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Spark: It’s all about transformation and actions

Transformations 
      Wrangle with the data
      Consume, and beget,  an RDD
      Flock together …   to form daisy chains

But it is actions 
    That trigger  evaluations 
         Providing them potency
               Revealing their expressive power
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Frequently asked questions from the previous class 

survey

 Why use MapReduce?

 What if the data is too big to fit in memory of a large, distributed 

cluster?

 Does Spark Streaming relate to streaming movies?
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Topics covered in this lecture

 Spark APIs

 Resilient Distributed Datasets

 Common Transformations and Actions
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Spark APIs

 Spark has two fundamental sets of APIs: 

 The low-level “unstructured” APIs, and 

 The higher-level structured APIs
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Structured APIs

 Structured APIs are a tool for manipulating all sorts of data

 From unstructured log files to semi-structured CSV files and highly structured 
Parquet files

 Refers to three core types of distributed collection APIs: 

 Datasets

 DataFrames

 SQL tables and views

 Majority of the Structured APIs apply to both batch and streaming 
computation
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Spark’s Toolset

Low Level APIs

RDDs Distributed variables

Structured APIs

Datasets DataFrames SQLs

Structured 

Streaming

Advanced 

Analytics

Libraries & 

Ecosystem
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Spark has two notions of structured collections: 

DataFrames and Datasets

 DataFrames and Datasets are (distributed) table-like collections with 

well-defined rows and columns 

 Each column:

 Must have the same number of rows as all the other columns (although you 

can use null to specify the absence of a value) 

 Has type information that must be consistent for every row in the collection 
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DataFrames versus Datasets

 DataFrames are considered “untyped” 

 Datasets are considered “typed”
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How does Spark view DataFrames and Datasets?

 To Spark, DataFrames and Datasets represent immutable, lazily 

evaluated plans that specify what operations to apply to data 

residing at a location to generate some output

 When we perform an action on a DataFrame, we instruct Spark to 

perform the actual transformations and return the result 

 These represent plans of how to manipulate rows and columns to 

compute the user’s desired result
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The DataFrame is the most common Structured API

 Simply represents a table of data with rows and columns

 The list that defines the columns and the types within those columns is 

called the schema
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The DataFrame concept is not unique to Spark

 R and Python both have similar concepts 

 However, Python/R DataFrames (with some exceptions) exist on one machine 

rather than multiple machines 

 This limits what you can do with a given DataFrame to the resources that 

exist on that specific machine

 A Spark DataFrame can span thousands of computers
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Core Spark Concepts

 Drivers

 SparkContext

 Executors
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Spark in a nutshell

 Spark allows users to write a program for the driver (or master node) on a 

cluster computing system that can perform operations on data in parallel 

 Spark represents large datasets as RDDs which are stored in the executors 

(or worker nodes) 

 The objects that comprise RDDs are called partitions and may be (but do 

not need to be) computed on different nodes of a distributed system

 The Spark cluster manager handles starting and distributing the Spark 

executors across a distributed system
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Drivers

 Every Spark application consists of a driver program

 Driver launches various parallel operations on the cluster

 Constituent elements

 Application’s main function

 Defines distributed datasets on the clusters

 Applies operations to these datasets
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SparkContext 

 Driver programs access Spark through a SparkContext object

 Represents a connection to a computing cluster

 Within the shell?

 Created as the variable sc 

◼ You can even print out sc to see the the type

 Once you have a SparkContext, you can use it to build RDDs

 And then run operations on the data …
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Executors

 Driver programs manage a number of nodes, called executors

 Executors are responsible for running operations

 For example:

 If we were running a count() operation on cluster

◼ Different machines might count lines in different ranges of the file
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Components for distributed execution in Spark

Driver Program

Worker Node

Worker Node

SparkContext

Executor

Task Task

Executor

Task Task
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Lambda expressions … functions on the fly

 Sometimes you need a function, but it feels wasteful to give it a name

 You just want to describe what to do (right there!) … in the moment

 That’s what a lambda expression is

 A way to write a tiny, disposable function without all the ceremony of a 

definition

 In everyday terms, a lambda is like giving someone quick instructions

 “sort by length,” “double every number,” “keep only the odd ones”

 Without naming the rulebook
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Lambda expressions … key ideas

 Anonymous

 Lambdas don’t have names; they exist only where they’re needed

 Concise

 In functional programming, functions are first-class participants 

 You can pass them around, store them, and return them

 Contextual 

 Perfect for small jobs: sorting, filtering, mapping, or transforming data in 

Spark
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Lambda in action

val nums = List(1, 2, 3, 4)

val squares = nums.map(x => x * x)

println(squares)   // Output: List(1, 4, 9, 16)

Here, x => x * x is a lambda 

See how it describes the 

transformation without ever naming 

the function

val words = sc.parallelize(List("sun", "moon", "stars", "sky", "light", "air"))

val longWords = words.filter(w => w.length > 3)

println(longWords.collect().mkString(", "))

The lambda w => w.length > 3 is passed to filter,

Spark applies it in parallel to each partition,

The result is a new RDD containing only the elements that meet the condition

      i.e. moon, stars, light



SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.24

Lot of Spark’s API revolves around passing functions 

to its operators                                             [1/2]

def hasPython(line)

   return “Python” in line

pythonLines = 

    lines.filter(hasPython) 

pythonLines = 

 lines.filter(line => line.contains(“Python”) 

Also known as the lambda or => syntax
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Lot of Spark’s API revolves around passing functions 

to its operators                                             [2/2]

JavaRDD<String> pythonLines = lines.filter(

   new Function<String, Boolean> () {

     Boolean call(String line) {

        return line.contains(“Python”);

     }

    }

  );

JavaRDD<String> pythonLines = 

    lines.filter(line -> line.contains(“Python”) );
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Resilient Distributed Dataset (RDD)

 RDD is an immutable, distributed collection of objects

 Each RDD is split into multiple partitions

 Maybe computed on different nodes in the cluster

 Can contain any type of Java, Scala, or Python objects

 Including user-defined classes
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Creation of RDDs

① Loading an external dataset

② Distributing a collection of objects via the driver program

>>> lines = sc.textFile(“README.md”)
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Once created, RDDs offer two types of operations

 Transformations

 Construct a new RDD from a previous one

 E.g.: Filtering data that matches a predicate

 Actions

 Compute a result based on an RDD

 Return result to the driver program or save it in an external storage system 

(HDFS)
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Some more about RDDs

 Although you can define new RDDs anytime

 Spark computes them in a lazy fashion

 When? 

◼ The first time they are used in an action

 Loading lazily allows transformations to be performed before the 

action
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Lazy loading allows Spark to see the whole chain of 

transformations

 Allows it to compute just the data needed for the result

 Example:
lines = sc.textFile(“README.md”)

pythonLines= lines.filter(lambda line: “Python” in line)

 If Spark were to load and store all lines in the file, as soon as we 

wrote lines=sc.textFile()?

 Would waste a lot of storage space, since we immediately filter out a lot of 

lines
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RDD and actions

 RDDs are recomputed (by default) every time you run an action on 

them

 If you wanted to reuse an RDD?

 Ask Spark to persist it using RDD.persist()

 After computing it the first time, Spark will store RDD contents in memory 

(partitioned across cluster machines)

 Persisted RDD is used in future actions 
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RDDs: memory residency and immutability 

implications

 Spark can keep an RDD loaded in-memory on the executor nodes 

throughout the life of a Spark application for faster access in 

repeated computations

 RDDs are immutable, so transforming an RDD returns a new RDD 

rather than the existing one 

 Cross-cutting implications?

 Lazy evaluation, in-memory storage, and immutability allows Spark to be 

easy-to-use, fault-tolerant, scalable, and efficient
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Every Spark program and shell works as follows

① Create some input RDD from external data

② Transform them to define new RDDs using transformations like 
filter()

③ Ask Spark to persist() any intermediate RDDs that needs to be 

reused

④ Launch actions such as count(), etc. to kickoff a parallel 

computation

 Computing is optimized and executed by Spark
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RDDs support two types of operations

 Transformations

 Operations that return a new RDD.  E.g.: filter()

 Actions

 Operations that return a result to the driver program or write to storage

 Kicks of a computation. E.g.: count()

 Distinguishing aspect?

 Transformations return RDDs

 Actions return some other data type
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Transformations

 Many transformations are element-wise

 Work on only one element at a time

 Some transformations are not element-wise

 E.g.: We have a logfile, log.text, with several messages, but we only want to 

select error messages

inputRDD = sc.textFile(“log.txt”)

errorsRDD = inputRDD.filter(lambda x:”error” in x)
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In our previous example …

 filter does not mutate inputRDD

 Returns a pointer to an entirely new RDD

 inputRDD can still be reused later in the program

 We could use inputRDD to search for lines with the word “warning”

 While we are at it, we will use another transformation, union(), to  print 

number of lines that contained either
errorsRDD = inputRDD.filter(lambda x: “error” in x)

warningsRDD = inputRDD.filter(lambda x: “warning” in x)

badlinesRDD = errorsRDD.union(warningsRDD)
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In our previous example 

 Note how union() is different from filter()

 Operates on 2 RDDs instead of one

 Transformations can actually operate on any number of RDDs



SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.40

RDD Lineage graphs

 As new RDDs are derived from each other using transformations, 

Spark tracks dependencies

 Lineage graph

 Uses lineage graph to 

 Compute each RDD on demand 

 Recover lost data if part of persistent RDD is lost
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RDD lineage graph for our example

inputRDD

errorsRDD warningsRDD

badLinesRDD

filter filter

union
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Actions

 We can create RDDs from each other using transformations

 At some point, we need to actually do something with the dataset

 Actions

 Forces evaluations of the transformations required for the RDD they 

were called on
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Let’s try to print information about badlinesRDD

print “Input had “ + badLinesRDD.count() + “concerning lines”

print “here are 10 examples:”

for line in badLinesRDD.take(10)

    print  line
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RDDs also have a collect to retrieve the entire 

RDD

 Useful if program filters RDD to a very small size and you want to deal 

locally

 Your entire dataset must fit in memory on a single machine to use collect() 

on it

◼ Should NOT be used on large datasets

 In most cases, RDDs cannot be collect()ed to the driver

 Common to write data out to a distributed storage system … HDFS or S3
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Lazy Evaluation

 Transformations on RDDs are lazily evaluated

 Spark will not begin to execute until it sees an action

 Uses this to reduce the number of passes it has to take over data by 

grouping operations together

 What does this mean?

 When you call a transformation on an RDD (for e.g., map) the operation is 

not immediately performed

 Spark internally records metadata that operation is requested
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How you should think of RDDs

 Rather than thinking of it as containing specific data

 Best to think of it as containing instructions on how to compute the data 

that we build through transformations

 Loading data into a RDD is lazily evaluated just as transformations 

are
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Element-wise transformations: filter()

 Takes in a function and returns an RDD that only has elements that pass 

the filter() function
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Mapped RDD

{1, 4, 9, 16}

Filtered RDD

{2,3,4}

Element-wise transformations: map()

 Takes in a function and applies it to each element in the RDD

 Result of the function is the new value of each element in the resulting 

RDD

inputRDD

{1,2,3,4}

map x => x*x filter x => x !=1
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Things that can be done with map()

 Fetch website associated with each URL in collection to just squaring 

numbers

 map()’s return type does not have to be the same as its input type

 Multiple output elements for each input element?

 Use flatMap()

lines=sc.parallelize([“hello world”, “hi”])

words=lines.flatMap(lambda line: line.split(“ “) )

words.first()   # returns hello
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Difference between map and flatMap

RDD1

{“coffee panda”, “happy panda”, 

“happiest panda party”}

mappedRDD

{[“coffee”, “panda”], [“happy”, “panda”], 

[“happiest”, “panda”,  “party”]}

flatMappedRDD

{“coffee”, “panda”, “happy”, “panda”, 

“happiest”, “panda”,  “party”}

RDD1.flatMap(tokenize)

RDD1.map(tokenize)
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Psuedo set operations

 RDDs support many of the operations of mathematical sets such as 

union, intersection, etc.

 Even when the RDDs themselves are not properly sets
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Some simple set operations

RDD1

{coffee, coffee, panda, 

tiger, tea}

RDD2

{coffee, tiger, snake}

RDD1.distinct()

{coffee, tiger, panda, 

tea}

RDD1.union(RDD2)

{coffee, coffee, coffee, 

panda, tiger, tiger, tea, 

snake}

RDD1.intersection(RDD2)

{coffee, tiger}

RDD1.subtract(RDD2)

{panda, tea}
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Cartesian product between two RDDs

RDD1

{User1, User2, User3}

RDD2

{Venue(“Betabrand”), 

Venue(“Asha Tree House”), 

Venue(“Ritual”)}

RDD1.cartesian(RDD2)

{  (User1, Venue(“Betabrand”)), 

(User1,Venue(“Asha Tree House”)), 

(User1,Venue(“Ritual”)),

(User2, Venue(“Betabrand”)), 

(User2,Venue(“Asha Tree House”)), 

(User2,Venue(“Ritual”)),

(User3, Venue(“Betabrand”)), 

(User3,Venue(“Asha Tree House”)), 

(User3,Venue(“Ritual”))   }

cartesian
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Actions on Basic RDDs

 reduce()

 Takes a function that operates on two elements in the RDD; returns an 

element of the same type

◼ E.g., of such an operation?   +  sums the RDD

sum = rdd.reduce((x,y) => x + y) 

 fold() takes a function with the same signature as reduce(), but 

also takes a “zero value” for initial call 

 “Zero value” is the identity element for initial call

 E.g., 0 for +, 1 for *, empty list for concatenation
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Both fold() and reduce() require return type of 

same type as the RDD elements

 The aggregate() removes that constraint

 For e.g., when computing a running average, maintain both the count so far 

and the number of elements
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Examples: Basic actions on RDDs                              [1/7]

 Our RDD contains {1, 2, 3, 3}

 collect() 

 Return all elements from the RDD

 Invocation: rdd.collect()

 Result:  {1, 2, 3, 3}
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Examples: Basic actions on RDDs                              [2/7]

 Our RDD contains {1, 2, 3, 3}

 count() 

 Number of elements in the RDD

 Invocation: rdd.count()

 Result:  4



SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L28.61

Examples: Basic actions on RDDs                              [3/7]

 Our RDD contains {1, 2, 3, 3}

 countByValue() 

 Number of times each element occurs in the RDD

 Invocation: rdd.countByValue()

 Result:  { (1,1), (2,1), (3,2) }
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Examples: Basic actions on RDDs                              [4/7]

 Our RDD contains {1, 2, 3, 3}

 take(num) 

 Return num elements from the RDD

 Invocation: rdd.take(2)

 Result:  { 1, 2}
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Examples: Basic actions on RDDs                              [5/7]

 Our RDD contains {1, 2, 3, 3}

 reduce(func) 

 Combine the elements of the RDD together in parallel

 Invocation: rdd.reduce( (x,y) => x + y )

 Result:  9
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Examples: Basic actions on RDDs                              [6/7]

 Our RDD contains {1, 2, 3, 3}

 aggregate(zeroValue)(seqOp, combOp)

 Similar to reduce() but used to return a different type

 Invocation: 

◼ rdd.aggregate ( (0,0))

               ((x,y) => (x._1 + y, x._2 + 1),

                  (x,y) => (x._1 + y._1, x._2 + y._2))

 Result:  (9, 4)
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Examples: Basic actions on RDDs                              [7/7]

 Our RDD contains {1, 2, 3, 3}

 foreach(func) 

 Apply the provided function to each element of the RDD

 Invocation: rdd.foreach(func)

 Result:  Nothing
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The contents of this slide-set are based on the 

following references

 Learning Spark: Lightning-Fast Big Data Analysis.  1st Edition.  Holden Karau, Andy 

Konwinski, Patrick Wendell, and Matei Zaharia. O'Reilly. 2015. ISBN-13: 978-

1449358624. [Chapters 1-4]

 Karau, Holden; Warren, Rachel. High Performance Spark: Best Practices for Scaling 

and Optimizing Apache Spark. O'Reilly Media. 2017. ISBN-13: 978-1491943205. 

[Chapter 2]

 Chambers, Bill,Zaharia, Matei. Spark: The Definitive Guide: Big Data Processing 

Made Simple. O'Reilly Media. ISBN-13: 978-1491912218. 2018. [Chapters 1, 2, 

and 3].
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