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Frequently asked questions from the previous class 

survey

 Where are replicas of Spark partitions stored?

 Rdd1→Rdd2→Rdd3→Rdd4   if no action is invoked on any of these 

RDDs, where are they stored?

 Say Rdd1→Rdd2 … if an action is invoked on Rdd2; what happens to 

Rdd1?
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Topics covered in this lecture

 Actions on RDDs

 Pair RDDs

 Data Frames
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Element-wise transformations: filter()

 Takes in a function and returns an RDD that only has elements that pass 

the filter() function
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Mapped RDD

{1, 4, 9, 16}

Filtered RDD

{2,3,4}

Element-wise transformations: map()

 Takes in a function and applies it to each element in the RDD

 Result of the function is the new value of each element in the resulting 

RDD

inputRDD

{1,2,3,4}

map x => x*x filter x => x !=1
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Things that can be done with map()

 Fetch website associated with each URL in collection to just squaring 

numbers

 map()’s return type does not have to be the same as its input type

 Multiple output elements for each input element?

 Use flatMap()

lines=sc.parallelize([“hello world”, “hi”])

words=lines.flatMap(lambda line: line.split(“ “) )

words.first()   # returns hello
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Difference between map and flatMap

RDD1

{“coffee panda”, “happy panda”, 

“happiest panda party”}

mappedRDD

{[“coffee”, “panda”], [“happy”, “panda”], 

[“happiest”, “panda”,  “party”]}

flatMappedRDD

{“coffee”, “panda”, “happy”, “panda”, 

“happiest”, “panda”,  “party”}

RDD1.flatMap(tokenize)

RDD1.map(tokenize)
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Psuedo set operations

 RDDs support many of the operations of mathematical sets such as 

union, intersection, etc.

 Even when the RDDs themselves are not properly sets
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Some simple set operations

RDD1

{coffee, coffee, panda, 

tiger, tea}

RDD2

{coffee, tiger, snake}

RDD1.distinct()

{coffee, tiger, panda, 

tea}

RDD1.union(RDD2)

{coffee, coffee, coffee, 

panda, tiger, tiger, tea, 

snake}

RDD1.intersection(RDD2)

{coffee, tiger}

RDD1.subtract(RDD2)

{panda, tea}
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Cartesian product between two RDDs

RDD1

{User1, User2, User3}

RDD2

{Venue(“Betabrand”), 

Venue(“Asha Tree House”), 

Venue(“Ritual”)}

RDD1.cartesian(RDD2)

{  (User1, Venue(“Betabrand”)), 

(User1,Venue(“Asha Tree House”)), 

(User1,Venue(“Ritual”)),

(User2, Venue(“Betabrand”)), 

(User2,Venue(“Asha Tree House”)), 

(User2,Venue(“Ritual”)),

(User3, Venue(“Betabrand”)), 

(User3,Venue(“Asha Tree House”)), 

(User3,Venue(“Ritual”))   }

cartesian
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Actions on Basic RDDs

 reduce()

 Takes a function that operates on two elements in the RDD; returns an 

element of the same type

◼ E.g., of such an operation?   +  sums the RDD

sum = rdd.reduce((x,y) => x + y) 

 fold() takes a function with the same signature as reduce(), but 

also takes a “zero value” for initial call 

 “Zero value” is the identity element for initial call

 E.g., 0 for +, 1 for *, empty list for concatenation
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Both fold() and reduce() require return type of 

same type as the RDD elements

 The aggregate() removes that constraint

 For e.g., when computing a running average, maintain both the count so far 

and the number of elements
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Examples: Basic actions on RDDs                              [1/7]

 Our RDD contains {1, 2, 3, 3}

 collect() 

 Return all elements from the RDD

 Invocation: rdd.collect()

 Result:  {1, 2, 3, 3}
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Examples: Basic actions on RDDs                              [2/7]

 Our RDD contains {1, 2, 3, 3}

 count() 

 Number of elements in the RDD

 Invocation: rdd.count()

 Result:  4
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Examples: Basic actions on RDDs                              [3/7]

 Our RDD contains {1, 2, 3, 3}

 countByValue() 

 Number of times each element occurs in the RDD

 Invocation: rdd.countByValue()

 Result:  { (1,1), (2,1), (3,2) }
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Examples: Basic actions on RDDs                              [4/7]

 Our RDD contains {1, 2, 3, 3}

 take(num) 

 Return num elements from the RDD

 Invocation: rdd.take(2)

 Result:  { 1, 2}
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Examples: Basic actions on RDDs                              [5/7]

 Our RDD contains {1, 2, 3, 3}

 reduce(func) 

 Combine the elements of the RDD together in parallel

 Invocation: rdd.reduce( (x,y) => x + y )

 Result:  9
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Examples: Basic actions on RDDs                              [6/7]

 Our RDD contains {1, 2, 3, 3}

 aggregate(zeroValue)(seqOp, combOp)

 Similar to reduce() but used to return a different type

 Invocation: 

◼ rdd.aggregate ( (0,0))

               ((x,y) => (x._1 + y, x._2 + 1),

                  (x,y) => (x._1 + y._1, x._2 + y._2))

 Result:  (9, 4)
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Examples: Basic actions on RDDs                              [7/7]

 Our RDD contains {1, 2, 3, 3}

 foreach(func) 

 Apply the provided function to each element of the RDD

 Invocation: rdd.foreach(func)

 Result:  Nothing
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Why persistence?

 Spark RDDs are lazily evaluated, and we may sometimes wish to use 

the same RDD multiple times

 Naively, Spark will recompute RDD and all of its dependencies each time 

we call an action on the RDD

◼ Super expensive for iterative algorithms

 To avoid recomputing RDD multiple times?

 Ask Spark to persist the data

 The nodes that compute the RDD, store the partitions

 E.g.: result.persist(StorageLevel.DISK_ONLY)
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Coping with failures

 If a node that has data persisted on it fails?

 Spark recomputes lost partitions of data when needed

 Also, replicate data on multiple nodes

 To handle node failures without slowdowns
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Persistence Levels for Spark

Level Space 

Used

Wall 

clock 

time

In 

Memory

On 

disk

Comments

MEMORY_ONLY High Low Y N

MEMORY_ONLY_SER Low High Y N

MEMORY_AND_DISK High Medium Some Some Spills to disk if there is too 

much data to fit in memory

MEMORY_AND_DISK

_SER

Low High Some Some Spills to disk if there is too 

much data to fit in memory. 

Stores serialized 

representation in memory

DISK_ONLY Low High N Y
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What if you attempt to cache too much data that 

does not fit in memory?

 Spark will evict old partitions using a Least Recently Used Cache 

policy

 For memory only storage partitions, it will be recomputed the next time they 

are accessed

 For memory_and_disk ones? Write them out to disk

 RDDs also come with a method, unpersist()

 Manually remove data elements from the cache 
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RDDs of key/value pairs

 Key/value RDDs are commonly used to perform aggregations

 Might have to do ETL (Extract, Transform, and Load) to get data into 

key/value formats

 Advanced feature to control layout of pair RDDs across nodes

 Partitioning
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RDDs containing key/value pairs

 Are called pair RDDs

 Useful building block in many programs

 Expose operations that allow actions on each key in parallel or regroup 

data across network

 reduceByKey() to aggregate data separately for each key

 join() to merge two RDDs together by grouping elements of the same key
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Creating Pair RDDs

 pairs=lines.map(lambda x:  (x.split(“ ”) )[0], x))

 Creates a pairRDD using the first word as the key
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Transformations on Pair RDDs                   [1/5]

 Pair RDD = {(1,2), (3,4), (3,6) }

 reduceByKey(func)

 Combine values with the same key

 Invocation: rdd.reduceByKey((x, y) => x + y)

 Result: { (1, 2),  (3,10) }



SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.34

Transformations on Pair RDDs                   [2/5]

 Pair RDD = {(1,2), (3,4), (3,6) }

 groupByKey(func)

 Group values with the same key

 Invocation: rdd.groupByKey()

 Result: { (1, [2]),   (3, [4, 6])  }
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Transformations on Pair RDDs                   [3/5]

 Pair RDD = {(1,2), (3,4), (3,6) }

 mapValues(func)

 Apply function to each value of a pair RDD without changing the key

 Invocation: rdd.mapValues(x => x+1)

 Result: { (1, 3),   (3, 5) ,   (3, 7)  }



SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.36

Transformations on Pair RDDs                   [4/5]

 Pair RDD = {(1,2), (3,4), (3,6) }

 values()

 Return an RDD of just the values

 Invocation: rdd.values()

 Result: { 2, 4, 6 }
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Transformations on Pair RDDs                   [5/5]

 Pair RDD = {(1,2), (3,4), (3,6) }

 sortByKey()

 Return an RDD sorted by the key

 Invocation: rdd.sortByKey()

 Result: { (1,2),  (3,4),  (3,6 }
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Transformations on two Pair RDDs             [1/5]

 rdd = {(1,2), (3,4), (3,6) }      other = {(3,9)}

 subtractByKey()

 Remove elements with a key present in the other RDD

 Invocation: rdd.subtractByKey(other)

 Result: { (1,2) }
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Transformations on two Pair RDDs             [2/5]

 rdd = {(1,2), (3,4), (3,6) }      other = {(3,9)}

 join()

 Perform an inner join between two RDDs. Only keys that are present in both 

pair RDDs are output

 Invocation: rdd.join(other)

 Result: { (3, (4,9)) , (3, (6,9)) }
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Transformations on two Pair RDDs             [3/5]

 rdd = {(1,2), (3,4), (3,6) }      other = {(3,9)}

 leftOuterJoin()

 Perform a join between two RDDs where the key must be present in the first 
RDD

 Value associated with each key is a tuple of the value from the source and 
an Option for the value from the other pair RDD

◼ In python if a value is not present, None is used.

 Invocation: rdd.leftOuterJoin(other)

 Result: { (1, (2,None)) , (3, (4, 9)) ,  (3, (6, 9)) }
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Transformations on two Pair RDDs             [4/5]

 rdd = {(1,2), (3,4), (3,6) }      other = {(3,9)}

 rightOuterJoin()

 Perform a join between two RDDs where the key must be present in the 

other RDD; 

 Tuple has an option for the source rather than other RDD

 Invocation: rdd.rightOuterJoin(other)

 Result: { (3, (4,9) ) ,  (3, (6,9)) }
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Transformations on two Pair RDDs             [5/5]

 rdd = {(1,2), (3,4), (3,6) }      other = {(3,9)}

 cogroup()

 Group data from both RDDs using the same key

 Invocation: rdd.cogroup(other)

 Result: { (1, ([2],[])) , (3, ([4, 6], [9])) }
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Example of chaining operations:

Calculation of per-key average

key value

panda 0

pink 3

pirate 3

panda 1

pink 4

key value

panda (0, 1)

pink (3, 1)

pirate (3, 1)

panda (1, 1)

pink (4, 1)
key value

panda (1, 2)

pink (7, 2)

pirate (3, 1)

rdd.mapValues(x=> (x, 1)).reduceByKey( (x,y) => (x._1 + y._1, x._2 + y._2))
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A word count example

 We are using flatMap() to produce a pair RDD of words and the 

number 1

 rdd  = sc.textfile(“s3://…”)

words = rdd.flatMap(lambda x: x.split(“ ”))

result = words.map(lambda x: (x,1)).

              reduceByKey(lambda x, y: x+y)



COMPUTER SCIENCE DEPARTMENT
DATAFRAMES



SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L29.47

Spark DataFrame 

 DataFrames consist of

 A series of records (like rows in a table) that are of type Row

 A number of columns (like columns in a spreadsheet)

 Rows

 You can create rows by manually instantiating a Row object with the values 

that belong in each column

 Columns

 You can select, manipulate, and remove columns from DataFrames and 

these operations are represented as expressions
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Schemas

 A schema defines the column names and types of a DataFrame 

 You can let a data source define the schema (called schema-on-read) 

or define it explicitly

 Note that only DataFrames have schemas

 Rows themselves do not have schemas 

 If you create a Row manually? 

◼ You must specify the values in the same order as the schema of the DataFrame to 

which they might be appended
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We can create DataFrames from raw data sources

 Spark has six “core” data sources 

 CSV

 JSON

 Parquet

 ORC: Apache Optimized Row Columnar (ORC) file format

 JDBC/ODBC connections

 Plain-text files

 Hundreds of external data sources written by the community

 E.g.: Cassandra, HBase, MongoDB, AWS, Redshift, XML etc.
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The foundation for reading data in Spark is the 
DataFrameReader

 We access this through the SparkSession via the read attribute: 

spark.read

 After we have a DataFrame reader, we specify several values: 

 The format: Input data source format

 The schema 

 The read mode {Permissive, DropMalformed, Failfast}

 A series of options 

 The format, options, and schema each return a DataFrameReader 

that can undergo further transformations and are all optional
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However, at a minimum, the DataFrameReader 

must have a path from which to read

spark.read.format("csv")

.option("mode", "FAILFAST")

.option("inferSchema", "true")

.option("path", "path/to/file(s)")

.schema(someSchema)

.load() 
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Writing data is quite similar to that of reading data 

 Instead of the DataFrameReader , we have the DataFrameWriter 

 We access the DataFrameWriter on a per-DataFrame basis via 

the write attribute: 

dataFrame.write 
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Writing Data

 After we have a DataFrameWriter, we specify three values: 

 The format, a series of options, and the save mode

 At a minimum, you must supply a path 

 Options may vary from data source to data source

dataframe.write.format( "csv" ) 

               .option("mode", "APPEND")

               .option("dateFormat", "yyyy-MM-dd" ) 

               .option ("path", "path/to/file(s)" )

               .save () 
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You can make any DataFrame into a table or view

 Done via a simple method call: createOrReplaceTempView

 This then allows you to query the data using SQL

val df = spark.read

              .format("json" )

              .load("/data/flight-data/json/2022-summary.json") 

df.createOrReplaceTempView("dfTable") 
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The contents of this slide-set are based on the 

following references

 Learning Spark: Lightning-Fast Big Data Analysis.  1st Edition.  Holden Karau, Andy 

Konwinski, Patrick Wendell, and Matei Zaharia. O'Reilly. 2015. ISBN-13: 978-

1449358624. [Chapters 1-4, 10]

 Chambers, Bill, and Zaharia, Matei. Spark: The Definitive Guide: Big Data Processing 

Made Simple. O'Reilly Media. ISBN-13: 978-1491912218. 2018. [Chapters 5 and 

9].

 SQL Joins: https://www.w3schools.com/sql/sql_join.asp

 Karau, Holden; Warren, Rachel. High Performance Spark: Best Practices for Scaling 

and Optimizing Apache Spark. O'Reilly Media. 2017. ISBN-13: 978-1491943205. 

[Chapter 2]

https://www.w3schools.com/sql/sql_join.asp
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