
COMPUTER SCIENCE DEPARTMENT

CS X55: DISTRIBUTED SYSTEMS [SPARK]

Shrideep Pallickara

Computer Science

Colorado State University

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.2

Frequently asked questions from the previous class

survey

 Where are replicas of Spark partitions stored?

 Rdd1→Rdd2→Rdd3→Rdd4 if no action is invoked on any of these

RDDs, where are they stored?

 Say Rdd1→Rdd2 … if an action is invoked on Rdd2; what happens to

Rdd1?

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.3

Topics covered in this lecture

 Actions on RDDs

 Pair RDDs

 Data Frames

COMPUTER SCIENCE DEPARTMENT

COMMON TRANSFORMATIONS AND

ACTIONS

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.5

Element-wise transformations: filter()

 Takes in a function and returns an RDD that only has elements that pass

the filter() function

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.6

Mapped RDD

{1, 4, 9, 16}

Filtered RDD

{2,3,4}

Element-wise transformations: map()

 Takes in a function and applies it to each element in the RDD

 Result of the function is the new value of each element in the resulting

RDD

inputRDD

{1,2,3,4}

map x => x*x filter x => x !=1

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.7

Things that can be done with map()

 Fetch website associated with each URL in collection to just squaring

numbers

 map()’s return type does not have to be the same as its input type

 Multiple output elements for each input element?

 Use flatMap()

lines=sc.parallelize([“hello world”, “hi”])

words=lines.flatMap(lambda line: line.split(“ “))

words.first() # returns hello

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.8

Difference between map and flatMap

RDD1

{“coffee panda”, “happy panda”,

“happiest panda party”}

mappedRDD

{[“coffee”, “panda”], [“happy”, “panda”],

[“happiest”, “panda”, “party”]}

flatMappedRDD

{“coffee”, “panda”, “happy”, “panda”,

“happiest”, “panda”, “party”}

RDD1.flatMap(tokenize)

RDD1.map(tokenize)

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.9

Psuedo set operations

 RDDs support many of the operations of mathematical sets such as

union, intersection, etc.

 Even when the RDDs themselves are not properly sets

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.10

Some simple set operations

RDD1

{coffee, coffee, panda,

tiger, tea}

RDD2

{coffee, tiger, snake}

RDD1.distinct()

{coffee, tiger, panda,

tea}

RDD1.union(RDD2)

{coffee, coffee, coffee,

panda, tiger, tiger, tea,

snake}

RDD1.intersection(RDD2)

{coffee, tiger}

RDD1.subtract(RDD2)

{panda, tea}

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.11

Cartesian product between two RDDs

RDD1

{User1, User2, User3}

RDD2

{Venue(“Betabrand”),

Venue(“Asha Tree House”),

Venue(“Ritual”)}

RDD1.cartesian(RDD2)

{ (User1, Venue(“Betabrand”)),

(User1,Venue(“Asha Tree House”)),

(User1,Venue(“Ritual”)),

(User2, Venue(“Betabrand”)),

(User2,Venue(“Asha Tree House”)),

(User2,Venue(“Ritual”)),

(User3, Venue(“Betabrand”)),

(User3,Venue(“Asha Tree House”)),

(User3,Venue(“Ritual”)) }

cartesian

COMPUTER SCIENCE DEPARTMENT

COMMON ACTIONS

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.13

Actions on Basic RDDs

 reduce()

 Takes a function that operates on two elements in the RDD; returns an

element of the same type

◼ E.g., of such an operation? + sums the RDD

sum = rdd.reduce((x,y) => x + y)

 fold() takes a function with the same signature as reduce(), but

also takes a “zero value” for initial call

 “Zero value” is the identity element for initial call

 E.g., 0 for +, 1 for *, empty list for concatenation

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.14

Both fold() and reduce() require return type of

same type as the RDD elements

 The aggregate() removes that constraint

 For e.g., when computing a running average, maintain both the count so far

and the number of elements

COMPUTER SCIENCE DEPARTMENT

EXAMPLES: BASIC ACTIONS ON RDDS

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.16

Examples: Basic actions on RDDs [1/7]

 Our RDD contains {1, 2, 3, 3}

 collect()

 Return all elements from the RDD

 Invocation: rdd.collect()

 Result: {1, 2, 3, 3}

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.17

Examples: Basic actions on RDDs [2/7]

 Our RDD contains {1, 2, 3, 3}

 count()

 Number of elements in the RDD

 Invocation: rdd.count()

 Result: 4

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.18

Examples: Basic actions on RDDs [3/7]

 Our RDD contains {1, 2, 3, 3}

 countByValue()

 Number of times each element occurs in the RDD

 Invocation: rdd.countByValue()

 Result: { (1,1), (2,1), (3,2) }

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.19

Examples: Basic actions on RDDs [4/7]

 Our RDD contains {1, 2, 3, 3}

 take(num)

 Return num elements from the RDD

 Invocation: rdd.take(2)

 Result: { 1, 2}

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.20

Examples: Basic actions on RDDs [5/7]

 Our RDD contains {1, 2, 3, 3}

 reduce(func)

 Combine the elements of the RDD together in parallel

 Invocation: rdd.reduce((x,y) => x + y)

 Result: 9

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.21

Examples: Basic actions on RDDs [6/7]

 Our RDD contains {1, 2, 3, 3}

 aggregate(zeroValue)(seqOp, combOp)

 Similar to reduce() but used to return a different type

 Invocation:

◼ rdd.aggregate ((0,0))

 ((x,y) => (x._1 + y, x._2 + 1),

 (x,y) => (x._1 + y._1, x._2 + y._2))

 Result: (9, 4)

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.22

Examples: Basic actions on RDDs [7/7]

 Our RDD contains {1, 2, 3, 3}

 foreach(func)

 Apply the provided function to each element of the RDD

 Invocation: rdd.foreach(func)

 Result: Nothing

COMPUTER SCIENCE DEPARTMENT

PERSISTENCE (CACHING)

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.24

Why persistence?

 Spark RDDs are lazily evaluated, and we may sometimes wish to use

the same RDD multiple times

 Naively, Spark will recompute RDD and all of its dependencies each time

we call an action on the RDD

◼ Super expensive for iterative algorithms

 To avoid recomputing RDD multiple times?

 Ask Spark to persist the data

 The nodes that compute the RDD, store the partitions

 E.g.: result.persist(StorageLevel.DISK_ONLY)

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.25

Coping with failures

 If a node that has data persisted on it fails?

 Spark recomputes lost partitions of data when needed

 Also, replicate data on multiple nodes

 To handle node failures without slowdowns

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.26

Persistence Levels for Spark

Level Space

Used

Wall

clock

time

In

Memory

On

disk

Comments

MEMORY_ONLY High Low Y N

MEMORY_ONLY_SER Low High Y N

MEMORY_AND_DISK High Medium Some Some Spills to disk if there is too

much data to fit in memory

MEMORY_AND_DISK

_SER

Low High Some Some Spills to disk if there is too

much data to fit in memory.

Stores serialized

representation in memory

DISK_ONLY Low High N Y

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.27

What if you attempt to cache too much data that

does not fit in memory?

 Spark will evict old partitions using a Least Recently Used Cache

policy

 For memory only storage partitions, it will be recomputed the next time they

are accessed

 For memory_and_disk ones? Write them out to disk

 RDDs also come with a method, unpersist()

 Manually remove data elements from the cache

COMPUTER SCIENCE DEPARTMENT

PAIRRDDS: WORKING WITH

KEY/VALUE PAIRS

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.29

RDDs of key/value pairs

 Key/value RDDs are commonly used to perform aggregations

 Might have to do ETL (Extract, Transform, and Load) to get data into

key/value formats

 Advanced feature to control layout of pair RDDs across nodes

 Partitioning

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.30

RDDs containing key/value pairs

 Are called pair RDDs

 Useful building block in many programs

 Expose operations that allow actions on each key in parallel or regroup

data across network

 reduceByKey() to aggregate data separately for each key

 join() to merge two RDDs together by grouping elements of the same key

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.31

Creating Pair RDDs

 pairs=lines.map(lambda x: (x.split(“ ”))[0], x))

 Creates a pairRDD using the first word as the key

COMPUTER SCIENCE DEPARTMENT

TRANSFORMATIONS ON PAIR RDDS

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.33

Transformations on Pair RDDs [1/5]

 Pair RDD = {(1,2), (3,4), (3,6) }

 reduceByKey(func)

 Combine values with the same key

 Invocation: rdd.reduceByKey((x, y) => x + y)

 Result: { (1, 2), (3,10) }

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.34

Transformations on Pair RDDs [2/5]

 Pair RDD = {(1,2), (3,4), (3,6) }

 groupByKey(func)

 Group values with the same key

 Invocation: rdd.groupByKey()

 Result: { (1, [2]), (3, [4, 6]) }

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.35

Transformations on Pair RDDs [3/5]

 Pair RDD = {(1,2), (3,4), (3,6) }

 mapValues(func)

 Apply function to each value of a pair RDD without changing the key

 Invocation: rdd.mapValues(x => x+1)

 Result: { (1, 3), (3, 5) , (3, 7) }

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.36

Transformations on Pair RDDs [4/5]

 Pair RDD = {(1,2), (3,4), (3,6) }

 values()

 Return an RDD of just the values

 Invocation: rdd.values()

 Result: { 2, 4, 6 }

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.37

Transformations on Pair RDDs [5/5]

 Pair RDD = {(1,2), (3,4), (3,6) }

 sortByKey()

 Return an RDD sorted by the key

 Invocation: rdd.sortByKey()

 Result: { (1,2), (3,4), (3,6 }

COMPUTER SCIENCE DEPARTMENT

TRANSFORMATIONS ON TWO PAIR RDDS

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.39

Transformations on two Pair RDDs [1/5]

 rdd = {(1,2), (3,4), (3,6) } other = {(3,9)}

 subtractByKey()

 Remove elements with a key present in the other RDD

 Invocation: rdd.subtractByKey(other)

 Result: { (1,2) }

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.40

Transformations on two Pair RDDs [2/5]

 rdd = {(1,2), (3,4), (3,6) } other = {(3,9)}

 join()

 Perform an inner join between two RDDs. Only keys that are present in both

pair RDDs are output

 Invocation: rdd.join(other)

 Result: { (3, (4,9)) , (3, (6,9)) }

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.41

Transformations on two Pair RDDs [3/5]

 rdd = {(1,2), (3,4), (3,6) } other = {(3,9)}

 leftOuterJoin()

 Perform a join between two RDDs where the key must be present in the first
RDD

 Value associated with each key is a tuple of the value from the source and
an Option for the value from the other pair RDD

◼ In python if a value is not present, None is used.

 Invocation: rdd.leftOuterJoin(other)

 Result: { (1, (2,None)) , (3, (4, 9)) , (3, (6, 9)) }

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.42

Transformations on two Pair RDDs [4/5]

 rdd = {(1,2), (3,4), (3,6) } other = {(3,9)}

 rightOuterJoin()

 Perform a join between two RDDs where the key must be present in the

other RDD;

 Tuple has an option for the source rather than other RDD

 Invocation: rdd.rightOuterJoin(other)

 Result: { (3, (4,9)) , (3, (6,9)) }

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.43

Transformations on two Pair RDDs [5/5]

 rdd = {(1,2), (3,4), (3,6) } other = {(3,9)}

 cogroup()

 Group data from both RDDs using the same key

 Invocation: rdd.cogroup(other)

 Result: { (1, ([2],[])) , (3, ([4, 6], [9])) }

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.44

Example of chaining operations:

Calculation of per-key average

key value

panda 0

pink 3

pirate 3

panda 1

pink 4

key value

panda (0, 1)

pink (3, 1)

pirate (3, 1)

panda (1, 1)

pink (4, 1)
key value

panda (1, 2)

pink (7, 2)

pirate (3, 1)

rdd.mapValues(x=> (x, 1)).reduceByKey((x,y) => (x._1 + y._1, x._2 + y._2))

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.45

A word count example

 We are using flatMap() to produce a pair RDD of words and the

number 1

 rdd = sc.textfile(“s3://…”)

words = rdd.flatMap(lambda x: x.split(“ ”))

result = words.map(lambda x: (x,1)).

 reduceByKey(lambda x, y: x+y)

COMPUTER SCIENCE DEPARTMENT
DATAFRAMES

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.47

Spark DataFrame

 DataFrames consist of

 A series of records (like rows in a table) that are of type Row

 A number of columns (like columns in a spreadsheet)

 Rows

 You can create rows by manually instantiating a Row object with the values

that belong in each column

 Columns

 You can select, manipulate, and remove columns from DataFrames and

these operations are represented as expressions

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.48

Schemas

 A schema defines the column names and types of a DataFrame

 You can let a data source define the schema (called schema-on-read)

or define it explicitly

 Note that only DataFrames have schemas

 Rows themselves do not have schemas

 If you create a Row manually?

◼ You must specify the values in the same order as the schema of the DataFrame to

which they might be appended

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.49

We can create DataFrames from raw data sources

 Spark has six “core” data sources

 CSV

 JSON

 Parquet

 ORC: Apache Optimized Row Columnar (ORC) file format

 JDBC/ODBC connections

 Plain-text files

 Hundreds of external data sources written by the community

 E.g.: Cassandra, HBase, MongoDB, AWS, Redshift, XML etc.

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.50

The foundation for reading data in Spark is the
DataFrameReader

 We access this through the SparkSession via the read attribute:

spark.read

 After we have a DataFrame reader, we specify several values:

 The format: Input data source format

 The schema

 The read mode {Permissive, DropMalformed, Failfast}

 A series of options

 The format, options, and schema each return a DataFrameReader

that can undergo further transformations and are all optional

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.51

However, at a minimum, the DataFrameReader

must have a path from which to read

spark.read.format("csv")

.option("mode", "FAILFAST")

.option("inferSchema", "true")

.option("path", "path/to/file(s)")

.schema(someSchema)

.load()

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.52

Writing data is quite similar to that of reading data

 Instead of the DataFrameReader , we have the DataFrameWriter

 We access the DataFrameWriter on a per-DataFrame basis via

the write attribute:

dataFrame.write

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.53

Writing Data

 After we have a DataFrameWriter, we specify three values:

 The format, a series of options, and the save mode

 At a minimum, you must supply a path

 Options may vary from data source to data source

dataframe.write.format("csv")

 .option("mode", "APPEND")

 .option("dateFormat", "yyyy-MM-dd")

 .option ("path", "path/to/file(s)")

 .save ()

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.54

You can make any DataFrame into a table or view

 Done via a simple method call: createOrReplaceTempView

 This then allows you to query the data using SQL

val df = spark.read

 .format("json")

 .load("/data/flight-data/json/2022-summary.json")

df.createOrReplaceTempView("dfTable")

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.55

The contents of this slide-set are based on the

following references

 Learning Spark: Lightning-Fast Big Data Analysis. 1st Edition. Holden Karau, Andy

Konwinski, Patrick Wendell, and Matei Zaharia. O'Reilly. 2015. ISBN-13: 978-

1449358624. [Chapters 1-4, 10]

 Chambers, Bill, and Zaharia, Matei. Spark: The Definitive Guide: Big Data Processing

Made Simple. O'Reilly Media. ISBN-13: 978-1491912218. 2018. [Chapters 5 and

9].

 SQL Joins: https://www.w3schools.com/sql/sql_join.asp

 Karau, Holden; Warren, Rachel. High Performance Spark: Best Practices for Scaling

and Optimizing Apache Spark. O'Reilly Media. 2017. ISBN-13: 978-1491943205.

[Chapter 2]

https://www.w3schools.com/sql/sql_join.asp

	Slide 1: CS x55: Distributed Systems [Spark]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: Common transformations and Actions
	Slide 5: Element-wise transformations: filter()
	Slide 6: Element-wise transformations: map()
	Slide 7: Things that can be done with map()
	Slide 8: Difference between map and flatMap
	Slide 9: Psuedo set operations
	Slide 10: Some simple set operations
	Slide 11: Cartesian product between two RDDs
	Slide 12: Common Actions
	Slide 13: Actions on Basic RDDs
	Slide 14: Both fold() and reduce() require return type of same type as the RDD elements
	Slide 15: Examples: Basic Actions on RDDs
	Slide 16: Examples: Basic actions on RDDs [1/7]
	Slide 17: Examples: Basic actions on RDDs [2/7]
	Slide 18: Examples: Basic actions on RDDs [3/7]
	Slide 19: Examples: Basic actions on RDDs [4/7]
	Slide 20: Examples: Basic actions on RDDs [5/7]
	Slide 21: Examples: Basic actions on RDDs [6/7]
	Slide 22: Examples: Basic actions on RDDs [7/7]
	Slide 23: Persistence (Caching)
	Slide 24: Why persistence?
	Slide 25: Coping with failures
	Slide 26: Persistence Levels for Spark
	Slide 27: What if you attempt to cache too much data that does not fit in memory?
	Slide 28: PairRDDs: Working with Key/Value Pairs
	Slide 29: RDDs of key/value pairs
	Slide 30: RDDs containing key/value pairs
	Slide 31: Creating Pair RDDs
	Slide 32: Transformations on Pair RDDs
	Slide 33: Transformations on Pair RDDs [1/5]
	Slide 34: Transformations on Pair RDDs [2/5]
	Slide 35: Transformations on Pair RDDs [3/5]
	Slide 36: Transformations on Pair RDDs [4/5]
	Slide 37: Transformations on Pair RDDs [5/5]
	Slide 38: Transformations on two pair RDDs
	Slide 39: Transformations on two Pair RDDs [1/5]
	Slide 40: Transformations on two Pair RDDs [2/5]
	Slide 41: Transformations on two Pair RDDs [3/5]
	Slide 42: Transformations on two Pair RDDs [4/5]
	Slide 43: Transformations on two Pair RDDs [5/5]
	Slide 44: Example of chaining operations: Calculation of per-key average
	Slide 45: A word count example
	Slide 46: DataFrames
	Slide 47: Spark DataFrame
	Slide 48: Schemas
	Slide 49: We can create DataFrames from raw data sources
	Slide 50: The foundation for reading data in Spark is the DataFrameReader
	Slide 51: However, at a minimum, the DataFrameReader must have a path from which to read
	Slide 52: Writing data is quite similar to that of reading data
	Slide 53: Writing Data
	Slide 54: You can make any DataFrame into a table or view
	Slide 55: The contents of this slide-set are based on the following references

