

CS x55: DISTRIBUTED SYSTEMS [SPARK]

Shrideep Pallickara
Computer Science
Colorado State University

Frequently asked questions from the previous class survey

- Where are replicas of Spark partitions stored?
- $\text{Rdd1} \rightarrow \text{Rdd2} \rightarrow \text{Rdd3} \rightarrow \text{Rdd4}$ if no action is invoked on any of these RDDs, where are they stored?
- Say $\text{Rdd1} \rightarrow \text{Rdd2} \dots$ if an action is invoked on Rdd2 ; what happens to Rdd1 ?

Topics covered in this lecture

- Actions on RDDs
- Pair RDDs
- Data Frames

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

SPARK

L29.3

COMMON TRANSFORMATIONS AND ACTIONS

Element-wise transformations: filter()

- Takes in a function and returns an RDD that only has elements that pass the `filter()` function

COLORADO STATE UNIVERSITY

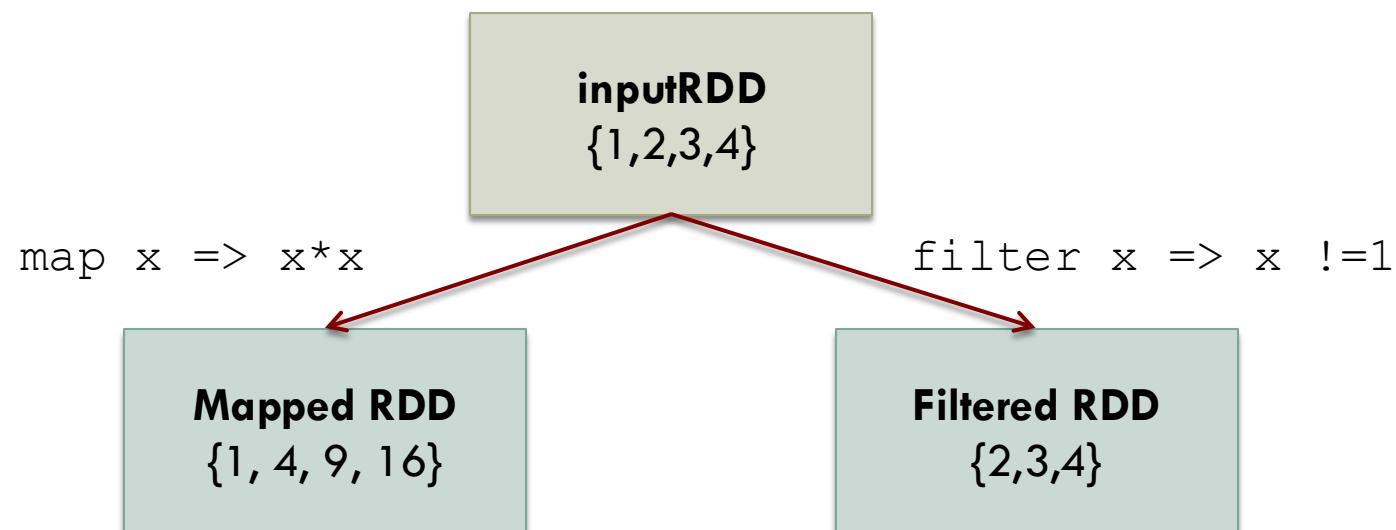
Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

SPARK

L29.5

Element-wise transformations: map ()

- Takes in a function and applies it to each element in the RDD
- Result of the function is the new value of each element in the resulting RDD

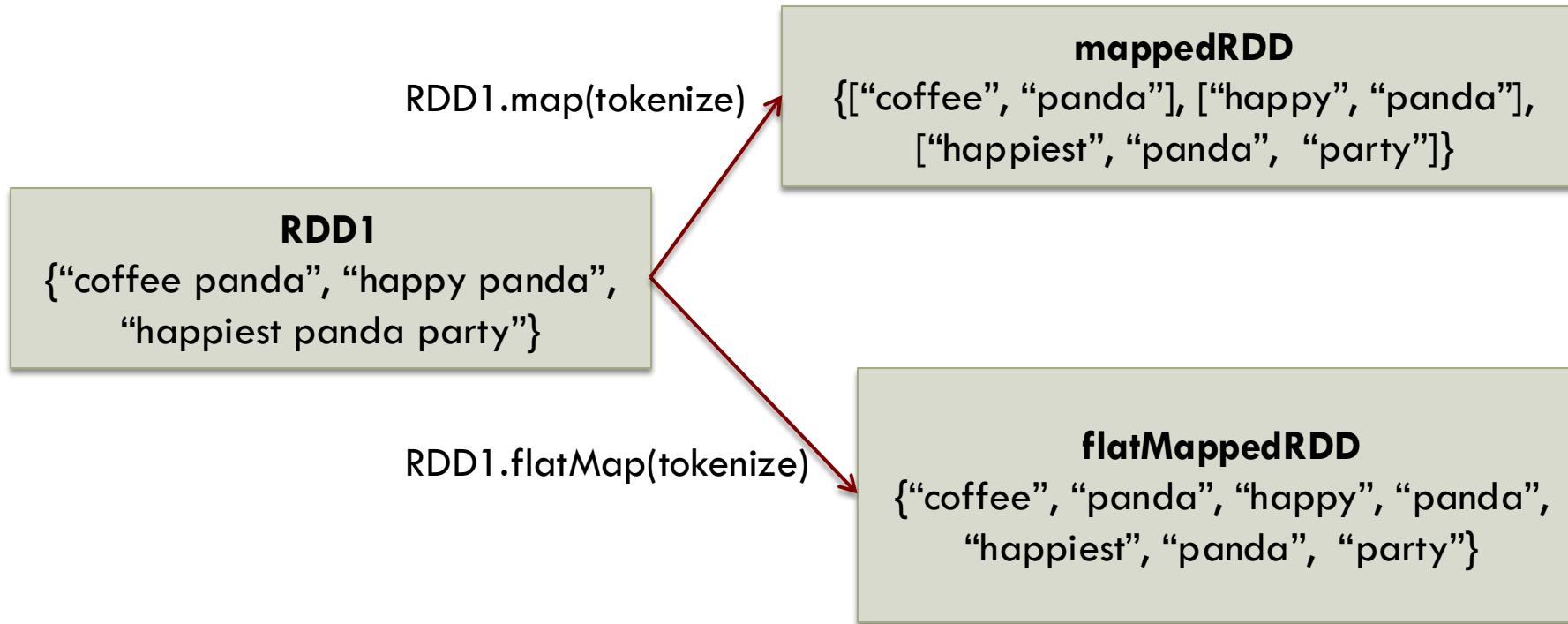


Things that can be done with map ()

- Fetch website associated with each URL in collection to just squaring numbers
- map () 's return type does not have to be the same as its input type
- Multiple output elements for each input element?
 - Use flatMap ()

```
lines=sc.parallelize(["hello world", "hi"])
words=lines.flatMap(lambda line: line.split(" "))
words.first() # returns hello
```


Difference between map and flatMap



Psuedo set operations

- RDDs support many of the operations of mathematical sets such as union, intersection, etc.
- Even when the RDDs themselves are not properly sets

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

SPARK

L29.9

Some simple set operations

RDD1

{coffee, coffee, panda,
tiger, tea}

RDD2

{coffee, tiger, snake}

RDD1.distinct()

{coffee, tiger, panda,
tea}

RDD1.union(RDD2)

{coffee, coffee, coffee,
panda, tiger, tiger, tea,
snake}

RDD1.intersection(RDD2)

{coffee, tiger}

RDD1.subtract(RDD2)

{panda, tea}

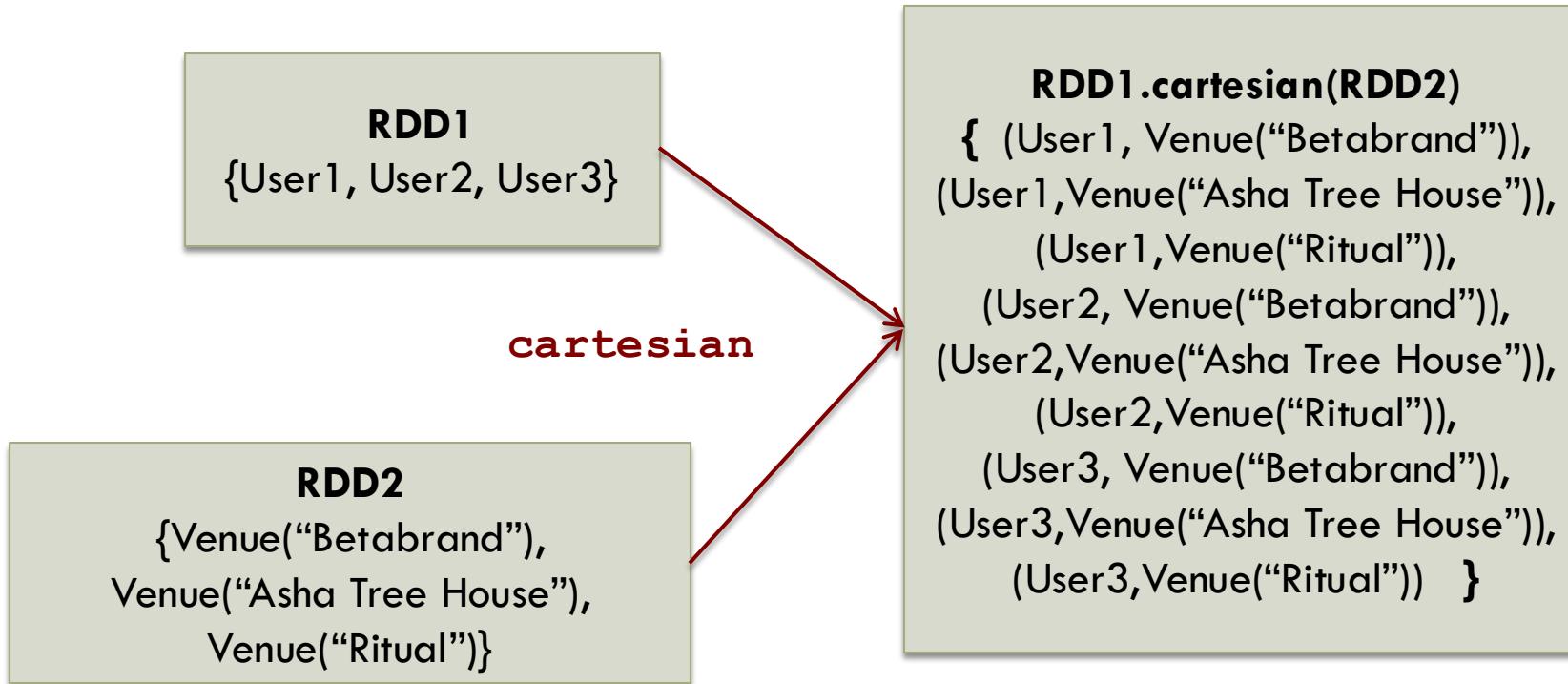
COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

SPARK

L29.10

Cartesian product between two RDDs



COMMON ACTIONS

Actions on Basic RDDs

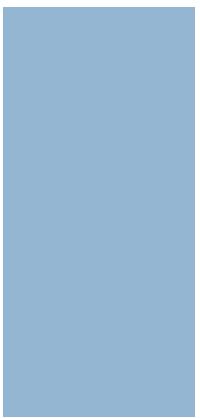
- `reduce()`
 - Takes a function that operates on two elements in the RDD; returns an element of the same type
 - E.g., of such an operation? `+` sums the RDD

```
sum = rdd.reduce((x, y) => x + y)
```

- `fold()` takes a function with the same signature as `reduce()`, but also takes a “zero value” for initial call
 - “Zero value” is the **identity element** for initial call
 - E.g., 0 for `+`, 1 for `*`, empty list for concatenation

Both fold() and reduce() require return type of same type as the RDD elements

- The aggregate() removes that constraint
 - For e.g., when computing a running average, maintain both the count so far and the number of elements



EXAMPLES: BASIC ACTIONS ON RDDS

- Our RDD contains $\{1, 2, 3, 3\}$
- **collect()**
 - Return all elements from the RDD
 - Invocation: `rdd.collect()`
 - Result: $\{1, 2, 3, 3\}$

- Our RDD contains {1, 2, 3, 3}
- **count()**
 - Number of elements in the RDD
 - Invocation: `rdd.count()`
 - Result: 4

- Our RDD contains {1, 2, 3, 3}
- **countByValue ()**
 - Number of times each element occurs in the RDD
 - Invocation: `rdd.countByValue ()`
 - Result: { (1,1), (2,1), (3,2) }

- Our RDD contains {1, 2, 3, 3}
- **take (num)**
 - Return num elements from the RDD
 - Invocation: rdd.take(2)
 - Result: { 1, 2}

- Our RDD contains {1, 2, 3, 3}
- **reduce(func)**
 - Combine the elements of the RDD together in parallel
 - Invocation: `rdd.reduce((x, y) => x + y)`
 - Result: 9

- Our RDD contains $\{1, 2, 3, 3\}$
- **aggregate(zeroValue) (seqOp, combOp)**
 - Similar to `reduce()` but used to return a different type
 - Invocation:
 - `rdd.aggregate ((0, 0))`
 $((x, y) \Rightarrow (x._1 + y, x._2 + 1),$
 $(x, y) \Rightarrow (x._1 + y._1, x._2 + y._2))$
 - Result: $(9, 4)$

- Our RDD contains {1, 2, 3, 3}
- **foreach(func)**
 - Apply the provided function to each element of the RDD
 - Invocation: `rdd.foreach(func)`
 - Result: `Nothing`

PERSISTENCE (CACHING)

Why persistence?

- Spark RDDs are lazily evaluated, and we may sometimes wish to use the same RDD multiple times
 - Naively, Spark will **recompute RDD and all of its dependencies** each time we call an action on the RDD
 - Super expensive for iterative algorithms
- To avoid recomputing RDD multiple times?
 - Ask Spark to **persist** the data
 - The nodes that compute the RDD, store the partitions
 - E.g.: `result.persist(StorageLevel.DISK_ONLY)`

Coping with failures

- If a node that has data persisted on it fails?
 - Spark recomputes lost partitions of data when needed
- Also, replicate data on multiple nodes
 - To handle node failures without slowdowns

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

SPARK

L29.25

Persistence Levels for Spark

Level	Space Used	Wall clock time	In Memory	On disk	Comments
MEMORY_ONLY	High	Low	Y	N	
MEMORY_ONLY_SER	Low	High	Y	N	
MEMORY_AND_DISK	High	Medium	Some	Some	Spills to disk if there is too much data to fit in memory
MEMORY_AND_DISK_SER	Low	High	Some	Some	Spills to disk if there is too much data to fit in memory. Stores serialized representation in memory
DISK_ONLY	Low	High	N	Y	

What if you attempt to cache too much data that does not fit in memory?

- Spark will **evict old partitions** using a Least Recently Used Cache policy
 - For memory only storage partitions, it will be recomputed the next time they are accessed
 - For memory_and_disk ones? Write them out to disk
- RDDs also come with a method, `unpersist()`
 - Manually remove data elements from the cache

PAIRRDDs: WORKING WITH KEY/VALUE PAIRS

RDDs of key/value pairs

- Key/value RDDs are commonly used to perform aggregations
 - Might have to do ETL (Extract, Transform, and Load) to get data into key/value formats
- Advanced feature to control layout of pair RDDs across nodes
 - **Partitioning**

RDDs containing key/value pairs

- Are called **pair RDDs**
- Useful *building block* in many programs
 - Expose operations that allow actions on each key in parallel or regroup data across network
 - `reduceByKey()` to aggregate data **separately for each key**
 - `join()` to merge two RDDs together by grouping elements of the same key

Creating Pair RDDs

- `pairs=lines.map(lambda x: (x.split(" "))[0], x))`
- Creates a pairRDD using the first word as the key

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

SPARK

L29.31

TRANSFORMATIONS ON PAIR RDDS

- Pair RDD = $\{(1,2), (3,4), (3,6)\}$
- **reduceByKey (func)**
 - Combine values with the same key
 - Invocation: `rdd.reduceByKey((x, y) => x + y)`
 - Result: $\{(1, 2), (3, 10)\}$

- Pair RDD = $\{(1,2), (3,4), (3,6)\}$
- **groupByKey (func)**
 - Group values with the same key
 - Invocation: `rdd.groupByKey()`
 - Result: $\{(1, [2]), (3, [4, 6])\}$

- Pair RDD = $\{(1,2), (3,4), (3,6)\}$
- **mapValues(func)**
 - Apply function to each value of a pair RDD **without** changing the key
 - Invocation: `rdd.mapValues(x => x+1)`
 - Result: $\{(1, 3), (3, 5), (3, 7)\}$

- Pair RDD = $\{(1,2), (3,4), (3,6)\}$

- **values()**

- Return an RDD of just the values

- Invocation: `rdd.values()`

- Result: $\{ 2, 4, 6 \}$

Transformations on Pair RDDs

[5/5]

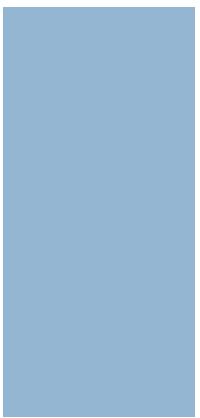
- Pair RDD = $\{(1,2), (3,4), (3,6)\}$
- **sortByKey()**
 - Return an RDD sorted by the key
 - Invocation: `rdd.sortByKey()`
 - Result: $\{(1,2), (3,4), (3,6)\}$

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

SPARK

L29.37



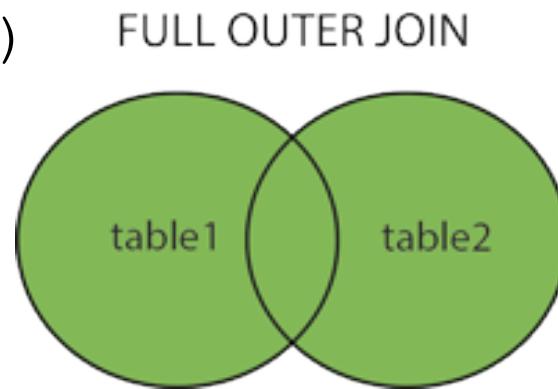
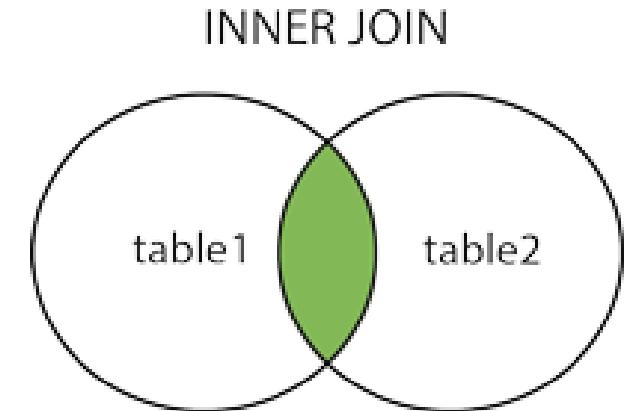
TRANSFORMATIONS ON TWO PAIR RDDS

- **rdd** = {(1,2), (3,4), (3,6) } **other** = {(3,9)}
- **subtractByKey ()**
 - Remove elements with a key present in the other RDD
 - Invocation: `rdd.subtractByKey(other)`
 - Result: { (1,2) }

Transformations on two Pair RDDs

[2/5]

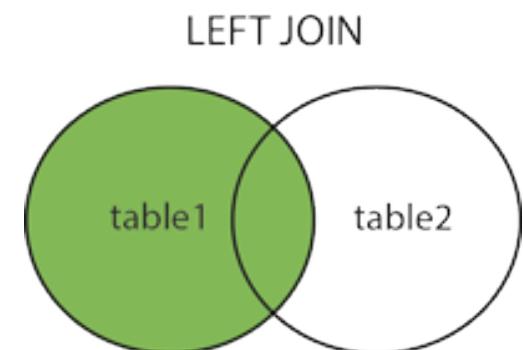
- **rdd** = {(1,2), (3,4), (3,6) } **other** = {(3,9)}
- **join()**
 - Perform an **inner join** between two RDDs. Only keys that are present in both pair RDDs are output
 - **Invocation:** `rdd.join(other)`
 - **Result:** { (3, (4,9)) , (3, (6,9)) }



Transformations on two Pair RDDs

[3/5]

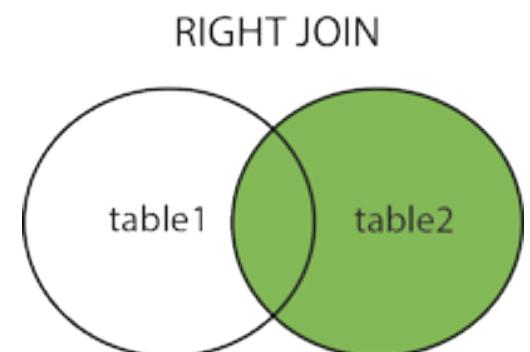
- **rdd** = {(1,2), (3,4), (3,6) } **other** = {(3,9)}
- **leftOuterJoin()**
 - Perform a join between two RDDs where the **key must be present in the first RDD**
 - Value associated with each key is a tuple of the value from the source and an Option for the value from the other pair RDD
 - In python if a value is not present, **None** is used.
 - **Invocation:** `rdd.leftOuterJoin(other)`
 - **Result:** { (1, (2,None)) , (3, (4, 9)) , (3, (6, 9)) }



Transformations on two Pair RDDs

[4/5]

- **rdd** = {(1,2), (3,4), (3,6) } **other** = {(3,9)}
- **rightOuterJoin()**
 - Perform a join between two RDDs where the key must be present in the other RDD;
 - Tuple has an option for the source rather than other RDD
 - **Invocation:** `rdd.rightOuterJoin(other)`
 - **Result:** { (3, (4,9)) , (3, (6,9)) }



Transformations on two Pair RDDs

[5/5]

- **rdd** = {(1,2), (3,4), (3,6) } **other** = {(3,9)}
- **cogroup()**
 - Group data from both RDDs using the same key
 - Invocation: `rdd.cogroup(other)`
 - Result: { (1, ([2],[])), (3, ([4, 6], [9])) }

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

SPARK

L29.43

Example of chaining operations: Calculation of per-key average

key	value
panda	0
pink	3
pirate	3
panda	1
pink	4

mapValues

key	value
panda	(0, 1)
pink	(3, 1)
pirate	(3, 1)
panda	(1, 1)
pink	(4, 1)

reduceByKey

key	value
panda	(1, 2)
pink	(7, 2)
pirate	(3, 1)

```
rdd.mapValues(x=> (x, 1)).reduceByKey( (x,y) => (x._1 + y._1, x._2 + y._2))
```


COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

SPARK

L29.44

A word count example

- We are using flatMap() to produce a pair RDD of words and the number 1

```
rdd = sc.textfile("s3://...")  
words = rdd.flatMap(lambda x: x.split(" "))  
result = words.map(lambda x: (x, 1)).  
            reduceByKey(lambda x, y: x+y)
```


DATAFRAMES

Spark DataFrame

- DataFrames consist of
 - A series of **records** (like rows in a table) that are of type Row
 - A number of columns (like columns in a spreadsheet)
- Rows
 - You can create rows by manually instantiating a Row object with the values that belong in each column
- Columns
 - You can select, manipulate, and remove columns from DataFrames and these operations are represented as **expressions**

Schemas

- A **schema** defines the column names and types of a DataFrame
- You can let a data source define the schema (called schema-on-read) or define it explicitly
- Note that only DataFrames have schemas
 - Rows themselves *do not* have schemas
 - If you create a Row manually?
 - You must specify the values *in the same order* as the schema of the DataFrame to which they might be appended

We can create DataFrames from raw data sources

- Spark has six “**core**” data sources
 - CSV
 - JSON
 - Parquet
 - ORC: Apache Optimized Row Columnar (ORC) file format
 - JDBC/ODBC connections
 - Plain-text files
- Hundreds of external data sources written by the community
 - E.g.: Cassandra, HBase, MongoDB, AWS, Redshift, XML etc.

The foundation for reading data in Spark is the DataFrameReader

- We access this through the `SparkSession` via the `read` attribute:
`spark.read`
- After we have a `DataFrame` reader, we specify several values:
 - The format: Input data source format
 - The schema
 - The read mode {`Permissive`, `DropMalformed`, `Failfast`}
 - A series of options
- **The format, options, and schema each return a `DataFrameReader`** that can undergo *further* transformations and are all optional

However, at a minimum, the DataFrameReader must have a **path** from which to read

```
spark.read.format("csv")
  .option("mode", "FAILFAST")
  .option("inferSchema", "true")
  .option("path", "path/to/file(s)")
  .schema(someSchema)
  .load()
```


Writing data is quite similar to that of reading data

- Instead of the DataFrameReader , we have the DataFrameWriter
- We access the DataFrameWriter on a per-DataFrame basis via the write attribute:

```
dataFrame.write
```


COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALICKARA
COMPUTER SCIENCE DEPARTMENT

SPARK

L29.52

Writing Data

- After we have a DataFrameWriter, we specify three values:
 - The format, a series of options, and the save mode
- **At a minimum**, you must supply a path
- Options may vary from data source to data source

```
dataframe.write.format( "csv" )  
    .option( "mode", "APPEND" )  
    .option( "dateFormat", "yyyy-MM-dd" )  
    .option( "path", "path/to/file(s)" )  
    .save()
```


You can make any DataFrame into a table or view

- Done via a simple method call: `createOrReplaceTempView`
- This then allows you to query the data using SQL

```
val df = spark.read
    .format("json" )
    .load("/data/flight-data/json/2022-summary.json")

df.createOrReplaceTempView("dfTable")
```


The contents of this slide-set are based on the following references

- *Learning Spark: Lightning-Fast Big Data Analysis. 1st Edition. Holden Karau, Andy Konwinski, Patrick Wendell, and Matei Zaharia. O'Reilly. 2015. ISBN-13: 978-1449358624.* [Chapters 1-4, 10]
- Chambers, Bill, and Zaharia, Matei. *Spark: The Definitive Guide: Big Data Processing Made Simple.* O'Reilly Media. ISBN-13: 978-1491912218. 2018. [Chapters 5 and 9].
- SQL Joins: https://www.w3schools.com/sql/sql_join.asp
- Karau, Holden; Warren, Rachel. *High Performance Spark: Best Practices for Scaling and Optimizing Apache Spark.* O'Reilly Media. 2017. ISBN-13: 978-1491943205. [Chapter 2]

