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Frequently asked questions from the previous class
survey

Where are replicas of Spark partitions stored?

Rdd12>Rdd22>Rdd3—->Rdd4 if no action is invoked on any of these
RDDs, where are they stored?

Say Rdd1->Rdd?2 ... if an action is invoked on Rdd2; what happens to
Rdd1?
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Topics covered in this lecture

I
1 Actions on RDDs

=1 Pair RDDs

-1 Data Frames
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COMMON TRANSFORMATIONS AND
ACTIONS



Element-wise transformations: filter ()
—

- Takes in a function and returns an RDD that only has elements that pass
the filter () function
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Element-wise transformations: map ()

Takes in a function and applies it to each element in the RDD

Result of the function is the new value of each element in the resulting

RDD
inputRDD
{1,2,3,4}
map x => X*Ner x => x !=1
Mapped RDD Filtered RDD
{1,4,9,16} {2,3,4}
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Things that can be done with map ()

Fetch website associated with each URL in collection to just squaring

numbers

map () ’s return type does not have to be the same as its input type

Multiple output elements for each input element?
Use flatMap ()

lines=sc.parallelize ([“hello world”, “hi”])
words=lines.flatMap (lambda line: line.split (™ %) )

words.first () # returns hello
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Difference between map and flatMap

mappedRDD

{[“coffee”, “panda”], [“happy”, “panda”],

[“happiest”, “panda”, “party”]}

RDD1.map(tokenize)

RDD1

{“coffee panda”, “happy panda”,
“happiest panda party”}

flatMappedRDD

RDD1.flatMap(tokenize)
{“coffee”, “panda”, “happy”, “panda”,

“happiest”, “panda”, “party”}
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Psuedo set operations

RDDs support many of the operations of mathematical sets such as
union, intersection, etc.

Even when the RDDs themselves are not properly sets
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Some simple set operations

RDD1

{coffee, coffee, panda, RDD2

{coffee, tiger, snake}

tiger, tea}
RDD1 .distinct() RDD1.union(RDD2) . .
{coffee, figer, panda, {coffee, coffee, coffee, RDD1 .mtersect.lon(RDDZ)
tea} panda, tiger, tiger, teq, {coffee, tiger}
snake}
RDD1.subtract(RDD?2)

{pandaq, tea}
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Cartesian product between two RDDs

RDD1.cartesian(RDD?2)
RDD1 | { (Userl, Venue(“Betabrand™)),
{User1, User2, User3} (User1,Venue(“Asha Tree House™)),

(User1,Venue(“Ritual’)),
(User2, Venue(“Betabrand”)),

cartesian (User2,Venue(“Asha Tree House”)),
(User2,Venue(“Ritual”)),
RDD?2 (User3, Venue(“Betabrand”)),
{Venue(“Betabrand”), (User3,Venue(“Asha Tree House”)),
Venue(“Asha Tree House”), (User3,Venue(“Ritual”)) }

Venue(“Ritual”)}
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Actions on Basic RDDs

reduce ()

Takes a function that operates on two elements in the RDD; returns an
element of the same type

E.g., of such an operation? + sums the RDD

sum = rdd.reduce((x,y) => X + V)

fold () takes a function with the same signature as reduce (), but
also takes a “zero value” for initial call

“Zero value” is the identity element for initial call

E.g., O for +, 1 for *, empty list for concatenation
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Both fold () and reduce () require return type of

same type as the RDD elements
=

1 The aggregate () removes that constraint

For e.g., when computing a running average, maintain both the count so far
and the number of elements

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.14



EXAMPLES: BASIC ACTIONS ON RDDs

COMPUTER SCIENCE DEPARTMENT @ COLORADDO STATE UNIVERSITY



Examples: Basic actions on RDDs [1/7]

]
= Our RDD contains {1, 2, 3, 3}

1 collect ()

Return all elements from the RDD

Invocation: rdd.collect ()

Result: {1,2,3, 3}
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Examples: Basic actions on RDDs [2/7]

]
= Our RDD contains {1, 2, 3, 3}

0 count ()

Number of elements in the RDD

Invocation: rdd.count ()

Result: 4
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Examples: Basic actions on RDDs

Our RDD contains {1, 2, 3, 3}

countByValue ()

Number of times each element occurs in the RDD

Invocation: rdd.countByValue ()

Result: {(1,1),(2,1),(3,2)}
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Examples: Basic actions on RDDs [4/7]

]
= Our RDD contains {1, 2, 3, 3}

0 take (num)
Return num elements from the RDD

Invocation: rdd.take (2)

Result: {1,2}
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Examples: Basic actions on RDDs [5/7]

Our RDD contains {1, 2, 3, 3}

reduce (func)

Combine the elements of the RDD together in parallel

Invocation: rdd.reduce( (x,y) => X + V )

Result: Q
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Examples: Basic actions on RDDs [6/7]

Our RDD contains {1, 2, 3, 3}

aggregate (zeroValue) (seqOp, combOp)
Similar to reduce () but used to return a different type

Invocation:

rdd.aggregate ( (0,0))
Result: (9, 4)
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Examples: Basic actions on RDDs [7/7]

Our RDD contains {1, 2, 3, 3}

foreach (func)

Apply the provided function to each element of the RDD

Invocation: rdd.foreach (func)

Result: Nothing
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PERSISTENCE




Why persistence?

Spark RDDs are lazily evaluated, and we may sometimes wish to use
the same RDD multiple times

Naively, Spark will recompute RDD and all of its dependencies each time
we call an action on the RDD

Super expensive for iterative algorithms

To avoid recomputing RDD multiple times?
Ask Spark to persist the data
The nodes that compute the RDD, store the partitions
E.g.: result.persist (StoragelLevel .DISK ONLY)
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Coping with failures

If a node that has data persisted on it fails?

Spark recomputes lost partitions of data when needed

Also, replicate data on multiple nodes

To handle node failures without slowdowns
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Persistence Levels for Spark

Level Space Wall In On Comments
Used clock Memory disk
time
MEMORY_ONLY High Low Y N
MEMORY_ONLY_SER | Low High Y N
MEMORY_AND_DISK ' High Medium Some Some | Spills to disk if there is too
much data to fit in memory
MEMORY_AND_ DISK | Low High Some Some | Spills to disk if there is too
_SER much data to fit in memory.

Stores serialized
representation in memory

DISK_ONLY Low High N Y
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What if you attempt to cache too much data that
does not fit in memory?

Spark will evict old partitions using a Least Recently Used Cache
policy

For memory only storage partitions, it will be recomputed the next time they
are accessed

For memory_and_disk ones?¢ Write them out to disk

RDDs also come with a method, unpersist ()

Manually remove data elements from the cache
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PAIRRDDS: WORKING WITH
KEY/VALUE PAIRS




RDDs of key /value pairs

Key/value RDDs are commonly used to perform aggregations

Might have to do ETL (Extract, Transform, and Load) to get data into
key /value formats

Advanced feature to control layout of pair RDDs across nodes

Partitioning
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RDDs containing key /value pairs

Are called pair RDDs

Useful building block in many programs

Expose operations that allow actions on each key in parallel or regroup
data across network

reduceByKey () to aggregate data separately for each key

join () to merge two RDDs together by grouping elements of the same key
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Creating Pair RDDs
N

0 palrs=lines.map (lambda x: (x.split (™ ) ) [0], x))

o1 Creates a pairRDD using the first word as the key
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TRANSFORMATIONS ON PAIR RDDs
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Transformations on Pair RDDs [1/5]

-~
o Pair RDD = {(1,2), (3,4), (3,6) }

1 reduceByKey (func)

Combine values with the same key

Invocation: rdd.reduceByKey ((x, y) => x + V)

Result: { (1, 2), (3,10) }
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Transformations on Pair RDDs [2/5]

]
o Pair RDD = {(1,2), (3,4), (3,6) }

0 groupByKey (func)
Group values with the same key

Invocation: rdd.groupByKey ()
Result: { (], [2])1 (31 [41 6]) }
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Transformations on Pair RDDs [3/5]

Pair RDD = {(1,2), (3,4), (3,6) }

mapValues (func)

Apply function to each value of a pair RDD without changing the key
Invocation: rdd.mapValues (x => x+1)

Result: { (1, 3), (3,5), (3,7) }
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Transformations on Pair RDDs [4/5]

]
o Pair RDD = {(1,2), (3,4), (3,6) }

0 values ()

Return an RDD of just the values

Invocation: rdd.values ()

Result: { 2, 4, 6 }
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Transformations on Pair RDDs [5/5]

]
o Pair RDD = {(1,2), (3,4), (3,6) }

1 sortByKey ()
Return an RDD sorted by the key

Invocation: rdd.sortByKey ()
Result: { (1,2), (3,4), (3,6}
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TRANSFORMATIONS ON TWO PAIR RDDs
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Transformations on two Pair RDDs [1/5]

-~
o rdd ={(1,2), (3,4), (3,6)} other = {(3,9)}

7 subtractByKey ()

Remove elements with a key present in the other RDD

Invocation: rdd . subtractByKey (other)
Result: { (1,2) }

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L29.39



Transformations on two Pair RDDs [2/5]
—

0 rdd ={(1,2), (3,4), (3,6)} other = {(3,9)}

0 join ()
o1 Perform an inner join between two RDDs. Only keys that are present in both
pair RDDs are output

o Invocation: rdd . join (other)  FULLOUTERJOIN INNER JOIN

o Result: { (31 (419)) ’ (31 (619)) }
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Transformations on two Pair RDDs [3/5]

rdd = {(1,2), (3,4), (3,6)} other ={(3,9)}

leftOuterJoin ()

Perform a join between two RDDs where the key must be present in the first
RDD

Value associated with each key is a tuple of the value from the source and
an Option for the value from the other pair RDD

In python if a value is not present, None is used.
Invocation: rdd.leftOuterJoin (other) .
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Transformations on two Pair RDDs [4/5]

rdd = {(1,2), (3,4), (3,6)} other ={(3,9)}

rightOuterJoin ()

Perform a join between two RDDs where the key must be present in the
other RDD;

Tuple has an option for the source rather than other RDD
RIGHT JOIN

Invocation: rdd.rightOuterJoin (other)
Result: { (3, (4,9) ), (3,(6,9)) } e.
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Transformations on two Pair RDDs

rdd = {(1,2), (3,4), (3,6)} other ={(3,9)}

cogroup ()

Group data from both RDDs using the same key

Invocation: rdd.cogroup (other)

Result: { (1, ([21,00) , (3, ([4, 6], [9]) }
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Example of chaining operations:

Calculation of per-key average
-b

panda 0]
pink 3
pirate 3
panda 1
pink

rdd.mapValues (x=> (x, 1)) .reduceByKey( (x,y) => (x. 1 +y. 1, x. 2 + y. 2))
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A word count example

We are using £latMap () to produce a pair RDD of words and the

number 1
rdd = sc.textfile(“s3://..")
words = rdd.flatMap(lambda x: x.split (Y 7))

result = words.map (lambda x: (x,1)).
reduceByKey (lambda x, y: x+tVy)
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DATAFRAMES



Spark DataFrame

DataFrames consist of
A series of records (like rows in a table) that are of type Row
A number of columns (like columns in a spreadsheet)

Rows

You can create rows by manually instantiating a Row object with the values
that belong in each column

Columns

You can select, manipulate, and remove columns from DataFrames and
these operations are represented as expressions
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Schemas

A schema defines the column names and types of a DataFrame

You can let a data source define the schema (called schema-on-read)
or define it explicitly

Note that only DataFrames have schemas

Rows themselves do not have schemas
If you create a Row manually?

You must specify the values in the same order as the schema of the DataFrame to
which they might be appended
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We can create DataFrames from raw data sources

Spark has six ‘““core’” data sources
CSV
JSON
Parquet
ORC: Apache Optimized Row Columnar (ORC) file format
JDBC/ODBC connections

Plain-text files

Hundreds of external data sources written by the community
E.g.: Cassandra, HBase, MongoDB, AWS, Redshift, XML etc.
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The foundation for reading data in Spark is the
DataFrameReader

We access this through the SparkSession via the read attribute:
spark.read

After we have a DataFrame reader, we specify several values:
The format: Input data source format
The schema
The read mode {Permissive, DropMalformed, Failfast}

A series of options

The format, options, and schema each return a DataFrameReader
that can undergo further transformations and are all optional
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spark.read.format ("csv")

.option ("mode", "FAILFAST")

.option("inferSchema", "true")

.option ("path", "path/to/file(s)")
(

.Schema (someSchema)
.load ()
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Writing data is quite similar to that of reading data
——

7 Instead of the DataFrameReader , we have the DataFrameWriter

7 We access the DataFrameWriter on a per-DataFrame basis via
the wr1te attribute:

dataFrame.write
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Writing Data

After we have a DataFrameWriter, we specify three values:

The format, a series of options, and the save mode

At a minimum, you must supply a path

Options may vary from data source to data source

dataframe.write.format ( "csv" )
.option ("mode", "APPEND")

.option ("dateFormat", "yyyy-MM-dd" )
.option ("path", "path/to/file(s)" )

.save ()
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You can make any DataFrame into a table or view

Done via a simple method call: createOrReplaceTempView

This then allows you to query the data using SQL

val df = spark.read
.format ("json" )
.load (" /data/flight-data/json/2022-summary.json")

df.createOrReplaceTempView ("dfTable")
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The contents of this slide-set are based on the
following references

Learning Spark: Lightning-Fast Big Data Analysis. 1st Edition. Holden Karau, Andy
Konwinski, Patrick Wendell, and Matei Zaharia. O Reilly. 2015. ISBN-13: 978-
1449358624. [Chapters 1-4, 10]

Chambers, Bill, and Zaharia, Matei. Spark: The Definitive Guide: Big Data Processing
Made Simple. O'Reilly Media. ISBN-13: 978-1491912218. 2018. [Chapters 5 and
Q1.

SQL Joins:

Karau, Holden; Warren, Rachel. High Performance Spark: Best Practices for Scaling
and Optimizing Apache Spark. O'Reilly Media. 2017. ISBN-13: 978-1491943205.
[Chapter 2]
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https://www.w3schools.com/sql/sql_join.asp
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