

Corrupt replica is then deleted

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.33

Disabling checksum

Useful if you have a corrupt file that you would like to inspect

Pass false to verifyChecksum() on FileSystem before Using
open () to read the file

From the shell, use the -ignorecrc option with the —get or the —copyTolocal

command

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.34

Client side checksumming

Done by the Hadoop LocalFileSystem

When you write a file filename
The filesystem client creates a hidden file .filename.crc in the same directory

Contains checksums for each chunk of the file

Chunk size is stored in the .crc file

Disable checksums when underlying filesystem supports this natively

Use RawLocalFileSystem instead of LocalFileSystem

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.35

When order turns to chaos

Entropy is a measure of randomness or unpredictability within data

Quantified mathematically using Shannon entropy

Low entropy means patterns
Plain text is full of them; they are easy to guess and easy to squeeze

High entropy means randomness

Encryption and compression both aim to erase the telltale patterns

High entropy! One to save space, the other to save secrets

The better you compress, the more it looks encrypted

Chaos is the price of efficiency!

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.37

Compression
—

1 Reduces space needed to store files

- Speeds up data transfers

Across network

Disk | /O

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.38

Compression formats that can be used with Hadoop

DEFLATE N/A DEFLATE .deflate

Gzip Gzip DEFLATE .9z No
Bzip2 Bzip2 Bzip2 bz2 Yes
LZO Lzop LZO Izo No*
Snappy N/A Snappy .snappy No

. ;o Pigeonhole principle

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.39

Compression Algorithms

Exhibit a space-time trade-off

Faster compression/decompression speeds usually result in smaller space
savings

Tools give some control over this trade-off at compression time
Q different options
-1 means optimize for speed

-@ means optimize for space

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.40

Compression characteristics

gzip is a general purpose compressor
Middle of the space/time trade-off

bzip2 compresses more effectively than gzip
But it is slower

bzip2 decompression speed is faster than its compression speed

But slower than other formats still

LZO and Snappy optimize for speed

Order of magnitude faster but less effective compression than gzip

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.41

A codec is the implementation of a compression-

decomﬁression c:lgori’rhm in HadooE

DEFLATE org.apache.hadoop.io.compress.DefaultCodec
gzip org.apache.hadoop.io.compress.GzipCodec
bzip2 org.apache.hadoop.io0.compress.BzZip2Codec
LZO com.hadoop.compression.lzo.LzopCodec

Snappy org.apache.hadoop.io.compress.SnappyCodec

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.42

CompressionCodec

To compress data being written to an output stream

Use codec.createOutputStream (OutputStream out)

To decompress data being read from an input stream

Use codec.createlInputStream (InputStream in)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.43

Using compression

public class StreamCompressor {

public static void main(String[] args) throws Exception {
String codecClassname = args[0];
Class<?> codecClass = Class.forName(codecClassname);
Configuration conf = new Configuration();
CompressionCodec codec = (CompressionCodec)
ReflectionUtils.newlInstance(codecClass, conf);
CompressionOutputStream out =
codec.createOutputStream(System.out);
IOUtils.copyBytes(System.in, out, 4096, false);
out.finish();

Compresses data read from standard input and writes it to standard output

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.44

Compression and input splits

Let’s look at an uncompressed file stored in HDFS
With an HFDS block size of 64 MB, a 1 GB file is stored as 16 blocks

MapReduce job will create 16 input splits

Processed independently as separate map tasks

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.45

If the gzip compressed file is 1 GB

HDES stores files as 16 blocks

Creating a split for each block does not work

Impossible to start reading at an arbitrary block in the zip stream

Impossible for map task to read its split independently of others

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.46

Storing gzipped streams

Gzip uses DEFLATE, which stores data as a series of compressed blocks

The start of each block is not distinguished in a way that allows:

Reader positioned at arbitrary point in stream to advance to the beginning
of the next block

There is no self-synchronizing with the stream

Gzip does not support splitting

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.47

HDFS does not split gzip files

Single map will process 16 HDFS blocks

Most of these blocks will not be local to the map

Loss of locality

Job is not granular ... takes much longer to run

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS 1L28.48

The same story plays out if you were dealing with

LZO files, but ...
S

0 It is possible to preprocess LZO files using an indexer tool

- Build an index of split points

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.49

Bzip2

This does provide a synchronization marker between blocks

48-bit approximation of pi

The marker is used to support splitting

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.50

Dealing with large, unbounded files [Log files]

(1) Store the files uncompressed

@ Use compression format that supports
Splitting: Bzip2
Indexing to support splitting: LZO

(3) Split the file into chunks in the application and compress each chunk

separately

Choose chunk sizes such that the compressed chunks are approximately the
size of an HDFS block

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.51

Using compression in MapReduce

To compress the output of MapReduce job
In the job config set mapred.output.compress property to true

Use mapred.output.compression.codec to specify the codec

Alternatively, we can do this using the F'ileOutputFormat

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.52

Using the FileOutputFormat

public class MaxTemperatureWithCompression {

public static void main(String[] args) throws Exception {
Job job = Job.getInstance();
job.setlarByClass(MaxTemperature.class);
FilelInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

FileOutputFormat.setCompressOutput(job, true);
FileOutputFormat.setOutputCompressorClass(job, GzipCodec.class);

job.setMapperClass(MaxTemperatureMapper.class);
job.setCombinerClass(MaxTemperatureReducer.class);
job.setReducerClass(MaxTemperatureReducer.class);
System.exit(job.waitForCompletion(true) ? 0 : 1);

}
Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS [28.53

Main reason why Hadoop does not use Java
Serialization
Deserialization creates new instance of each object being deserialized
Writable objects can be (and are often) reused

Large MapReduce jobs often serialize /deserialize billions of records

Savings from not having to allocate new obijects is significant

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.54

The contents of this slide set are based on the

following references
——

o1 Tom White. Hadoop: The Definitive Guide. 3™ Edition. O’Reilly Press. ISBN: 978-1-
449-31152-0. Chapters [3 and 4].

=1 JUnit release notes for version 4.4 available at
http: / /junit.sourceforge.net/doc/ReleaseNotes4.4.html

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.55

	Slide 1: CSx55: Distributed Systems [HDFS]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in today’s lecture
	Slide 4: Network topology and Hadoop
	Slide 5: Measuring network distances in Hadoop
	Slide 6: Bandwidth available for the following scenarios gets progressively less
	Slide 7: Distance notation
	Slide 8: Network topology and distances
	Slide 9: Replica Placements
	Slide 10: Replica placement [1/2]
	Slide 11: Replica placement [2/2]
	Slide 12: Default replication strategy in Hadoop
	Slide 13: Default strategy balances
	Slide 14: Once the replica locations have been chosen
	Slide 15: Coherency Model
	Slide 16: A quick look at assertThat in JUnit
	Slide 17: Assertion syntax
	Slide 18: Coherency Model
	Slide 19: Creation of a file
	Slide 20: Contents written to the newly created file
	Slide 21: Visibility of blocks during writes
	Slide 22: The HDFS sync method
	Slide 23: When to call sync()
	Slide 24: Parallel copying
	Slide 25: Parallel copying with distcp
	Slide 26: distcp is implemented as a MapReduce job
	Slide 27: Keeping an HDFS cluster balanced
	Slide 28: Data Integrity
	Slide 29: Data Integrity
	Slide 30: Data integrity in HDFS
	Slide 31: DataBlockScanner
	Slide 32: Dealing with corrupted data blocks
	Slide 33: Dealing with corrupted data blocks
	Slide 34: Disabling checksum
	Slide 35: Client side checksumming
	Slide 36: Compression
	Slide 37: When order turns to chaos
	Slide 38: Compression
	Slide 39: Compression formats that can be used with Hadoop
	Slide 40: Compression Algorithms
	Slide 41: Compression characteristics
	Slide 42: A codec is the implementation of a compression-decompression algorithm in Hadoop
	Slide 43: CompressionCodec
	Slide 44: Using compression
	Slide 45: Compression and input splits
	Slide 46: If the gzip compressed file is 1 GB
	Slide 47: Storing gzipped streams
	Slide 48: HDFS does not split gzip files
	Slide 49: The same story plays out if you were dealing with LZO files, but …
	Slide 50: Bzip2
	Slide 51: Dealing with large, unbounded files [Log files]
	Slide 52: Using compression in MapReduce
	Slide 53: Using the FileOutputFormat
	Slide 54: Main reason why Hadoop does not use Java Serialization
	Slide 55: The contents of this slide set are based on the following references

