CS X55: DISTRIBUTED SYSTEMS [SPARK]

Spark: It’s all about transformation and actions

Transformations
Wrangle with the data
Consume, and beget, an RDD
Flock together... to form daisy chains

Shrideep Pallickara

But it is actions Com pufer Science
That trigger evaluations . .
Providing them potency Colorado State Unive rsity

Revealing their expressive power
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Frequently asked questions from the previous class
survey

Why use MapReduce?

What if the data is too big to fit in memory of a large, distributed
cluster?

Does Spark Streaming relate to streaming movies?
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Topics covered in this lecture

I
o Spark APIs

1 Resilient Distributed Datasets

1 Common Transformations and Actions
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SPARK APIs
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Spark APls

Spark has two fundamental sets of APls:
The low-level “unstructured” APIs, and

The higher-level structured APlIs
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Structured APlIs

Structured APls are a tool for manipulating all sorts of data

From unstructured log files to semi-structured CSV files and highly structured
Parquet files

Refers to three core types of distributed collection APls:
Datasets
DataFrames
SQL tables and views

Majority of the Structured APIs apply to both batch and streaming
computation
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Spark’s Toolset

Structured Advanced Libraries &
Streaming Analytics Ecosystem

Structured APlIs
Datasets DataFrames SQLs

Low Level APIs
RDDs Distributed variables
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Spark has two notions of structured collections:
DataFrames and Datasets

DataFrames and Datasets are (distributed) table-like collections with
well-defined rows and columns

Each column:

Must have the same number of rows as all the other columns (although you
can use null to specify the absence of a value)

Has type information that must be consistent for every row in the collection
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DataFrames versus Datasets
—

-1 DataFrames are considered “untyped”

-1 Datasets are considered “typed”
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How does Spark view DataFrames and Datasets?

To Spark, DataFrames and Datasets represent immutable, lazily
evaluated plans that specify what operations to apply to data
residing at a location to generate some output

When we perform an action on a DataFrame, we instruct Spark to
perform the actual transformations and return the result

These represent plans of how to manipulate rows and columns to
compute the user’s desired result
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The DataFrame is the most common Structured API

Simply represents a table of data with rows and columns

The list that defines the columns and the types within those columns is
called the schema
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The DataFrame concept is not unique to Spark

R and Python both have similar concepts

However, Python/R DataFrames (with some exceptions) exist on one machine

rather than multiple machines
This limits what you can do with a given DataFrame to the resources that
exist on that specific machine

A Spark DataFrame can span thousands of computers
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CORE SPARK CONCEPTS
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Core Spark Concepts
N

01 Drivers
1 SparkContext

1 Executors
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Spark in a nutshell

Spark allows users to write a program for the driver (or master node) on o
cluster computing system that can perform operations on data in parallel

Spark represents large datasets as RDDs which are stored in the executors
(or worker nodes)

The objects that comprise RDDs are called partitions and may be (but do
not need to be) computed on different nodes of a distributed system

The Spark cluster manager handles starting and distributing the Spark
executors across a distributed system
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Drivers

Every Spark application consists of a driver program
Driver launches various parallel operations on the cluster

Constituent elements

Application’s main function
Defines distributed datasets on the clusters

Applies operations to these datasets
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SparkContext

Driver programs access Spark through a SparkContext object

Represents a connection to a computing cluster

Within the shell?

Created as the variable sc

You can even print out sC to see the the type

Once you have a SparkContext, you can use it to build RDDs

And then run operations on the data ...
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Executors

Driver programs manage a number of nodes, called executors
Executors are responsible for running operations

For example:

If we were running a count () operation on cluster

Different machines might count lines in different ranges of the file
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Components for distributed execution in Spark

SparkContext
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LAMBDA EXPRESSIONS:
FUNCTIONS ON THE FLY

oo




Lambda expressions ... functions on the fly

Sometimes you need a function, but it feels wasteful to give it a name
You just want to describe what to do (right therel) ... in the moment

That’s what a lambda expression is
A way to write a tiny, disposable function without all the ceremony of a
definition

In everyday terms, a lambda is like giving someone quick instructions

“sort by length,” “double every number,” “keep only the odd ones”

Without naming the rulebook
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Lambda expressions ... key ideas

Anonymous
Lambdas don’t have names; they exist only where they’re needed
Concise

In functional programming, functions are first-class participants

You can pass them around, store them, and return them

Contextual

Perfect for small jobs: sorting, filtering, mapping, or transforming data in
Spark
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Lambda in action

Here, x => x * X is alambda

val nums = List(l, 2, 3, 4) i .
Sl EE L = bRl e g See how it describes the
println(squares) // Output: List(1l, 4, 9, 16) transformation without ever naming
the function
val words = sc.parallelize(List ("sun", "moon", "stars", "sky", "light", "air"))

val longWords = words.filter(w => w.length > 3)
println (longWords.collect () .mkString (", "))

The lambda w => w.length > 3 is passed to filter,

Spark applies it in parallel to each partition,
The result is a new RDD containing only the elements that meet the condition

i.e. moon, stars, light
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Lot of Spark’s APl revolves around passing functions

to it T 1/2
___ to its operators [1/2]

def hasPython (line)
return “Python” 1n line

pythonlLines =
lines.filter (hasPython)

pythonLines =
lines.filter(line => line.contains (“Python”)

Also known as the lambda or => syntax
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Lot of Spark’s APl revolves around passing functions

_— to its operators [2/2]

JavaRDD<String> pythonlLines = lines.filter(
new Function<String, Boolean> () {
Boolean call (String line) {
return line.contains (“Python”);
}
}
) ;

JavaRDD<String> pythonLines =
lines.filter(line -> line.contains (“Python”) );
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RESILIENT DISTRIBUTED DATASET [RDD]
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Resilient Distributed Dataset (RDD)

RDD is an immutable, distributed collection of objects

Each RDD is split into multiple partitions

Maybe computed on different nodes in the cluster

Can contain any type of Java, Scala, or Python objects

Including user-defined classes
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Creation of RDDs

(1) Loading an external dataset

(2) Distributing a collection of objects via the driver program

>>> lines = sc.textFile (“"README.md"”)
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Once created, RDDs offer two types of operations

Transformations
Construct a new RDD from a previous one

E.g.: Filtering data that matches a predicate

Actions
Compute a result based on an RDD

Return result to the driver program or save it in an external storage system
(HDFS)
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Some more about RDDs

Although you can define new RDDs anytime

Spark computes them in a lazy fashion
When?

The first time they are used in an action

Loading lazily allows transformations to be performed before the
action
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Lazy loading allows Spark to see the whole chain of
transformations

Allows it to compute just the data needed for the result

Example:

lines = sc.textFile (“README.md"”)

pythonlLines= lines.filter (lambda line: “Python” in line)

If Spark were to load and store all lines in the file, as soon as we

Wrofe lines=sc.textFile () 2

Would waste a lot of storage space, since we immediately filter out a lot of
lines
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RDD and actions

RDDs are recomputed (by default) every time you run an action on
them

If you wanted to reuse an RDD?
Ask Spark to persist it using RDD.persist ()

After computing it the first time, Spark will store RDD contents in memory
(partitioned across cluster machines)

Persisted RDD is used in future actions
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RDDs: memory residency and immutability
implications

Spark can keep an RDD loaded in-memory on the executor nodes

throughout the life of a Spark application for faster access in
repeated computations

RDDs are immutable, so transforming an RDD returns a new RDD
rather than the existing one

Cross-cutting implications?

Lazy evaluation, in-memory storage, and immutability allows Spark to be
easy-to-use, fault-tolerant, scalable, and efficient
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Every Spark program and shell works as follows

(1) Create some input RDD from external data

(2) Transform them to define new RDDs using transformations like
filter ()

(3) Ask Spark to persist () any intermediate RDDs that needs to be
reused

(4) Launch actions such as count (), etc. to kickoff a parallel
computation

Computing is optimized and executed by Spark
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A CLOSER LOOK AT RDD OPERATIONS
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RDDs support two types of operations

Transformations

Operations that return a new RDD. E.g.: filter ()

Actions
Operations that return a result to the driver program or write to storage

Kicks of a computation. E.g.: count ()

Distinguishing aspect?
Transformations return RDDs

Actions return some other data type
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Transformations

Many transformations are element-wise

Work on only one element at a time

Some transformations are not element-wise

E.g.: We have a logfile, log.fext, with several messages, but we only want to
select error messages

inputRDD = sc.textFile (“log.txt”)

errorsRDD = inputRDD.filter (lambda x:”error” in x)
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In our previous example ...

filter does not mutate inputRDD
Returns a pointer to an entirely new RDD

inputRDD can still be reused later in the program

We could use inputRDD to search for lines with the word “warning”

While we are at it, we will use another transformation, union (), to print
number of lines that contained either

errorsRDD = inputRDD.filter (lambda x: Y“error” in Xx)
warningsRDD = inputRDD.filter (lambda x: “warning” 1in Xx)
badlinesRDD = errorsRDD.union (warningsRDD)
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In our previous example

Note how union () is different from filter ()

Operates on 2 RDDs instead of one

Transformations can actually operate on any number of RDDs
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RDD Lineage graphs

As new RDDs are derived from each other using transformations,
Spark fracks dependencies

Lineage graph

Uses lineage graph to
Compute each RDD on demand

Recover lost data if part of persistent RDD is lost
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RDD lineage graph for our example

inputRDD
filter \ filter
\
errorsRDD warningsRDD
union
badLinesRDD

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L28.41



Actions

We can create RDDs from each other using transformations

At some point, we need to actually do something with the dataset

Actions

Forces evaluations of the transformations required for the RDD they
were called on
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Let’s try to print information about badlinesRDD
N

print “Input had “ + badLinesRDD.count () + “concerning lines”
print “here are 10 examples:”
for line 1n badLinesRDD.take (10)

print line
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RDDs also have a collect to retrieve the entire
RDD

Useful if program filters RDD to a very small size and you want to deal
locally

Your entire dataset must fit in memory on a single machine to use collect ()
on it
Should NOT be used on large datasets

In most cases, RDDs cannot be collect () ed to the driver

Common to write data out to a distributed storage system ... HDFS or S3
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Lazy Evaluation

Transformations on RDDs are lazily evaluated

Spark will not begin to execute until it sees an action

Uses this to reduce the number of passes it has to take over data by
grouping operations together

What does this mean?

When you call a transformation on an RDD (for e.g., map) the operation is
not immediately performed

Spark internally records metadata that operation is requested
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How you should think of RDDs

Rather than thinking of it as containing specific data

Best to think of it as containing instructions on how to compute the data
that we build through transformations

Loading data into a RDD is lazily evaluated just as transformations
are
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COMMON TRANSFORMATIONS AND
ACTIONS



Element-wise transformations: filter ()
—

- Takes in a function and returns an RDD that only has elements that pass
the filter () function
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Element-wise transformations: map ()

Takes in a function and applies it to each element in the RDD

Result of the function is the new value of each element in the resulting

RDD
inputRDD
{1,2,3,4}
map x => X*Ner x => x !=1
Mapped RDD Filtered RDD
{1,4,9,16} {2,3,4}
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Things that can be done with map ()

Fetch website associated with each URL in collection to just squaring

numbers

map () ’s return type does not have to be the same as its input type

Multiple output elements for each input element?
Use flatMap ()

lines=sc.parallelize ([“hello world”, “hi”])
words=lines.flatMap (lambda line: line.split (™ %) )

words.first () # returns hello
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Difference between map and flatMap

mappedRDD
{[“coffee”, “panda”], [*happy”, “panda”],

[“happiest”, “panda”, “party”]}

RDD1.map(tokenize)

RDD1

{“coffee panda”, “happy panda”,
“happiest panda party”}

flatMappedRDD

RDD1.flatMap(tokenize)
{“coffee”, “panda”, “happy”, “panda”,

“happiest”, “panda”, “party”}
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Psuedo set operations

RDDs support many of the operations of mathematical sets such as
union, intersection, etc.

Even when the RDDs themselves are not properly sets
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Some simple set operations

RDD1

{coffee, coffee, panda, RDD2

{coffee, tiger, snake}

tiger, tea}
RDD1 .distinct() RDD1.union(RDD2) . .
{coffee, figer, panda, {coffee, coffee, coffee, RDD1 .mtersect.lon(RDDZ)
tea} panda, tiger, tiger, teq, {coffee, tiger}
snake}
RDD1.subtract(RDD?2)

{pandaq, tea}
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Cartesian product between two RDDs

RDD1.cartesian(RDD?2)
RDD1 | { (Userl, Venue(“Betabrand™)),
{User1, User2, User3} (User1,Venue(“Asha Tree House™)),

(User1,Venue(“Ritual’)),
(User2, Venue(“Betabrand”)),

cartesian (User2,Venue(“Asha Tree House”)),
(User2,Venue(“Ritual”)),
RDD?2 (User3, Venue(“Betabrand”)),
{Venue(“Betabrand”), (User3,Venue(“Asha Tree House”)),
Venue(“Asha Tree House”), (User3,Venue(“Ritual”)) }

Venue(“Ritual”)}
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Actions on Basic RDDs

reduce ()

Takes a function that operates on two elements in the RDD; returns an
element of the same type

E.g., of such an operation? + sums the RDD

sum = rdd.reduce((x,y) => X + V)

fold () takes a function with the same signature as reduce (), but
also takes a “zero value” for initial call

“Zero value” is the identity element for initial call

E.g., O for +, 1 for *, empty list for concatenation
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Both fold () and reduce () require return type of

same type as the RDD elements
=

1 The aggregate () removes that constraint

For e.g., when computing a running average, maintain both the count so far
and the number of elements
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EXAMPLES: BASIC ACTIONS ON RDDs
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Examples: Basic actions on RDDs [1/7]

]
= Our RDD contains {1, 2, 3, 3}

1 collect ()

Return all elements from the RDD

Invocation: rdd.collect ()

Result: {1,2,3, 3}
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Examples: Basic actions on RDDs [2/7]

]
= Our RDD contains {1, 2, 3, 3}

0 count ()

Number of elements in the RDD

Invocation: rdd.count ()

Result: 4
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Examples: Basic actions on RDDs

Our RDD contains {1, 2, 3, 3}

countByValue ()

Number of times each element occurs in the RDD

Invocation: rdd.countByValue ()

Result: {(1,1),(2,1),(3,2)}
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Examples: Basic actions on RDDs [4/7]

]
= Our RDD contains {1, 2, 3, 3}

0 take (num)
Return num elements from the RDD

Invocation: rdd.take (2)

Result: {1,2}
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Examples: Basic actions on RDDs [5/7]

Our RDD contains {1, 2, 3, 3}

reduce (func)

Combine the elements of the RDD together in parallel

Invocation: rdd.reduce( (x,y) => X + V )

Result: Q
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Examples: Basic actions on RDDs [6/7]

Our RDD contains {1, 2, 3, 3}

aggregate (zeroValue) (seqOp, combOp)
Similar to reduce () but used to return a different type

Invocation:

rdd.aggregate ( (0,0))
Result: (9, 4)
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Examples: Basic actions on RDDs [7/7]

Our RDD contains {1, 2, 3, 3}

foreach (func)

Apply the provided function to each element of the RDD

Invocation: rdd.foreach (func)

Result: Nothing
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The contents of this slide-set are based on the
following references

Learning Spark: Lightning-Fast Big Data Analysis. 1st Edition. Holden Karau, Andy
Konwinski, Patrick Wendell, and Matei Zaharia. O Reilly. 2015. ISBN-13: 978-
1449358624. [Chapters 1-4]

Karau, Holden; Warren, Rachel. High Performance Spark: Best Practices for Scaling
and Optimizing Apache Spark. O'Reilly Media. 2017. ISBN-13: 978-1491943205.

[Chapter 2]

Chambers, Bill,Zaharia, Matei. Spark: The Definitive Guide: Big Data Processing
Made Simple. O'Reilly Media. ISBN-13: 978-1491912218. 2018. [Chapters 1, 2,
and 3].
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