
COMPUTER SCIENCE DEPARTMENT

CS X55: DISTRIBUTED SYSTEMS [SPARK]

Shrideep Pallickara

Computer Science

Colorado State University

Spark: It’s all about transformation and actions

Transformations
 Wrangle with the data
 Consume, and beget, an RDD
 Flock together … to form daisy chains

But it is actions
 That trigger evaluations
 Providing them potency
 Revealing their expressive power

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.2

Frequently asked questions from the previous class

survey

 Why use MapReduce?

 What if the data is too big to fit in memory of a large, distributed

cluster?

 Does Spark Streaming relate to streaming movies?

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.3

Topics covered in this lecture

 Spark APIs

 Resilient Distributed Datasets

 Common Transformations and Actions

COMPUTER SCIENCE DEPARTMENT

SPARK APIS

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.5

Spark APIs

 Spark has two fundamental sets of APIs:

 The low-level “unstructured” APIs, and

 The higher-level structured APIs

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.6

Structured APIs

 Structured APIs are a tool for manipulating all sorts of data

 From unstructured log files to semi-structured CSV files and highly structured
Parquet files

 Refers to three core types of distributed collection APIs:

 Datasets

 DataFrames

 SQL tables and views

 Majority of the Structured APIs apply to both batch and streaming
computation

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.7

Spark’s Toolset

Low Level APIs

RDDs Distributed variables

Structured APIs

Datasets DataFrames SQLs

Structured

Streaming

Advanced

Analytics

Libraries &

Ecosystem

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.8

Spark has two notions of structured collections:

DataFrames and Datasets

 DataFrames and Datasets are (distributed) table-like collections with

well-defined rows and columns

 Each column:

 Must have the same number of rows as all the other columns (although you

can use null to specify the absence of a value)

 Has type information that must be consistent for every row in the collection

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.9

DataFrames versus Datasets

 DataFrames are considered “untyped”

 Datasets are considered “typed”

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.10

How does Spark view DataFrames and Datasets?

 To Spark, DataFrames and Datasets represent immutable, lazily

evaluated plans that specify what operations to apply to data

residing at a location to generate some output

 When we perform an action on a DataFrame, we instruct Spark to

perform the actual transformations and return the result

 These represent plans of how to manipulate rows and columns to

compute the user’s desired result

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.11

The DataFrame is the most common Structured API

 Simply represents a table of data with rows and columns

 The list that defines the columns and the types within those columns is

called the schema

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.12

The DataFrame concept is not unique to Spark

 R and Python both have similar concepts

 However, Python/R DataFrames (with some exceptions) exist on one machine

rather than multiple machines

 This limits what you can do with a given DataFrame to the resources that

exist on that specific machine

 A Spark DataFrame can span thousands of computers

COMPUTER SCIENCE DEPARTMENT

CORE SPARK CONCEPTS

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.14

Core Spark Concepts

 Drivers

 SparkContext

 Executors

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.15

Spark in a nutshell

 Spark allows users to write a program for the driver (or master node) on a

cluster computing system that can perform operations on data in parallel

 Spark represents large datasets as RDDs which are stored in the executors

(or worker nodes)

 The objects that comprise RDDs are called partitions and may be (but do

not need to be) computed on different nodes of a distributed system

 The Spark cluster manager handles starting and distributing the Spark

executors across a distributed system

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.16

Drivers

 Every Spark application consists of a driver program

 Driver launches various parallel operations on the cluster

 Constituent elements

 Application’s main function

 Defines distributed datasets on the clusters

 Applies operations to these datasets

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.17

SparkContext

 Driver programs access Spark through a SparkContext object

 Represents a connection to a computing cluster

 Within the shell?

 Created as the variable sc

◼ You can even print out sc to see the the type

 Once you have a SparkContext, you can use it to build RDDs

 And then run operations on the data …

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.18

Executors

 Driver programs manage a number of nodes, called executors

 Executors are responsible for running operations

 For example:

 If we were running a count() operation on cluster

◼ Different machines might count lines in different ranges of the file

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.19

Components for distributed execution in Spark

Driver Program

Worker Node

Worker Node

SparkContext

Executor

Task Task

Executor

Task Task

COMPUTER SCIENCE DEPARTMENT

LAMBDA EXPRESSIONS:

FUNCTIONS ON THE FLY

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.21

Lambda expressions … functions on the fly

 Sometimes you need a function, but it feels wasteful to give it a name

 You just want to describe what to do (right there!) … in the moment

 That’s what a lambda expression is

 A way to write a tiny, disposable function without all the ceremony of a

definition

 In everyday terms, a lambda is like giving someone quick instructions

 “sort by length,” “double every number,” “keep only the odd ones”

 Without naming the rulebook

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.22

Lambda expressions … key ideas

 Anonymous

 Lambdas don’t have names; they exist only where they’re needed

 Concise

 In functional programming, functions are first-class participants

 You can pass them around, store them, and return them

 Contextual

 Perfect for small jobs: sorting, filtering, mapping, or transforming data in

Spark

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.23

Lambda in action

val nums = List(1, 2, 3, 4)

val squares = nums.map(x => x * x)

println(squares) // Output: List(1, 4, 9, 16)

Here, x => x * x is a lambda

See how it describes the

transformation without ever naming

the function

val words = sc.parallelize(List("sun", "moon", "stars", "sky", "light", "air"))

val longWords = words.filter(w => w.length > 3)

println(longWords.collect().mkString(", "))

The lambda w => w.length > 3 is passed to filter,

Spark applies it in parallel to each partition,

The result is a new RDD containing only the elements that meet the condition

 i.e. moon, stars, light

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.24

Lot of Spark’s API revolves around passing functions

to its operators [1/2]

def hasPython(line)

 return “Python” in line

pythonLines =

 lines.filter(hasPython)

pythonLines =

 lines.filter(line => line.contains(“Python”)

Also known as the lambda or => syntax

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.25

Lot of Spark’s API revolves around passing functions

to its operators [2/2]

JavaRDD<String> pythonLines = lines.filter(

 new Function<String, Boolean> () {

 Boolean call(String line) {

 return line.contains(“Python”);

 }

 }

);

JavaRDD<String> pythonLines =

 lines.filter(line -> line.contains(“Python”));

COMPUTER SCIENCE DEPARTMENT

RESILIENT DISTRIBUTED DATASET [RDD]

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.27

Resilient Distributed Dataset (RDD)

 RDD is an immutable, distributed collection of objects

 Each RDD is split into multiple partitions

 Maybe computed on different nodes in the cluster

 Can contain any type of Java, Scala, or Python objects

 Including user-defined classes

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.28

Creation of RDDs

① Loading an external dataset

② Distributing a collection of objects via the driver program

>>> lines = sc.textFile(“README.md”)

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.29

Once created, RDDs offer two types of operations

 Transformations

 Construct a new RDD from a previous one

 E.g.: Filtering data that matches a predicate

 Actions

 Compute a result based on an RDD

 Return result to the driver program or save it in an external storage system

(HDFS)

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.30

Some more about RDDs

 Although you can define new RDDs anytime

 Spark computes them in a lazy fashion

 When?

◼ The first time they are used in an action

 Loading lazily allows transformations to be performed before the

action

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.31

Lazy loading allows Spark to see the whole chain of

transformations

 Allows it to compute just the data needed for the result

 Example:
lines = sc.textFile(“README.md”)

pythonLines= lines.filter(lambda line: “Python” in line)

 If Spark were to load and store all lines in the file, as soon as we

wrote lines=sc.textFile()?

 Would waste a lot of storage space, since we immediately filter out a lot of

lines

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.32

RDD and actions

 RDDs are recomputed (by default) every time you run an action on

them

 If you wanted to reuse an RDD?

 Ask Spark to persist it using RDD.persist()

 After computing it the first time, Spark will store RDD contents in memory

(partitioned across cluster machines)

 Persisted RDD is used in future actions

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.33

RDDs: memory residency and immutability

implications

 Spark can keep an RDD loaded in-memory on the executor nodes

throughout the life of a Spark application for faster access in

repeated computations

 RDDs are immutable, so transforming an RDD returns a new RDD

rather than the existing one

 Cross-cutting implications?

 Lazy evaluation, in-memory storage, and immutability allows Spark to be

easy-to-use, fault-tolerant, scalable, and efficient

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.34

Every Spark program and shell works as follows

① Create some input RDD from external data

② Transform them to define new RDDs using transformations like
filter()

③ Ask Spark to persist() any intermediate RDDs that needs to be

reused

④ Launch actions such as count(), etc. to kickoff a parallel

computation

 Computing is optimized and executed by Spark

COMPUTER SCIENCE DEPARTMENT

A CLOSER LOOK AT RDD OPERATIONS

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.36

RDDs support two types of operations

 Transformations

 Operations that return a new RDD. E.g.: filter()

 Actions

 Operations that return a result to the driver program or write to storage

 Kicks of a computation. E.g.: count()

 Distinguishing aspect?

 Transformations return RDDs

 Actions return some other data type

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.37

Transformations

 Many transformations are element-wise

 Work on only one element at a time

 Some transformations are not element-wise

 E.g.: We have a logfile, log.text, with several messages, but we only want to

select error messages

inputRDD = sc.textFile(“log.txt”)

errorsRDD = inputRDD.filter(lambda x:”error” in x)

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.38

In our previous example …

 filter does not mutate inputRDD

 Returns a pointer to an entirely new RDD

 inputRDD can still be reused later in the program

 We could use inputRDD to search for lines with the word “warning”

 While we are at it, we will use another transformation, union(), to print

number of lines that contained either
errorsRDD = inputRDD.filter(lambda x: “error” in x)

warningsRDD = inputRDD.filter(lambda x: “warning” in x)

badlinesRDD = errorsRDD.union(warningsRDD)

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.39

In our previous example

 Note how union() is different from filter()

 Operates on 2 RDDs instead of one

 Transformations can actually operate on any number of RDDs

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.40

RDD Lineage graphs

 As new RDDs are derived from each other using transformations,

Spark tracks dependencies

 Lineage graph

 Uses lineage graph to

 Compute each RDD on demand

 Recover lost data if part of persistent RDD is lost

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.41

RDD lineage graph for our example

inputRDD

errorsRDD warningsRDD

badLinesRDD

filter filter

union

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.42

Actions

 We can create RDDs from each other using transformations

 At some point, we need to actually do something with the dataset

 Actions

 Forces evaluations of the transformations required for the RDD they

were called on

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.43

Let’s try to print information about badlinesRDD

print “Input had “ + badLinesRDD.count() + “concerning lines”

print “here are 10 examples:”

for line in badLinesRDD.take(10)

 print line

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.44

RDDs also have a collect to retrieve the entire

RDD

 Useful if program filters RDD to a very small size and you want to deal

locally

 Your entire dataset must fit in memory on a single machine to use collect()

on it

◼ Should NOT be used on large datasets

 In most cases, RDDs cannot be collect()ed to the driver

 Common to write data out to a distributed storage system … HDFS or S3

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.45

Lazy Evaluation

 Transformations on RDDs are lazily evaluated

 Spark will not begin to execute until it sees an action

 Uses this to reduce the number of passes it has to take over data by

grouping operations together

 What does this mean?

 When you call a transformation on an RDD (for e.g., map) the operation is

not immediately performed

 Spark internally records metadata that operation is requested

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.46

How you should think of RDDs

 Rather than thinking of it as containing specific data

 Best to think of it as containing instructions on how to compute the data

that we build through transformations

 Loading data into a RDD is lazily evaluated just as transformations

are

COMPUTER SCIENCE DEPARTMENT

COMMON TRANSFORMATIONS AND

ACTIONS

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.48

Element-wise transformations: filter()

 Takes in a function and returns an RDD that only has elements that pass

the filter() function

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.49

Mapped RDD

{1, 4, 9, 16}

Filtered RDD

{2,3,4}

Element-wise transformations: map()

 Takes in a function and applies it to each element in the RDD

 Result of the function is the new value of each element in the resulting

RDD

inputRDD

{1,2,3,4}

map x => x*x filter x => x !=1

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.50

Things that can be done with map()

 Fetch website associated with each URL in collection to just squaring

numbers

 map()’s return type does not have to be the same as its input type

 Multiple output elements for each input element?

 Use flatMap()

lines=sc.parallelize([“hello world”, “hi”])

words=lines.flatMap(lambda line: line.split(“ “))

words.first() # returns hello

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.51

Difference between map and flatMap

RDD1

{“coffee panda”, “happy panda”,

“happiest panda party”}

mappedRDD

{[“coffee”, “panda”], [“happy”, “panda”],

[“happiest”, “panda”, “party”]}

flatMappedRDD

{“coffee”, “panda”, “happy”, “panda”,

“happiest”, “panda”, “party”}

RDD1.flatMap(tokenize)

RDD1.map(tokenize)

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.52

Psuedo set operations

 RDDs support many of the operations of mathematical sets such as

union, intersection, etc.

 Even when the RDDs themselves are not properly sets

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.53

Some simple set operations

RDD1

{coffee, coffee, panda,

tiger, tea}

RDD2

{coffee, tiger, snake}

RDD1.distinct()

{coffee, tiger, panda,

tea}

RDD1.union(RDD2)

{coffee, coffee, coffee,

panda, tiger, tiger, tea,

snake}

RDD1.intersection(RDD2)

{coffee, tiger}

RDD1.subtract(RDD2)

{panda, tea}

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.54

Cartesian product between two RDDs

RDD1

{User1, User2, User3}

RDD2

{Venue(“Betabrand”),

Venue(“Asha Tree House”),

Venue(“Ritual”)}

RDD1.cartesian(RDD2)

{ (User1, Venue(“Betabrand”)),

(User1,Venue(“Asha Tree House”)),

(User1,Venue(“Ritual”)),

(User2, Venue(“Betabrand”)),

(User2,Venue(“Asha Tree House”)),

(User2,Venue(“Ritual”)),

(User3, Venue(“Betabrand”)),

(User3,Venue(“Asha Tree House”)),

(User3,Venue(“Ritual”)) }

cartesian

COMPUTER SCIENCE DEPARTMENT

COMMON ACTIONS

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.56

Actions on Basic RDDs

 reduce()

 Takes a function that operates on two elements in the RDD; returns an

element of the same type

◼ E.g., of such an operation? + sums the RDD

sum = rdd.reduce((x,y) => x + y)

 fold() takes a function with the same signature as reduce(), but

also takes a “zero value” for initial call

 “Zero value” is the identity element for initial call

 E.g., 0 for +, 1 for *, empty list for concatenation

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.57

Both fold() and reduce() require return type of

same type as the RDD elements

 The aggregate() removes that constraint

 For e.g., when computing a running average, maintain both the count so far

and the number of elements

COMPUTER SCIENCE DEPARTMENT

EXAMPLES: BASIC ACTIONS ON RDDS

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.59

Examples: Basic actions on RDDs [1/7]

 Our RDD contains {1, 2, 3, 3}

 collect()

 Return all elements from the RDD

 Invocation: rdd.collect()

 Result: {1, 2, 3, 3}

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.60

Examples: Basic actions on RDDs [2/7]

 Our RDD contains {1, 2, 3, 3}

 count()

 Number of elements in the RDD

 Invocation: rdd.count()

 Result: 4

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.61

Examples: Basic actions on RDDs [3/7]

 Our RDD contains {1, 2, 3, 3}

 countByValue()

 Number of times each element occurs in the RDD

 Invocation: rdd.countByValue()

 Result: { (1,1), (2,1), (3,2) }

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.62

Examples: Basic actions on RDDs [4/7]

 Our RDD contains {1, 2, 3, 3}

 take(num)

 Return num elements from the RDD

 Invocation: rdd.take(2)

 Result: { 1, 2}

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.63

Examples: Basic actions on RDDs [5/7]

 Our RDD contains {1, 2, 3, 3}

 reduce(func)

 Combine the elements of the RDD together in parallel

 Invocation: rdd.reduce((x,y) => x + y)

 Result: 9

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.64

Examples: Basic actions on RDDs [6/7]

 Our RDD contains {1, 2, 3, 3}

 aggregate(zeroValue)(seqOp, combOp)

 Similar to reduce() but used to return a different type

 Invocation:

◼ rdd.aggregate ((0,0))

 ((x,y) => (x._1 + y, x._2 + 1),

 (x,y) => (x._1 + y._1, x._2 + y._2))

 Result: (9, 4)

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.65

Examples: Basic actions on RDDs [7/7]

 Our RDD contains {1, 2, 3, 3}

 foreach(func)

 Apply the provided function to each element of the RDD

 Invocation: rdd.foreach(func)

 Result: Nothing

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.66

The contents of this slide-set are based on the

following references

 Learning Spark: Lightning-Fast Big Data Analysis. 1st Edition. Holden Karau, Andy

Konwinski, Patrick Wendell, and Matei Zaharia. O'Reilly. 2015. ISBN-13: 978-

1449358624. [Chapters 1-4]

 Karau, Holden; Warren, Rachel. High Performance Spark: Best Practices for Scaling

and Optimizing Apache Spark. O'Reilly Media. 2017. ISBN-13: 978-1491943205.

[Chapter 2]

 Chambers, Bill,Zaharia, Matei. Spark: The Definitive Guide: Big Data Processing

Made Simple. O'Reilly Media. ISBN-13: 978-1491912218. 2018. [Chapters 1, 2,

and 3].

	Slide 1: CS x55: Distributed Systems [Spark]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: Spark APIs
	Slide 5: Spark APIs
	Slide 6: Structured APIs
	Slide 7: Spark’s Toolset
	Slide 8: Spark has two notions of structured collections: DataFrames and Datasets
	Slide 9: DataFrames versus Datasets
	Slide 10: How does Spark view DataFrames and Datasets?
	Slide 11: The DataFrame is the most common Structured API
	Slide 12: The DataFrame concept is not unique to Spark
	Slide 13: Core Spark Concepts
	Slide 14: Core Spark Concepts
	Slide 15: Spark in a nutshell
	Slide 16: Drivers
	Slide 17: SparkContext
	Slide 18: Executors
	Slide 19: Components for distributed execution in Spark
	Slide 20: Lambda Expressions: Functions on the Fly
	Slide 21: Lambda expressions … functions on the fly
	Slide 22: Lambda expressions … key ideas
	Slide 23: Lambda in action
	Slide 24: Lot of Spark’s API revolves around passing functions to its operators [1/2]
	Slide 25: Lot of Spark’s API revolves around passing functions to its operators [2/2]
	Slide 26: Resilient Distributed Dataset [RDD]
	Slide 27: Resilient Distributed Dataset (RDD)
	Slide 28: Creation of RDDs
	Slide 29: Once created, RDDs offer two types of operations
	Slide 30: Some more about RDDs
	Slide 31: Lazy loading allows Spark to see the whole chain of transformations
	Slide 32: RDD and actions
	Slide 33: RDDs: memory residency and immutability implications
	Slide 34: Every Spark program and shell works as follows
	Slide 35: A Closer look at RDD Operations
	Slide 36: RDDs support two types of operations
	Slide 37: Transformations
	Slide 38: In our previous example …
	Slide 39: In our previous example
	Slide 40: RDD Lineage graphs
	Slide 41: RDD lineage graph for our example
	Slide 42: Actions
	Slide 43: Let’s try to print information about badlinesRDD
	Slide 44: RDDs also have a collect to retrieve the entire RDD
	Slide 45: Lazy Evaluation
	Slide 46: How you should think of RDDs
	Slide 47: Common transformations and Actions
	Slide 48: Element-wise transformations: filter()
	Slide 49: Element-wise transformations: map()
	Slide 50: Things that can be done with map()
	Slide 51: Difference between map and flatMap
	Slide 52: Psuedo set operations
	Slide 53: Some simple set operations
	Slide 54: Cartesian product between two RDDs
	Slide 55: Common Actions
	Slide 56: Actions on Basic RDDs
	Slide 57: Both fold() and reduce() require return type of same type as the RDD elements
	Slide 58: Examples: Basic Actions on RDDs
	Slide 59: Examples: Basic actions on RDDs [1/7]
	Slide 60: Examples: Basic actions on RDDs [2/7]
	Slide 61: Examples: Basic actions on RDDs [3/7]
	Slide 62: Examples: Basic actions on RDDs [4/7]
	Slide 63: Examples: Basic actions on RDDs [5/7]
	Slide 64: Examples: Basic actions on RDDs [6/7]
	Slide 65: Examples: Basic actions on RDDs [7/7]
	Slide 66: The contents of this slide-set are based on the following references

