CSXx55: DISTRIBUTED SYSTEMS [SPARK]

Spark: What fuels it?

Memory residency, of course
With frugal 1/O that it must reinforce

How? By ...
Procrastinating (through lazy evaluations)
Avoiding repeated sweeps

And doing it only as a last resort Shrideep Pallickara

Computer Science
Colorado State University

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

Frequently asked questions from the previous class
survey

Can datanodes be “promoted” to being a “namenode” ... like what
happens in super-peer networks?

How do you know if the checksums itself have been corrupted?
Why do bit flip occurrences show up more commonly in data centers?

In distributed copy (distcp), how come a sole destination is “pulling”
data? Shouldn’t mappers have data locality?

If a file size increases after compression, does it not defeat the very
purpose of compression?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.2

Topics covered in this lecture

I
1 HDFS Wrap-up

o Spark
Software stack
Interactive shells in Spark

Core Spark concepts

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.3

HDPS COMPRESSION WRAP-UP

COMPUTER SCIENCE DEPARTMENT @ COLORADDO STATE UNIVERSITY

Compression formats that can be used with Hadoop

DEFLATE N/A DEFLATE .deflate

Gzip Gzip DEFLATE .9z No
Bzip2 Bzip2 Bzip2 bz2 Yes
LZO Lzop LZO Izo No*
Snappy N/A Snappy .snappy No

. ;o Pigeonhole principle

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.5

Compression Algorithms

Exhibit a space-time trade-off

Faster compression/decompression speeds usually result in smaller space
savings

Tools give some control over this trade-off at compression time
Q different options
-1 means optimize for speed

-@ means optimize for space

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.6

Compression characteristics

gzip is a general purpose compressor
Middle of the space/time trade-off

bzip2 compresses more effectively than gzip
But it is slower

bzip2 decompression speed is faster than its compression speed

But slower than other formats still

LZO and Snappy optimize for speed

Order of magnitude faster but less effective compression than gzip

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.7

A codec is the implementation of a compression-

decomﬁression c:lgori’rhm in HadooE

DEFLATE org.apache.hadoop.io.compress.DefaultCodec
gzip org.apache.hadoop.io.compress.GzipCodec
bzip2 org.apache.hadoop.io0.compress.BzZip2Codec
LZO com.hadoop.compression.lzo.LzopCodec

Snappy org.apache.hadoop.io.compress.SnappyCodec

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.8

CompressionCodec

To compress data being written to an output stream

Use codec.createOutputStream (OutputStream out)

To decompress data being read from an input stream

Use codec.createlInputStream (InputStream in)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.9

Using compression

public class StreamCompressor {

public static void main(String[] args) throws Exception {
String codecClassname = args[0];
Class<?> codecClass = Class.forName(codecClassname);
Configuration conf = new Configuration();
CompressionCodec codec = (CompressionCodec)
ReflectionUtils.newlInstance(codecClass, conf);
CompressionOutputStream out =
codec.createOutputStream(System.out);
IOUtils.copyBytes(System.in, out, 4096, false);
out.finish();

Compresses data read from standard input and writes it to standard output

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.10

Compression and input splits

Let’s look at an uncompressed file stored in HDFS
With an HFDS block size of 64 MB, a 1 GB file is stored as 16 blocks

MapReduce job will create 16 input splits

Processed independently as separate map tasks

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.11

If the gzip compressed file is 1 GB

HDES stores files as 16 blocks

Creating a split for each block does not work

Impossible to start reading at an arbitrary block in the zip stream

Impossible for map task to read its split independently of others

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.12

Storing gzipped streams

Gzip uses DEFLATE, which stores data as a series of compressed blocks

The start of each block is not distinguished in a way that allows:

Reader positioned at arbitrary point in stream to advance to the beginning
of the next block

There is no self-synchronizing with the stream

Gzip does not support splitting

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.13

HDFS does not split gzip files

Single map will process 16 HDFS blocks

Most of these blocks will not be local to the map

Loss of locality

Job is not granular ... takes much longer to run

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.14

The same story plays out if you were dealing with

LZO files, but ...
S

0 It is possible to preprocess LZO files using an indexer tool

- Build an index of split points

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.15

Bzip2

This does provide a synchronization marker between blocks

48-bit approximation of pi

The marker is used to support splitting

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.16

Dealing with large, unbounded files [Log files]

(1) Store the files uncompressed

@ Use compression format that supports
Splitting: Bzip2
Indexing to support splitting: LZO

(3) Split the file into chunks in the application and compress each chunk

separately

Choose chunk sizes such that the compressed chunks are approximately the
size of an HDFS block

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.17

Using compression in MapReduce

To compress the output of MapReduce job
In the job config set mapred.output.compress property to true

Use mapred.output.compression.codec to specify the codec

Alternatively, we can do this using the F'ileOutputFormat

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.18

Using the FileOutputFormat

public class MaxTemperatureWithCompression {

public static void main(String[] args) throws Exception {
Job job = Job.getInstance();
job.setlarByClass(MaxTemperature.class);
FilelInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

FileOutputFormat.setCompressOutput(job, true);
FileOutputFormat.setOutputCompressorClass(job, GzipCodec.class);

job.setMapperClass(MaxTemperatureMapper.class);
job.setCombinerClass(MaxTemperatureReducer.class);
job.setReducerClass(MaxTemperatureReducer.class);
System.exit(job.waitForCompletion(true) ? 0 : 1);

}
Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK [29.19

Main reason why Hadoop does not use Java
Serialization
Deserialization creates new instance of each object being deserialized
Writable objects can be (and are often) reused

Large MapReduce jobs often serialize /deserialize billions of records

Savings from not having to allocate new obijects is significant

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.20

APACHE SPARK

= E aEEEBEEEEE

As distributed data analytics have grown common ...

Practitioners have sought easier tools for the task

Apache Spark has emerged as one of the most popular

Extending and generalizing MapReduce

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.22

Spark: What is it?

Cluster computing platform

Designed to be fast and general purpose

Speed
Extends MapReduce to support more types of computations

Interactive queries, iterative tasks, and stream processing

Why is speed important?

Difference between waiting for hours versus exploring data interactively

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.23

Spark: Influences and Innovations

Spark has inherited parts of its API, design, and supported formats
from other existing computational frameworks

Particularly DryadLINQ

Spark’s internals, especially how it handles failures, differ from many
traditional systems

Spark’s ability to leverage lazy evaluation within memory
computations makes it particularly unique

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.24

Where does Spark fit in the Analytics Ecosystem?

Spark provides methods to process data in parallel that are
generalizable

On its own, Spark is not a data storage solution

Performs computations in Spark JVMs that last only for the duration of a
Spark application

Spark is used in tandem with:
A distributed storage system (e.g., HDFS, Cassandra, or S3)

To house the data processed with Spark

A cluster manager — to orchestrate the distribution of Spark applications
across the cluster

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.25

Key enabling idea in Spark

I
7 Memory resident data

1 Spark loads data into the memory of worker nodes

Processing is performed on memory-resident data

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.26

A look at the memory hierarchy

Processor cycle 0.5 ns (2 GHz) 1 second
Cache access 1 ns (1 GHz) 2 seconds
Memory access 70 ns 140 seconds
Context switch 5,000 ns (5 ps) 167 minutes
Disk access 7,000,000 ns (7 ms) 162 days
Quantum 100,000,000 ns (100 ms) 6.3 years

Source: Kay Robbins & Steve Robbins. Unix Systems Programming, 2"¢ edition, Prentice Hall.
Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY 0 upUTER SCIENCE DEPARTMENT SPARK L29.27

Spark covers a wide range of workloads

Batch applications
lterative algorithms
Queries

Stream processing

This has previously required multiple, independent tools

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.28

Running Spark

You can use Spark from Python, Java, Scala, R, or SQL

Spark itself is written in Scala, and runs on the Java Virtual Machine

(JVM)

You can run Spark either on your laptop or a cluster, all you need is an
installation of Java

If you want to use the Python API, you will also need a Python
interpreter (version 2.7 or later)

If you want to use R, you will need a version of R on your machine

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.29

Spark integrates well with other tools
—

7 Can run in Hadoop clusters

1 Access Hadoop data sources, including Cassandra

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK 1L29.30

At its core, Spark is a computational engine

Spark is responsible for several aspects of applications that comprise

Many tasks across many machines (compute clusters)

Responsibilities include:
(1) Scheduling
(2) Distributions
(3) Monitoring

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.31

THE SPARK SOFTWARE STACK

COMPUTER SCIENCE DEPARTMENT (®%%) COLORADO STATE UNIVERSITY

The Spark stack
B

Spark SQL Spark Miib & ML GraphX
structured Streaming machine Graph
data real-time learning processing

Standalone Scheduler YARN Mesos

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.33

Benefits of tight integration [1/2]

All libraries and higher-level components benefit from improvements at
the lower layers

E.g.: Spark’s core engine adds optimization? SQL and ML libraries
automatically speed-up as well

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK 1L29.34

Benefits of tight integration [2/2]

Biggest advantage is ability to build applications that seamlessly
combine different processing models

An application may use ML to classify data in real time as it is being

ingested
Analysts can query this resulting data, also in real time, via SQL (e.g.: join

data with unstructured log-files)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.35

Spark Core

Basic functionality of Spark

Task scheduling, memory management, fault recovery, and interacting
with storage systems
Also, the API that defines Resilient Distributed Datasets (RDDs)

Spark’s main programming abstraction
Represents collection of data items dispersed across many compute nodes

Can be manipulated concurrently (parallel)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.36

Spark SQL

Package for working with structured data

Allows querying data using SQL and HQL (Hive Query Language)
Data sources: Hive tables, Parquet, and JSON

Allows intermixing queries with programmatic data manipulations
support by RDDs

Using Scala, Java, and Python

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.37

(Semi)structured data and Spark SQL

Spark SQL defines an interface for a (semi)structured data type,
called DataFrames

And a (semi)structured, typed version of RDDs called Datasets
Spark SQL is a very important component for Spark performance

Much of what can be accomplished with Spark Core can be done by
leveraging Spark SQL

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.38

Spark Streaming

Enables processing of live streams of data from sources such as:
Logfiles generated by production webservers

Messages containing web service status updates

Uses the scheduling of the Spark Core for streaming analytics on
minibatches of data

Has a number of unique considerations, such as the window sizes used
for batches

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.39

MLib

Library that contains common machine learning functionality

Algorithms include:

Classification, regression, clustering, and collaborative filtering

Low-level primitives

Generic gradient descent optimization algorithm

Alternatives?
Mahout, sci—kit learn, VW, WEKA, and R among others

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.40

What about Spark ML?

Has existed since Spark 1.2

Spark ML provides a higher-level APl than MLIib

Goal is to allow users to more easily create practical machine learning
pipelines

Spark MLIib is primarily built on top of RDDs and uses functions from Spark
Core, while ML is built on top of Spark SQL DataFrames

The plan originally was to move over to ML and deprecate MLlib

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.41

Graph X

Library for manipulating graphs

Graph-parallel computations

Extends Spark RDD API

Create a directed graph, with arbitrary properties attached to each vertex
and edge

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK 1L29.42

Cluster Managers

Spark runs over a variety of cluster managers

These include:
Hadoop YARN
Apache Mesos

Standalone Scheduler

Included within Spark

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK 1L29.43

Storage Layers for Spark

Spark can create distributed datasets from any file stored in HDFS

Plus, other storage systems supported by the Hadoop API

Amazon S3, Cassandra, Hive, HBase, etc.

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.44

INTERACTIVE SHELLS IN SPARK

COMPUTER SCIENCE DEPARTMENT (®%%) COLORADO STATE UNIVERSITY

Spark Shells

Interactive [Python and Scald]

Similar to shells like Bash or Windows command prompt
Ad hoc data analysis

Traditional shells manipulate data using disk and memory on a single
machine

Spark shells allow interaction with data that is distributed across many
machines

Spark manages complexity of distributing processing

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.46

Several software were designed to run on the Java
Virtual Machine

Languages that compile to run on the JVM and can interact with Java
software packages but are not actually Java

There are a number of non-Java JVM languages

The two most popular ones used in real-time application development: Scala
and Clojure

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.47

Scala

Has spent most of its life as an academic language
Still largely developed at universities

Has a rich standard library that has made it appealing to developers of
high-performance server applications

Like Java, Scala is a strongly typed object-oriented language

Includes many features from functional programming languages that are not
in standard Java

Interestingly, since version 8, Java now incorporates several of the more
useful features of Scala and other functional languages.

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK 1L29.48

What is functional programming?

When a method is compiled by Javaq, it is converted to instructions
called byte code and ...

Then largely disappears from the Java environment

Except when it is called by other methods

In a functional language, functions are treated the same way as data

Can be stored in objects similar to integers or strings, returned from
functions, and passed to other functions

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.49

What about Clojure?
=

-1 Based on Lisp

o Javascript?e
Name was a marketing gimmick

Closer to Clojure and Scala than it is to Java

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.50

The contents of this slide-set are based on the
following references

Learning Spark: Lightning-Fast Big Data Analysis. 1st Edition. Holden Karau, Andy
Konwinski, Patrick Wendell, and Matei Zaharia. O Reilly. 2015. ISBN-13: 978-
1449358624. [Chapters 1-4]

Karau, Holden; Warren, Rachel. High Performance Spark: Best Practices for Scaling
and Optimizing Apache Spark. O'Reilly Media. 2017. ISBN-13: 978-1491943205.

[Chapter 2]
Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data. Byron Ellis.
Wiley. [Chapter 2]

Chambers, Bill,Zaharia, Matei. Spark: The Definitive Guide: Big Data Processing
Made Simple. O'Reilly Media. ISBN-13: 978-1491912218. 2018. [Chapters 1, 2,

and 3].

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.51

	Slide 1: CSx55: Distributed Systems [Spark]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: HDPS Compression Wrap-up
	Slide 5: Compression formats that can be used with Hadoop
	Slide 6: Compression Algorithms
	Slide 7: Compression characteristics
	Slide 8: A codec is the implementation of a compression-decompression algorithm in Hadoop
	Slide 9: CompressionCodec
	Slide 10: Using compression
	Slide 11: Compression and input splits
	Slide 12: If the gzip compressed file is 1 GB
	Slide 13: Storing gzipped streams
	Slide 14: HDFS does not split gzip files
	Slide 15: The same story plays out if you were dealing with LZO files, but …
	Slide 16: Bzip2
	Slide 17: Dealing with large, unbounded files [Log files]
	Slide 18: Using compression in MapReduce
	Slide 19: Using the FileOutputFormat
	Slide 20: Main reason why Hadoop does not use Java Serialization
	Slide 21: Apache Spark
	Slide 22: As distributed data analytics have grown common ...
	Slide 23: Spark: What is it?
	Slide 24: Spark: Influences and Innovations
	Slide 25: Where does Spark fit in the Analytics Ecosystem?
	Slide 26: Key enabling idea in Spark
	Slide 27: A look at the memory hierarchy
	Slide 28: Spark covers a wide range of workloads
	Slide 29: Running Spark
	Slide 30: Spark integrates well with other tools
	Slide 31: At its core, Spark is a computational engine
	Slide 32: The Spark Software Stack
	Slide 33: The Spark stack
	Slide 34: Benefits of tight integration [1/2]
	Slide 35: Benefits of tight integration [2/2]
	Slide 36: Spark Core
	Slide 37: Spark SQL
	Slide 38: (Semi)structured data and Spark SQL
	Slide 39: Spark Streaming
	Slide 40: MLib
	Slide 41: What about Spark ML?
	Slide 42: Graph X
	Slide 43: Cluster Managers
	Slide 44: Storage Layers for Spark
	Slide 45: Interactive Shells in Spark
	Slide 46: Spark Shells
	Slide 47: Several software were designed to run on the Java Virtual Machine
	Slide 48: Scala
	Slide 49: What is functional programming?
	Slide 50: What about Clojure?
	Slide 51: The contents of this slide-set are based on the following references

