
COMPUTER SCIENCE DEPARTMENT

CSX55: DISTRIBUTED SYSTEMS [SPARK]

Shrideep Pallickara

Computer Science

Colorado State University

Spark: What fuels it?

Memory residency, of course

 With frugal I/O that it must reinforce

How? By …

 Procrastinating (through lazy evaluations)

 Avoiding repeated sweeps

 And doing it only as a last resort

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.2

Frequently asked questions from the previous class

survey

 Can datanodes be “promoted” to being a “namenode” … like what

happens in super-peer networks?

 How do you know if the checksums itself have been corrupted?

 Why do bit flip occurrences show up more commonly in data centers?

 In distributed copy (distcp), how come a sole destination is “pulling”

data? Shouldn’t mappers have data locality?

 If a file size increases after compression, does it not defeat the very

purpose of compression?

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.3

Topics covered in this lecture

 HDFS Wrap-up

 Spark

 Software stack

 Interactive shells in Spark

 Core Spark concepts

COMPUTER SCIENCE DEPARTMENT

HDPS COMPRESSION WRAP-UP

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.5

Compression formats that can be used with Hadoop

Compression

format

Tool Algorithm Filename

extension

Splittable?

DEFLATE N/A DEFLATE .deflate No

Gzip Gzip DEFLATE .gz No

Bzip2 Bzip2 Bzip2 .bz2 Yes

LZO Lzop LZO .lzo No*

Snappy N/A Snappy .snappy No

Pigeonhole principle

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.6

Compression Algorithms

 Exhibit a space-time trade-off

 Faster compression/decompression speeds usually result in smaller space

savings

 Tools give some control over this trade-off at compression time

▪ 9 different options

▪ -1 means optimize for speed

▪ -9 means optimize for space

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.7

Compression characteristics

 gzip is a general purpose compressor

 Middle of the space/time trade-off

 bzip2 compresses more effectively than gzip

 But it is slower

 bzip2 decompression speed is faster than its compression speed

◼ But slower than other formats still

 LZO and Snappy optimize for speed

 Order of magnitude faster but less effective compression than gzip

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.8

A codec is the implementation of a compression-

decompression algorithm in Hadoop

Compression

format

Hadoop CompressionCodec

DEFLATE org.apache.hadoop.io.compress.DefaultCodec

gzip org.apache.hadoop.io.compress.GzipCodec

bzip2 org.apache.hadoop.io.compress.BZip2Codec

LZO com.hadoop.compression.lzo.LzopCodec

Snappy org.apache.hadoop.io.compress.SnappyCodec

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.9

CompressionCodec

 To compress data being written to an output stream

▪ Use codec.createOutputStream(OutputStream out)

 To decompress data being read from an input stream

▪ Use codec.createInputStream(InputStream in)

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.10

Using compression

public class StreamCompressor {

 public static void main(String[] args) throws Exception {
 String codecClassname = args[0];
 Class<?> codecClass = Class.forName(codecClassname);
 Configuration conf = new Configuration();
 CompressionCodec codec = (CompressionCodec)
 ReflectionUtils.newInstance(codecClass, conf);
 CompressionOutputStream out =
 codec.createOutputStream(System.out);
 IOUtils.copyBytes(System.in, out, 4096, false);
 out.finish();
 }
}

Compresses data read from standard input and writes it to standard output

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.11

Compression and input splits

 Let’s look at an uncompressed file stored in HDFS

 With an HFDS block size of 64 MB, a 1 GB file is stored as 16 blocks

 MapReduce job will create 16 input splits

◼ Processed independently as separate map tasks

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.12

If the gzip compressed file is 1 GB

 HDFS stores files as 16 blocks

 Creating a split for each block does not work

 Impossible to start reading at an arbitrary block in the zip stream

 Impossible for map task to read its split independently of others

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.13

Storing gzipped streams

 Gzip uses DEFLATE, which stores data as a series of compressed blocks

 The start of each block is not distinguished in a way that allows:

 Reader positioned at arbitrary point in stream to advance to the beginning

of the next block

◼ There is no self-synchronizing with the stream

 Gzip does not support splitting

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.14

HDFS does not split gzip files

 Single map will process 16 HDFS blocks

 Most of these blocks will not be local to the map

 Loss of locality

 Job is not granular … takes much longer to run

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.15

The same story plays out if you were dealing with

LZO files, but …

 It is possible to preprocess LZO files using an indexer tool

 Build an index of split points

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.16

Bzip2

 This does provide a synchronization marker between blocks

 48-bit approximation of pi

 The marker is used to support splitting

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.17

Dealing with large, unbounded files [Log files]

① Store the files uncompressed

② Use compression format that supports

 Splitting: Bzip2

 Indexing to support splitting: LZO

③ Split the file into chunks in the application and compress each chunk

separately

 Choose chunk sizes such that the compressed chunks are approximately the

size of an HDFS block

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.18

Using compression in MapReduce

 To compress the output of MapReduce job

 In the job config set mapred.output.compress property to true

 Use mapred.output.compression.codec to specify the codec

 Alternatively, we can do this using the FileOutputFormat

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.19

Using the FileOutputFormat

public class MaxTemperatureWithCompression {

 public static void main(String[] args) throws Exception {
 Job job = Job.getInstance();

job.setJarByClass(MaxTemperature.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

FileOutputFormat.setCompressOutput(job, true);
FileOutputFormat.setOutputCompressorClass(job, GzipCodec.class);

job.setMapperClass(MaxTemperatureMapper.class);
job.setCombinerClass(MaxTemperatureReducer.class);
job.setReducerClass(MaxTemperatureReducer.class);
System.exit(job.waitForCompletion(true) ? 0 : 1);

 }

}

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.20

Main reason why Hadoop does not use Java

Serialization

 Deserialization creates new instance of each object being deserialized

 Writable objects can be (and are often) reused

 Large MapReduce jobs often serialize/deserialize billions of records

 Savings from not having to allocate new objects is significant

COMPUTER SCIENCE DEPARTMENT

APACHE SPARK

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.22

As distributed data analytics have grown common ...

 Practitioners have sought easier tools for the task

 Apache Spark has emerged as one of the most popular

 Extending and generalizing MapReduce

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.23

Spark: What is it?

 Cluster computing platform

 Designed to be fast and general purpose

 Speed

 Extends MapReduce to support more types of computations

◼ Interactive queries, iterative tasks, and stream processing

 Why is speed important?

 Difference between waiting for hours versus exploring data interactively

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.24

Spark: Influences and Innovations

 Spark has inherited parts of its API, design, and supported formats

from other existing computational frameworks

 Particularly DryadLINQ

 Spark’s internals, especially how it handles failures, differ from many

traditional systems

 Spark’s ability to leverage lazy evaluation within memory

computations makes it particularly unique

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.25

Where does Spark fit in the Analytics Ecosystem?

 Spark provides methods to process data in parallel that are
generalizable

 On its own, Spark is not a data storage solution

 Performs computations in Spark JVMs that last only for the duration of a
Spark application

 Spark is used in tandem with:

 A distributed storage system (e.g., HDFS, Cassandra, or S3)

◼ To house the data processed with Spark

 A cluster manager — to orchestrate the distribution of Spark applications
across the cluster

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.26

Key enabling idea in Spark

 Memory resident data

 Spark loads data into the memory of worker nodes

 Processing is performed on memory-resident data

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.27

A look at the memory hierarchy

Item time Scaled time in human terms

(2 billion times slower)

Processor cycle

Cache access

Memory access

Context switch

Disk access

Quantum

0.5 ns (2 GHz) 1 second

1 ns (1 GHz) 2 seconds

70 ns 140 seconds

5,000 ns (5 μs) 167 minutes

7,000,000 ns (7 ms) 162 days

100,000,000 ns (100 ms) 6.3 years

Source: Kay Robbins & Steve Robbins. Unix Systems Programming, 2nd edition, Prentice Hall.

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.28

Spark covers a wide range of workloads

 Batch applications

 Iterative algorithms

 Queries

 Stream processing

 This has previously required multiple, independent tools

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.29

Running Spark

 You can use Spark from Python, Java, Scala, R, or SQL

 Spark itself is written in Scala, and runs on the Java Virtual Machine

(JVM)

 You can run Spark either on your laptop or a cluster, all you need is an

installation of Java

 If you want to use the Python API, you will also need a Python

interpreter (version 2.7 or later)

 If you want to use R, you will need a version of R on your machine

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.30

Spark integrates well with other tools

 Can run in Hadoop clusters

 Access Hadoop data sources, including Cassandra

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.31

At its core, Spark is a computational engine

 Spark is responsible for several aspects of applications that comprise

 Many tasks across many machines (compute clusters)

 Responsibilities include:

① Scheduling

② Distributions

③ Monitoring

COMPUTER SCIENCE DEPARTMENT

THE SPARK SOFTWARE STACK

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.33

The Spark stack

Spark Core

YARN MesosStandalone Scheduler

Spark SQL

structured

data

Spark

Streaming

real-time

Mlib & ML

machine

learning

GraphX

Graph

processing

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.34

Benefits of tight integration [1/2]

 All libraries and higher-level components benefit from improvements at

the lower layers

 E.g.: Spark’s core engine adds optimization? SQL and ML libraries

automatically speed-up as well

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.35

Benefits of tight integration [2/2]

 Biggest advantage is ability to build applications that seamlessly

combine different processing models

 An application may use ML to classify data in real time as it is being

ingested

 Analysts can query this resulting data, also in real time, via SQL (e.g.: join

data with unstructured log-files)

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.36

Spark Core

 Basic functionality of Spark

 Task scheduling, memory management, fault recovery, and interacting

with storage systems

 Also, the API that defines Resilient Distributed Datasets (RDDs)

 Spark’s main programming abstraction

 Represents collection of data items dispersed across many compute nodes

◼ Can be manipulated concurrently (parallel)

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.37

Spark SQL

 Package for working with structured data

 Allows querying data using SQL and HQL (Hive Query Language)

 Data sources: Hive tables, Parquet, and JSON

 Allows intermixing queries with programmatic data manipulations

support by RDDs

 Using Scala, Java, and Python

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.38

(Semi)structured data and Spark SQL

 Spark SQL defines an interface for a (semi)structured data type,

called DataFrames

 And a (semi)structured, typed version of RDDs called Datasets

 Spark SQL is a very important component for Spark performance

 Much of what can be accomplished with Spark Core can be done by

leveraging Spark SQL

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.39

Spark Streaming

 Enables processing of live streams of data from sources such as:

 Logfiles generated by production webservers

 Messages containing web service status updates

 Uses the scheduling of the Spark Core for streaming analytics on

minibatches of data

 Has a number of unique considerations, such as the window sizes used

for batches

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.40

MLib

 Library that contains common machine learning functionality

 Algorithms include:

 Classification, regression, clustering, and collaborative filtering

 Low-level primitives

 Generic gradient descent optimization algorithm

 Alternatives?

 Mahout, sci–kit learn, VW, WEKA, and R among others

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.41

What about Spark ML?

 Has existed since Spark 1.2

 Spark ML provides a higher-level API than MLlib

 Goal is to allow users to more easily create practical machine learning

pipelines

 Spark MLlib is primarily built on top of RDDs and uses functions from Spark

Core, while ML is built on top of Spark SQL DataFrames

 The plan originally was to move over to ML and deprecate MLlib

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.42

Graph X

 Library for manipulating graphs

 Graph-parallel computations

 Extends Spark RDD API

 Create a directed graph, with arbitrary properties attached to each vertex

and edge

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.43

Cluster Managers

 Spark runs over a variety of cluster managers

 These include:

 Hadoop YARN

 Apache Mesos

 Standalone Scheduler

◼ Included within Spark

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.44

Storage Layers for Spark

 Spark can create distributed datasets from any file stored in HDFS

 Plus, other storage systems supported by the Hadoop API

 Amazon S3, Cassandra, Hive, HBase, etc.

COMPUTER SCIENCE DEPARTMENT

INTERACTIVE SHELLS IN SPARK

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.46

Spark Shells

 Interactive [Python and Scala]

 Similar to shells like Bash or Windows command prompt

 Ad hoc data analysis

 Traditional shells manipulate data using disk and memory on a single

machine

 Spark shells allow interaction with data that is distributed across many

machines

 Spark manages complexity of distributing processing

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.47

Several software were designed to run on the Java

Virtual Machine

 Languages that compile to run on the JVM and can interact with Java

software packages but are not actually Java

 There are a number of non-Java JVM languages

 The two most popular ones used in real-time application development: Scala

and Clojure

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.48

Scala

 Has spent most of its life as an academic language

 Still largely developed at universities

 Has a rich standard library that has made it appealing to developers of

high-performance server applications

 Like Java, Scala is a strongly typed object-oriented language

 Includes many features from functional programming languages that are not

in standard Java

 Interestingly, since version 8, Java now incorporates several of the more

useful features of Scala and other functional languages.

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.49

What is functional programming?

 When a method is compiled by Java, it is converted to instructions

called byte code and …

 Then largely disappears from the Java environment

◼ Except when it is called by other methods

 In a functional language, functions are treated the same way as data

 Can be stored in objects similar to integers or strings, returned from

functions, and passed to other functions

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.50

What about Clojure?

 Based on Lisp

 Javascript?

 Name was a marketing gimmick

 Closer to Clojure and Scala than it is to Java

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.51

The contents of this slide-set are based on the

following references

 Learning Spark: Lightning-Fast Big Data Analysis. 1st Edition. Holden Karau, Andy
Konwinski, Patrick Wendell, and Matei Zaharia. O'Reilly. 2015. ISBN-13: 978-
1449358624. [Chapters 1-4]

 Karau, Holden; Warren, Rachel. High Performance Spark: Best Practices for Scaling
and Optimizing Apache Spark. O'Reilly Media. 2017. ISBN-13: 978-1491943205.
[Chapter 2]

 Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data. Byron Ellis.
Wiley. [Chapter 2]

 Chambers, Bill,Zaharia, Matei. Spark: The Definitive Guide: Big Data Processing
Made Simple. O'Reilly Media. ISBN-13: 978-1491912218. 2018. [Chapters 1, 2,
and 3].

	Slide 1: CSx55: Distributed Systems [Spark]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: HDPS Compression Wrap-up
	Slide 5: Compression formats that can be used with Hadoop
	Slide 6: Compression Algorithms
	Slide 7: Compression characteristics
	Slide 8: A codec is the implementation of a compression-decompression algorithm in Hadoop
	Slide 9: CompressionCodec
	Slide 10: Using compression
	Slide 11: Compression and input splits
	Slide 12: If the gzip compressed file is 1 GB
	Slide 13: Storing gzipped streams
	Slide 14: HDFS does not split gzip files
	Slide 15: The same story plays out if you were dealing with LZO files, but …
	Slide 16: Bzip2
	Slide 17: Dealing with large, unbounded files [Log files]
	Slide 18: Using compression in MapReduce
	Slide 19: Using the FileOutputFormat
	Slide 20: Main reason why Hadoop does not use Java Serialization
	Slide 21: Apache Spark
	Slide 22: As distributed data analytics have grown common ...
	Slide 23: Spark: What is it?
	Slide 24: Spark: Influences and Innovations
	Slide 25: Where does Spark fit in the Analytics Ecosystem?
	Slide 26: Key enabling idea in Spark
	Slide 27: A look at the memory hierarchy
	Slide 28: Spark covers a wide range of workloads
	Slide 29: Running Spark
	Slide 30: Spark integrates well with other tools
	Slide 31: At its core, Spark is a computational engine
	Slide 32: The Spark Software Stack
	Slide 33: The Spark stack
	Slide 34: Benefits of tight integration [1/2]
	Slide 35: Benefits of tight integration [2/2]
	Slide 36: Spark Core
	Slide 37: Spark SQL
	Slide 38: (Semi)structured data and Spark SQL
	Slide 39: Spark Streaming
	Slide 40: MLib
	Slide 41: What about Spark ML?
	Slide 42: Graph X
	Slide 43: Cluster Managers
	Slide 44: Storage Layers for Spark
	Slide 45: Interactive Shells in Spark
	Slide 46: Spark Shells
	Slide 47: Several software were designed to run on the Java Virtual Machine
	Slide 48: Scala
	Slide 49: What is functional programming?
	Slide 50: What about Clojure?
	Slide 51: The contents of this slide-set are based on the following references

