

CS x55: DISTRIBUTED SYSTEMS [SPARK]

Spark: It's all about transformation and actions

Transformations

Wrangle with the data

Consume, and beget, an RDD

Flock together ... to form daisy chains

But it is actions

That trigger evaluations

Providing them potency

Revealing their expressive power

Shrideep Pallickara

Computer Science

Colorado State University

Frequently asked questions from the previous class survey

- Why use MapReduce?
- What if the data is too big to fit in memory of a large, distributed cluster?
- Does Spark Streaming relate to streaming movies?

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

SPARK

L28.2

Topics covered in this lecture

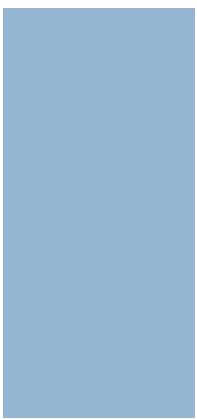
- Spark APIs
- Resilient Distributed Datasets
- Common Transformations and Actions

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

SPARK

L28.3



SPARK APIs

Spark APIs

- Spark has two fundamental sets of APIs:
 - The low-level “unstructured” APIs, and
 - The higher-level structured APIs

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

SPARK

L28.5

Structured APIs

- Structured APIs are a tool for manipulating all sorts of data
 - From unstructured log files to semi-structured CSV files and highly structured Parquet files
- Refers to three core types of distributed collection APIs:
 - Datasets
 - DataFrames
 - SQL tables and views
- Majority of the Structured APIs apply to both batch and streaming computation

Spark's Toolset

**Structured
Streaming**

**Advanced
Analytics**

**Libraries &
Ecosystem**

Structured APIs

Datasets

DataFrames

SQLs

Low Level APIs

RDDs

Distributed variables

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

SPARK

L28.7

Spark has two notions of structured collections: DataFrames and Datasets

- DataFrames and Datasets are (distributed) **table-like** collections with well-defined rows and columns
- Each column:
 - Must have the same number of rows as all the other columns (although you can use `null` to specify the absence of a value)
 - Has type information that must be consistent for every row in the collection

DataFrames versus Datasets

- **DataFrames** are considered “**untyped**”
- **Datasets** are considered “**typed**”

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

SPARK

L28.9

How does Spark view DataFrames and Datasets?

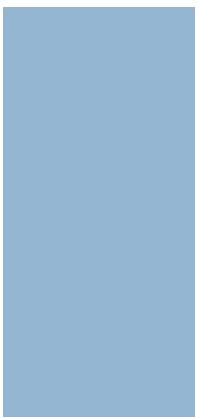
- To Spark, DataFrames and Datasets represent **immutable, lazily evaluated** plans that specify what operations to apply to data residing at a location to generate some output
- When we perform an action on a DataFrame, we instruct Spark to perform the actual transformations and return the result
- These represent **plans** of how to manipulate rows and columns to compute the user's desired result

The DataFrame is the most common Structured API

- Simply represents a **table** of data with rows and columns
- The list that defines the columns and the types within those columns is called the **schema**

The DataFrame concept is not unique to Spark

- R and Python both have similar concepts
 - However, Python/R DataFrames (with some exceptions) exist on one machine rather than multiple machines
 - This limits what you can do with a given DataFrame to the resources that exist on that specific machine
- A Spark DataFrame can span thousands of computers



CORE SPARK CONCEPTS

Core Spark Concepts

- Drivers
- SparkContext
- Executors

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

SPARK

L28.14

Spark in a nutshell

- Spark allows users to write a program for the **driver** (or master node) on a cluster computing system that can perform **operations** on data in parallel
- Spark represents large datasets as **RDDs** which are stored in the executors (or worker nodes)
- The objects that comprise RDDs are called **partitions** and may be (but do not need to be) computed on different nodes of a distributed system
- The Spark cluster manager handles starting and distributing the Spark executors across a distributed system

Drivers

- Every Spark application consists of a **driver** program
- Driver **launches various parallel operations** on the cluster
- Constituent elements
 - Application's main function
 - Defines distributed datasets on the clusters
 - Applies operations to these datasets

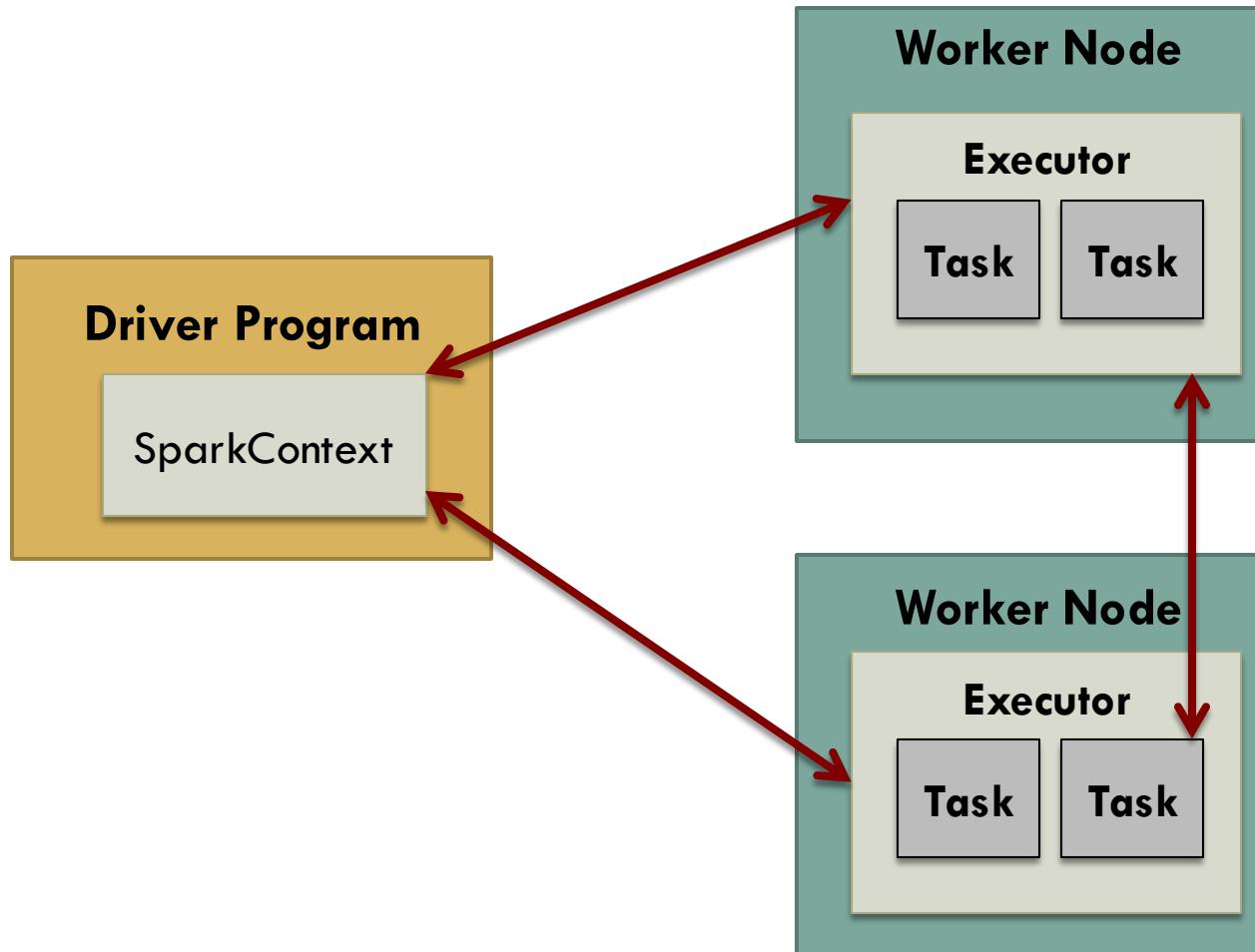
SparkContext

- Driver programs access Spark through a **SparkContext object**
 - Represents a **connection** to a computing cluster
- Within the shell?
 - Created as the variable `sc`
 - You can even print out `sc` to see the the type
- Once you have a **SparkContext**, you can use it to build RDDs
 - And then run operations on the data ...

Executors

- Driver programs manage a number of nodes, called **executors**
- Executors are responsible for running operations
- For example:
 - If we were running a `count()` operation on cluster
 - Different machines might count lines in different ranges of the file

Components for distributed execution in Spark



LAMBDA EXPRESSIONS: FUNCTIONS ON THE FLY

Lambda expressions ... functions on the fly

- Sometimes you need a function, but it feels wasteful to give it a name
- You just want to describe *what* to do (right there!) ... in the moment
- That's what a lambda expression is
 - A way to write a tiny, disposable function without all the ceremony of a definition
- In everyday terms, a lambda is like giving someone quick instructions
 - “sort by length,” “double every number,” “keep only the odd ones”
 - Without naming the rulebook

Lambda expressions ... key ideas

□ **Anonymous**

- Lambdas don't have names; they exist only where they're needed

□ **Concise**

- In functional programming, **functions** are first-class participants

- You can pass them around, store them, and return them

□ **Contextual**

- Perfect for small jobs: sorting, filtering, mapping, or transforming data in Spark

Lambda in action

```
val nums = List(1, 2, 3, 4)
val squares = nums.map(x => x * x)
println(squares) // Output: List(1, 4, 9, 16)
```

Here, $x \Rightarrow x * x$ is a lambda
See how it describes the
transformation without ever naming
the function

```
val words = sc.parallelize(List("sun", "moon", "stars", "sky", "light", "air"))
val longWords = words.filter(w => w.length > 3)
println(longWords.collect().mkString(", "))
```

The lambda $w \Rightarrow w.length > 3$ is passed to filter,
Spark applies it in parallel to each partition,
The result is a new RDD containing only the elements that meet the condition
i.e. moon, stars, light

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

SPARK

L28.23

Lot of Spark's API revolves around passing functions to its operators

[1 / 2]

```
def hasPython(line)
    return "Python" in line

pythonLines =
    lines.filter(hasPython)
```

```
pythonLines =
    lines.filter(line => line.contains("Python"))
```

Also known as the **lambda or => syntax**

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

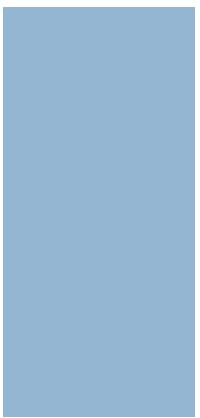
SPARK

L28.24

Lot of Spark's API revolves around passing functions to its operators [2/2]

```
JavaRDD<String> pythonLines = lines.filter(  
    new Function<String, Boolean> () {  
        Boolean call(String line) {  
            return line.contains("Python");  
        }  
    }  
);
```

```
JavaRDD<String> pythonLines =  
    lines.filter(line -> line.contains("Python"));
```

RESILIENT DISTRIBUTED DATASET [RDD]

Resilient Distributed Dataset (RDD)

- RDD is an **immutable, distributed collection** of objects
- Each RDD is split into *multiple partitions*
 - Maybe computed on different nodes in the cluster
- Can contain any type of Java, Scala, or Python objects
 - Including user-defined classes

Creation of RDDs

- ① Loading an external dataset
- ② Distributing a collection of objects via the driver program

```
>>> lines = sc.textFile("README.md")
```


COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

SPARK

L28.28

Once created, RDDs offer two types of operations

□ **Transformations**

- Construct a new RDD from a previous one
- E.g.: Filtering data that matches a predicate

□ **Actions**

- Compute a result based on an RDD
- Return result to the driver program or save it in an external storage system (HDFS)

Some more about RDDs

- Although you can define new RDDs anytime
 - Spark computes them in a **lazy fashion**
 - When?
 - The first time they are used in an **action**
- Loading lazily allows transformations to be performed **before** the action

Lazy loading allows Spark to see the whole chain of transformations

- Allows it to **compute just the data needed** for the result

- Example:

```
lines = sc.textFile("README.md")
pythonLines= lines.filter(lambda line: "Python" in line)
```

- If Spark were to load and store all lines in the file, as soon as we wrote `lines=sc.textFile()`?
 - Would waste a lot of storage space, since we immediately filter out a lot of lines

RDD and actions

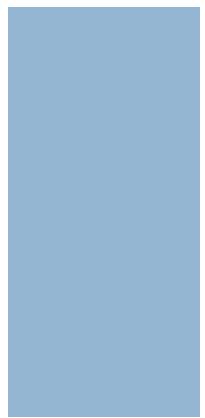
- RDDs are **recomputed** (by default) every time you run an action on them
- If you wanted to reuse an RDD?
 - Ask Spark to **persist** it using `RDD.persist()`
 - After computing it the first time, Spark will store RDD contents in memory (**partitioned** across cluster machines)
 - Persisted RDD is used in future actions

RDDs: memory residency and immutability implications

- Spark can keep an RDD loaded in-memory on the executor nodes throughout the life of a Spark application for **faster access in repeated computations**
- RDDs are immutable, so **transforming an RDD returns a new RDD** rather than the existing one
- Cross-cutting implications?
 - Lazy evaluation, in-memory storage, and immutability allows Spark to be easy-to-use, fault-tolerant, scalable, and efficient

Every Spark program and shell works as follows

- ① **Create** some input RDD from external data
- ② **Transform** them to define new RDDs using transformations like
`filter()`
- ③ Ask Spark to **persist()** any intermediate RDDs that needs to be reused
- ④ **Launch actions** such as `count()`, etc. to kickoff a parallel computation
 - Computing is optimized and executed by Spark



A CLOSER LOOK AT RDD OPERATIONS

RDDs support two types of operations

- Transformations
 - Operations that **return a new RDD**. E.g.: `filter()`
- Actions
 - Operations that **return a result** to the driver program or write to storage
 - Kicks of a **computation**. E.g.: `count()`
- Distinguishing aspect?
 - Transformations return RDDs
 - Actions return **some other data type**

Transformations

- Many transformations are **element-wise**
 - Work on only one element at a time
- Some transformations are not element-wise
 - E.g.: We have a logfile, *log.txt*, with several messages, but we only want to select error messages

```
inputRDD = sc.textFile("log.txt")
errorsRDD = inputRDD.filter(lambda x:"error" in x)
```


In our previous example ...

- filter **does not mutate** inputRDD
 - Returns a pointer to an entirely new RDD
 - inputRDD **can still be reused later in the program**
- We could use inputRDD **to search for lines with the word “warning”**
 - While we are at it, we will use another transformation, `union()`, to print number of lines that contained either

```
errorsRDD = inputRDD.filter(lambda x: "error" in x)
```

```
warningsRDD = inputRDD.filter(lambda x: "warning" in x)
```

```
badlinesRDD = errorsRDD.union(warningsRDD)
```

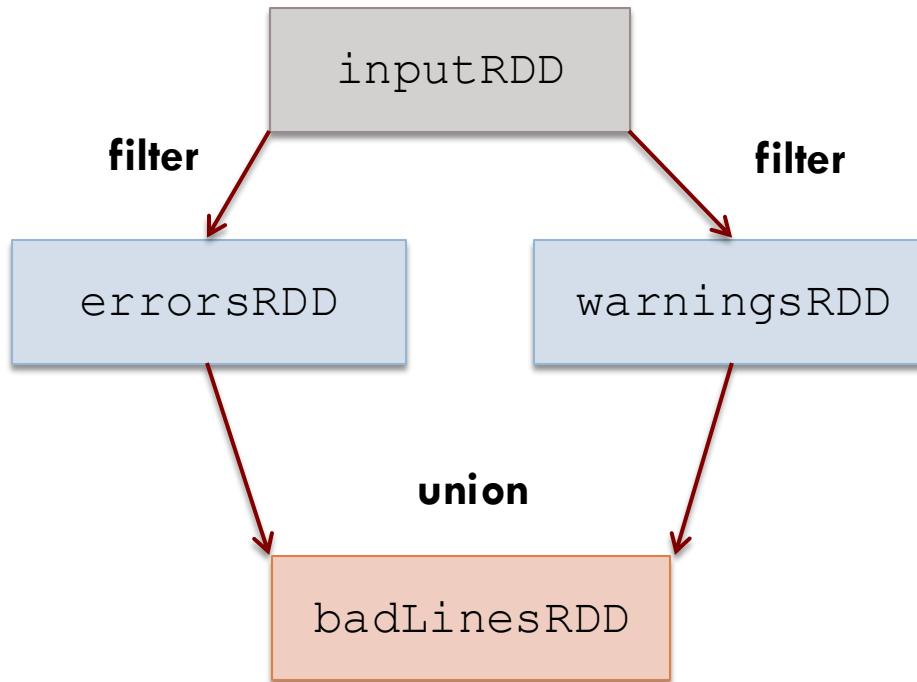

In our previous example

- Note how `union()` is different from `filter()`
 - Operates on 2 RDDs instead of one
- Transformations can actually operate on **any number** of RDDs

RDD Lineage graphs

- As new RDDs are derived from each other using transformations, Spark *tracks dependencies*
 - **Lineage graph**
- Uses lineage graph to
 - Compute each RDD on demand
 - Recover lost data if part of persistent RDD is lost

RDD lineage graph for our example



Actions

- We can create RDDs from each other using transformations
- At some point, we need to actually **do something** with the dataset
 - Actions
- Forces *evaluations of the transformations* required for the RDD they were called on

Let's try to print information about badLinesRDD

```
print "Input had " + badLinesRDD.count() + "concerning lines"  
print "here are 10 examples:"  
for line in badLinesRDD.take(10)  
    print line
```


COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

SPARK

L28.43

RDDs also have a collect to retrieve the entire RDD

- Useful if program filters RDD to a very small size and you want to deal locally
 - Your entire dataset must fit in memory on a single machine to use collect () on it
 - Should NOT be used on large datasets
- In most cases, RDDs **cannot be** collect () ed to the driver
 - Common to write data out to a distributed storage system ... HDFS or S3

Lazy Evaluation

- Transformations on RDDs are **lazily evaluated**
 - Spark will not begin to execute until it sees an action
- Uses this to **reduce the number of passes** it has to take over data by grouping operations together
- What does this mean?
 - When you call a transformation on an RDD (for e.g., `map`) the operation is not immediately performed
 - Spark internally records metadata that operation is requested

How you should think of RDDs

- Rather than thinking of it as containing specific data
 - Best to think of it as **containing instructions on how to compute the data** that we build through transformations
- Loading data into a RDD is lazily evaluated just as transformations are

COMMON TRANSFORMATIONS AND ACTIONS

Element-wise transformations: filter()

- Takes in a function and returns an RDD that only has elements that pass the `filter()` function

COLORADO STATE UNIVERSITY

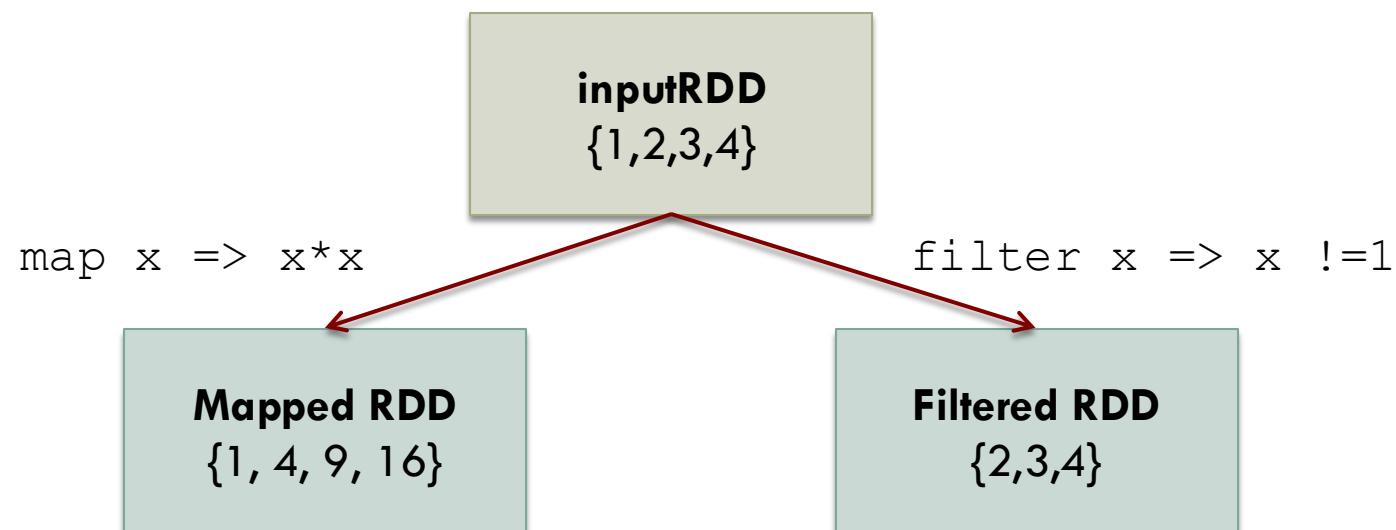
Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

SPARK

L28.48

Element-wise transformations: map ()

- Takes in a function and applies it to each element in the RDD
- Result of the function is the new value of each element in the resulting RDD

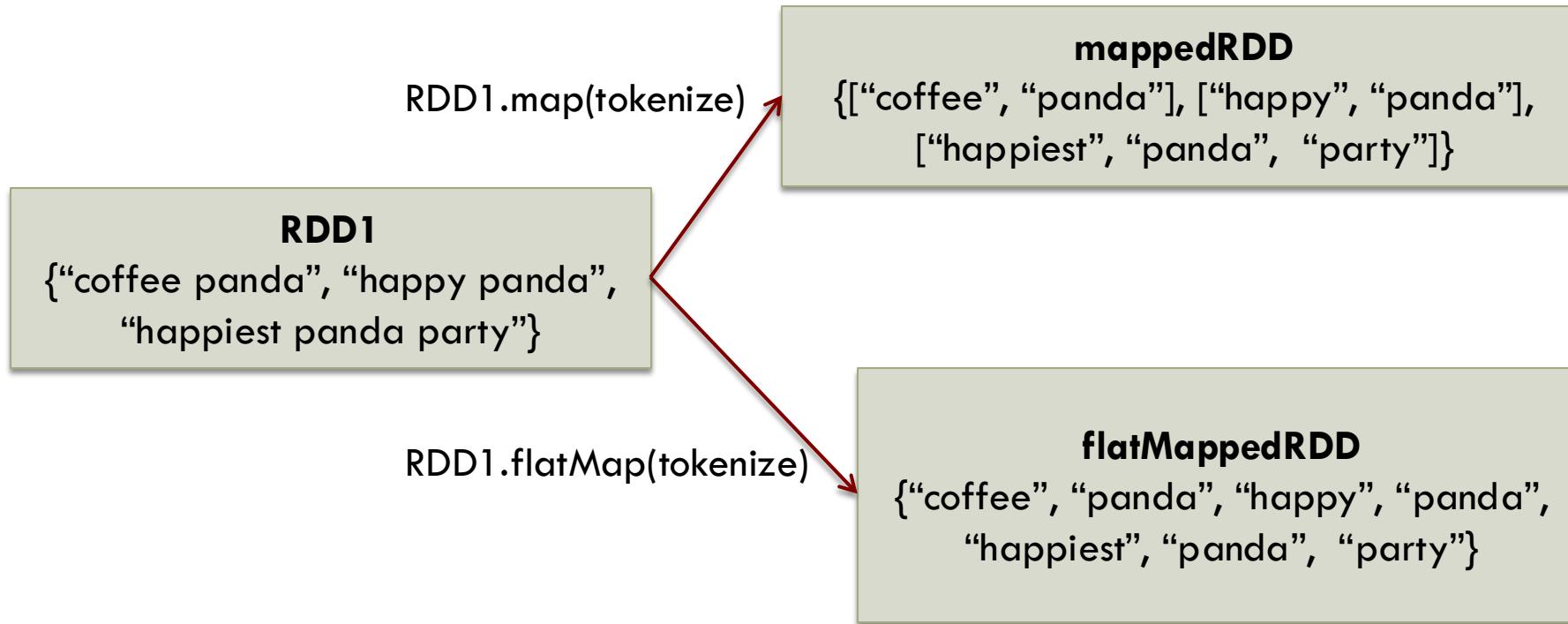


Things that can be done with map ()

- Fetch website associated with each URL in collection to just squaring numbers
- map () 's return type does not have to be the same as its input type
- Multiple output elements for each input element?
 - Use flatMap ()

```
lines=sc.parallelize(["hello world", "hi"])
words=lines.flatMap(lambda line: line.split(" "))
words.first() # returns hello
```


Difference between map and flatMap



Psuedo set operations

- RDDs support many of the operations of mathematical sets such as union, intersection, etc.
- Even when the RDDs themselves are not properly sets

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

SPARK

L28.52

Some simple set operations

RDD1

{coffee, coffee, panda,
tiger, tea}

RDD2

{coffee, tiger, snake}

RDD1.distinct()

{coffee, tiger, panda,
tea}

RDD1.union(RDD2)

{coffee, coffee, coffee,
panda, tiger, tiger, tea,
snake}

RDD1.intersection(RDD2)

{coffee, tiger}

RDD1.subtract(RDD2)

{panda, tea}

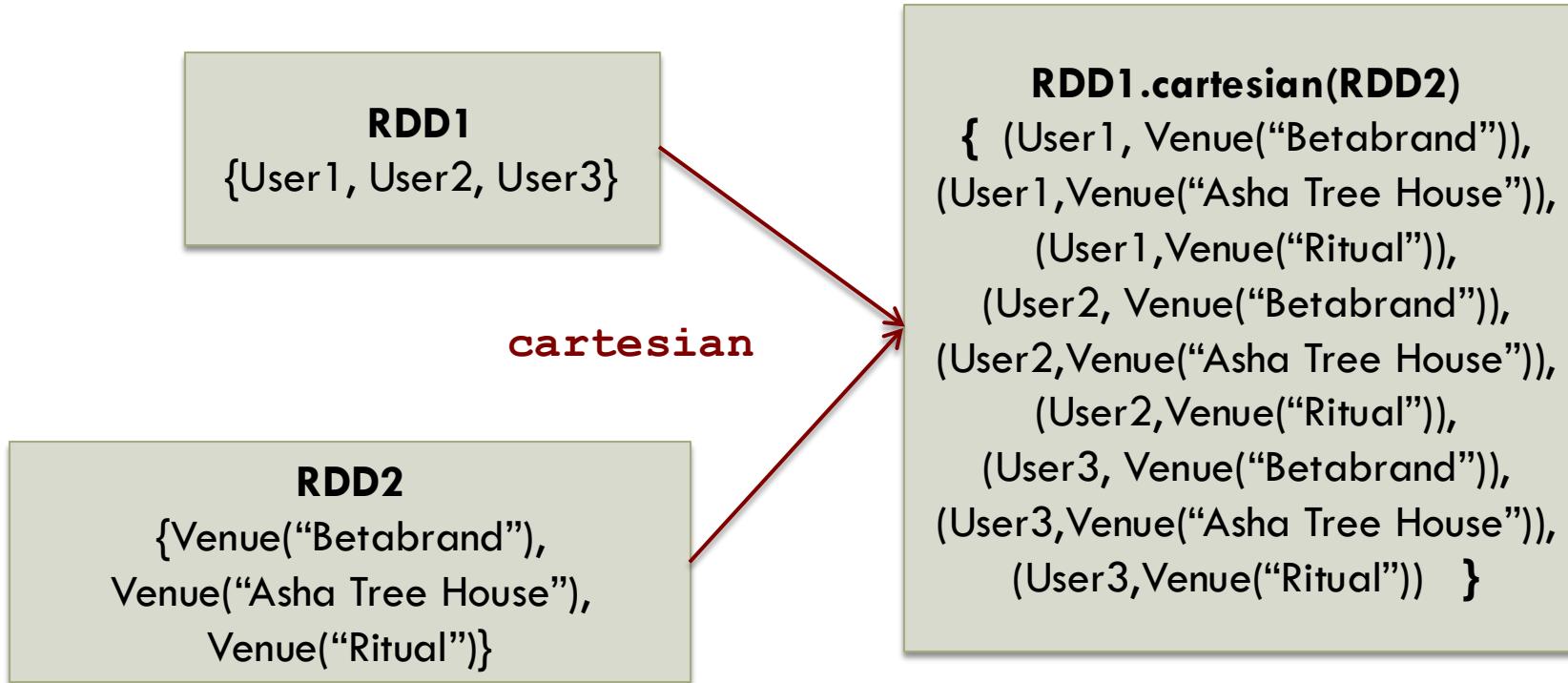
COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

SPARK

L28.53

Cartesian product between two RDDs



COMMON ACTIONS

Actions on Basic RDDs

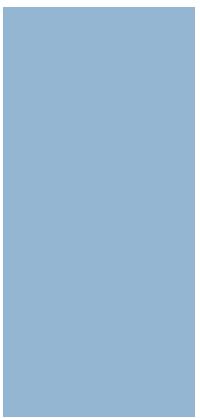
- `reduce()`
 - Takes a function that operates on two elements in the RDD; returns an element of the same type
 - E.g., of such an operation? `+` sums the RDD

```
sum = rdd.reduce((x, y) => x + y)
```

- `fold()` takes a function with the same signature as `reduce()`, but also takes a “zero value” for initial call
 - “Zero value” is the **identity element** for initial call
 - E.g., 0 for `+`, 1 for `*`, empty list for concatenation

Both fold() and reduce() require return type of same type as the RDD elements

- The aggregate() removes that constraint
 - For e.g., when computing a running average, maintain both the count so far and the number of elements



EXAMPLES: BASIC ACTIONS ON RDDS

- Our RDD contains {1, 2, 3, 3}
- **collect()**
 - Return all elements from the RDD
 - Invocation: `rdd.collect()`
 - Result: {1, 2, 3, 3}

- Our RDD contains {1, 2, 3, 3}
- **count()**
 - Number of elements in the RDD
 - Invocation: `rdd.count()`
 - Result: 4

- Our RDD contains {1, 2, 3, 3}
- **countByValue ()**
 - Number of times each element occurs in the RDD
 - Invocation: `rdd.countByValue ()`
 - Result: { (1,1), (2,1), (3,2) }

- Our RDD contains {1, 2, 3, 3}
- **take (num)**
 - Return num elements from the RDD
 - Invocation: rdd.take(2)
 - Result: { 1, 2}

- Our RDD contains {1, 2, 3, 3}
- **reduce(func)**
 - Combine the elements of the RDD together in parallel
 - Invocation: `rdd.reduce((x, y) => x + y)`
 - Result: 9

- Our RDD contains $\{1, 2, 3, 3\}$
- **aggregate(zeroValue) (seqOp, combOp)**
 - Similar to `reduce()` but used to return a different type
 - Invocation:
 - `rdd.aggregate ((0, 0))`
 $((x, y) \Rightarrow (x._1 + y, x._2 + 1),$
 $(x, y) \Rightarrow (x._1 + y._1, x._2 + y._2))$
 - Result: $(9, 4)$

- Our RDD contains {1, 2, 3, 3}
- **foreach(func)**
 - Apply the provided function to each element of the RDD
 - Invocation: `rdd.foreach(func)`
 - Result: `Nothing`

The contents of this slide-set are based on the following references

- *Learning Spark: Lightning-Fast Big Data Analysis.* 1st Edition. Holden Karau, Andy Konwinski, Patrick Wendell, and Matei Zaharia. O'Reilly. 2015. ISBN-13: 978-1449358624. [Chapters 1-4]
- Karau, Holden; Warren, Rachel. *High Performance Spark: Best Practices for Scaling and Optimizing Apache Spark.* O'Reilly Media. 2017. ISBN-13: 978-1491943205. [Chapter 2]
- Chambers, Bill, Zaharia, Matei. *Spark: The Definitive Guide: Big Data Processing Made Simple.* O'Reilly Media. ISBN-13: 978-1491912218. 2018. [Chapters 1, 2, and 3].

