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The House of Heap and Stacks

Stacks clean up after themselves

   But over deep recursions they fret

The cheerful heap has nary a care

    Harboring memory leaks, hurtling to a crash
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Frequently asked questions from the previous class 

survey

 Why do we call it “wire formats”

 But … a server needs only one ServerSocket

 Yes, but we are referring to multiple regular Sockets on the server side

 Shortest paths?  Is there an optimal way, is it tractable?

 Dijkstra's algorithm

 O(V2) dense graphs ands arrays; O(ElogV) when using a binary heap for 

sparse graphs
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Topics covered in this lecture

 Threads

 Thread Creation

 Heaps and Stacks

 Thread Lifecycle
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Many hands make light work. John Heywood (1546)
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Why should you care about threads?

 CPU clock rates have tapered off

 Days when you could count on “free” speed-up are long gone

 Manufacturers have transitioned to multicore processors

 Each with multiple hardware execution pipelines

 A single threaded process can utilize only one of these execution 

pipelines

 Reduced throughput

 But more importantly, threads are awesome!
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What we will look at

 Threads and its relation to processes

 Thread lifecycle

 Contrasting approaches to writing threads

 Data synchronization and visibility

 Avoiding race conditions

 Thread safety

 Sharing objects and confinement

 Locking strategies

 Writing thread-safe classes
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What are threads?

 Miniprocesses or lightweight processes

 Why would anyone want to have a kind of process within a process?
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The main reason for using threads

 In many applications multiple activities are going on at once

 Some of these may block from time to time

 Decompose application into multiple sequential threads

 Running concurrently
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Isn’t this precisely the argument for processes?

 Yes, but there is a new dimension …

 Threads have the ability to share the address space (and all of its 

data) among themselves

 For several applications

 Processes (with their separate address spaces) don’t work
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Threads execute their own piece of code 

independently of other threads, but …

 No attempt is made to achieve high-degree of concurrency 

transparency

 Especially, not at the cost of performance

 Only maintains information to allow a CPU to be shared among 

several threads

 Thread context

 CPU Context + Thread Management info

◼ List of blocked threads
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Information not strictly necessary to manage multiple 

threads is ignored

 Protecting data against inappropriate accesses by multiple threads 

within a process?

 Developers must deal with this
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Contrasting items unique & shared across threads

Per process items 
{Shared by threads with a process}

Per thread items
{Items unique to a thread}

Address space

Global variables

Open files

Child Processes

Pending alarms

Signals and signal handlers

Accounting Information

Program Counter

Registers

Stack

State
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A process with multiple threads of control can 

perform more than 1 task at a time

CODE DATA FILES CODE DATA FILES

Registers Stack
Registers

Stack

Registers

Stack

Registers

Stack

Traditional Heavy weight process Process with multiple threads



THREADS VS. MULTIPLE PROCESSES
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Why prefer multiple threads over multiple 

processes?

 Threads are cheaper to create and manage than processes

 Resource sharing can be achieved more efficiently between threads 

than processes

 Threads within a process share the address space of the process

 Switching between threads is cheaper than for processes

 BUT … threads within a process are not protected from one another
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Other costs for processes

 When a new process is created to perform a task there are other costs

 In a kernel supporting virtual memory the new process will incur page faults

◼ Due to data and instructions being referenced for the first time

 Hardware caches must acquire new cache entries for that particular 

process
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Contrasting the costs for threads               [1/2]

 With threads these overheads may also occur, but they are likely to be 

smaller

 When thread accesses code & data that was accessed recently by other 

threads in the process?

 Automatically take advantage of any hardware or main memory caching



THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.18

Contrasting the costs for threads               [2/2]

 Switching between threads is much faster than that between 

processes

 This is a cost that is incurred many times throughout the lifecycle of the 

thread or process
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Implications?

 Performance of a multithreaded application is seldom worse than a 

single threaded one

 Actually, leads to performance gains

 Development requires additional effort

 No automatic protection against each other
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Another drawback of processes is the overheads for 

IPC (Inter Process Communications)

Process A Process B

Operating System

Switch from kernel 
space to user space

Switch context from
process A to B

Switch from 
user space to
kernel space
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A process in memory

stack

heap

data

text {Program code}

{Global variables}

{Memory allocated dynamically

during runtime}

{Function parameters, 

  return addresses, 

  and local variables}

max

low
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Why each thread needs its own stack                       [1/2]

 Stack contains one frame for each procedure called but not returned 

from

 Frame contains 

 Local variables 

 Procedure’s return address
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Why each thread needs its own stack                       [2/2]

 Procedure X calls procedure Y, Y then calls Z 

 When Z is executing?

◼Frames for X, Y and Z will be on the stack

 Each thread calls different procedures 

 So has a different execution history
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Each thread has its own stack

Kernel

Stack for 
thread
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Almost impossible to write programs in Java without 

threads

 We use multiple threads without even realizing it
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Blocking I/O: Reading data from a socket

 Program blocks until data is available to satisfy the read() method

 Problems:

 Data may not be available

 Data may be delayed (in transit)

 The other endpoint sends data sporadically

 If program blocks when it tries to read from socket?

 Unable to do anything else until data is actually available
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Three techniques to handle such such situations

 I/O multiplexing

 Take all input sources and use system call, select(), to notify data availability 
on any of them

 Polling

 Test if data is available from a particular source
◼ System call such as poll() is used 

◼ In Java, available() on the FilterInputStream

 Signals

 File descriptor representing signal is set

 Asynchronous signal delivered to program when data is available

 Java does not support this
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Writing to a socket may also block

 If there is a backlog getting data onto the network

 Does not happen in fast LAN settings

 But if it’s over the Internet? Possible.

 So, often handling TCP connections requires both a sender and 

receiver thread
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Writing programs that do I/O in Java?

 Use multiple threads

 Handle traditional, blocking I/O

 Use the NIO library

 Or both
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We are trained to think linearly

 Often don’t see concurrent paths our programs may take

 No reason why processes that we conventionally think of as single-

threaded should remain so
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Thread Abstraction

 A thread is a single execution sequence that represents a separately 

schedulable task

 Single execution sequence 

◼ Each thread executes sequence of instructions – assignments, conditionals, loops, 

procedures, etc. – just as the sequential programming model

 Separately schedulable task

◼ The OS can run, suspend, or resume a thread at any time
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Computing the factorial of a number

public class Factorial {

   public static void main(String[] args)  {

      int n = Integer.parseInt(args[0]);

      int factorial = 1;

      while (n>1) {

      factorial *=n;

         n--;

      }

      System.out.println(factorial);      

   }

}
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Behind the scenes …

 Instructions are executed as machine-level assembly instructions

 Each logical step requires many machine instructions to execute 

 Applications are executed as a series of instructions

 The execution path of these instructions?

◼ Thread
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Every program has at least one thread

 Thread executes the body of the application

 In Java, this is called the main thread

◼ Begins executing statements starting with the first statement of the main() method

 In Java every program has more than 1 thread

 E.g., threads that do garbage collection, compile bytecodes into machine-level 

instructions, etc.

 Programs are highly threaded

◼ You may add additional application threads to this
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Let’s add another task to our program

 Say, computing the square-root of a number

 What if we wrote these as separate threads?

 JVM has two distinct lists of instructions to execute

 Threads can be thought of as tasks that we execute at roughly the same 

time

 But in that case, why not just write multiple applications?
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Threads that run within the same application process

 Share the memory space of the process

 Information sharing is seamless

 Two diverse applications within the same machine may not 

communicate so well

 For e.g., mail client and music application
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In a multi-process environment data is separated by 

default

 This is fine for dissimilar programs

 Not OK for certain types of programs; e.g., a network server sends 

stock quotes to clients

 Discrete task: Sending quote to client

◼ Could be done in a separate thread

 Data sent to the clients is the same

◼ No point having a separate server for each client and …

◼ Replicating data held by the network server
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Threads and sharing

 Threads within a process can access and share any object on the heap

 Each thread has space for its own local variables (stack)

 A thread is a discrete task that operates on data shared with other 

threads
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Thread creation

 Using the Thread class

 Using the Runnable interface
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The Thread class
package java.lang;

public class Thread implements Runnable { 

   public Thread();

   public Thread(Runnable target);

   public Thread(ThreadGroup group, Runnable target);

   public Thread(String name);

   public Thread(ThreadGroup group, String name);

   public Thread(Runnable target, String name);

   public Thread(ThreadGroup group, Runnable target, 

                 String name);

   public Thread(ThreadGroup group, Runnable target, 

                 String name, long stackSize);

 

   public void start();

   public void run(); 

}
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Threads require 4 pieces of information

 Thread name

 Default is Thread-N; N is a unique number

 Runnable target
 List of instructions that the thread executes

 Default: run() method of the thread itself

 Thread group

 A thread is assigned to the thread group of the thread that calls the constructor

 Stack size

 Store temporary variables during method execution

 Platform-dependent: range of legal values, optimal value, etc.
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A simple thread

public class RandomGen extends Thread {

   private Random random;

   private int nextNumber;

   public RandomGen() {random = new Random();}

   public void run() {

     for (;;) {

       nextNumber = random.nextInt();

       try {

       } catch (InterruptedException ie) {

            ... return;

       } 

     }

   }

}
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About the code snippet

 Extends the Thread class

 Actual instructions we want to execute is in the run() method

 Standard method of the Thread class

◼ Place where Thread begins execution
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Contrasting the run() and main() methods

 main() method

 This is where the first thread starts executing

 The main thread

 The run() method

 Subsequent threads start executing with this method
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Threads and heaps

 For performance reasons, heaps may internally subdivide their space into 

per-thread regions

 Threads can allocate objects at the same time without interfering with each other

 By allocating objects used by the same thread from the same memory region?

◼ Cache hit rates may improve

 Each subdivision of the heap has thread-local variables 

 Track parts of thread-local heap in use, those that are free, etc.

 New memory allocations (malloc() and new() ) can take memory from 

shared heap, only if local heap is used up
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How big a stack?                                    [1/2]

 The size of the stack must be large enough to accommodate the 

deepest nesting level needed during the thread’s lifetime

 Kernel threads

 Kernel stacks are allocated in physical memory

 The nesting depth for kernel threads tends to be small

 E.g., 8KB default in Linux on an Intel x86

 Buffers and data structures are allocated on the heap and never as 

procedure local variables
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How big a stack?                                    [2/2]

 User-level stacks are allocated in virtual memory

 To catch program errors

 Most OS will trigger error if the program stack grows too large too quickly

◼ Indication of an unbounded recursion

 Google’s GO will automatically grow the stack as needed … this is very 
uncommon

 POSIX, for e.g., allows default stack size to be library dependent (e.g. 
larger on a desktop, smaller on a phone)

◼ “Exceeding default stack limit is very easy to do, with the usual results”

◼ Program termination
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Lifecycle of a thread

 Creation

 Starting

 Terminating

 Pausing, suspending, and resuming



THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.53

Thread: Methods that impact the thread’s lifecycle

public class Thread implements Runnable {

   public void start();

   public void run();

   public void stop();

   public void resume();

   public void suspend();

   public static void sleep(long millis);

   public boolean isAlive();

   public void interrupt();

   public boolean isInterrupted();

   public static boolean interrupted();

   public void join();

}

Deprecated, do not use
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Thread creation

 Threads are represented by instances of the Thread class

 When you extend the Thread class?

 Your instances are also Threads

 We looked at the 4 constructor arguments in the Thread class
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Starting a thread                                    [1/2]

 Thread exists once it’s been constructed

 But it is not executing … it’s in a waiting state

 In the waiting state, other threads can interact with the existing thread 

object

 Object state may be changed by other threads

◼ Via method invocations 
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Starting a thread                                    [2/2]

 When we’re ready for a thread to begin executing code

 Call the start() method

 start() performs internal house-keeping and then calls the run() method 

 When the start() method returns? 

 Two threads are executing in parallel

① The original thread which just returned from calling start()

② The newly started thread that is executing its run() method
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After a thread’s start() method is called

 The new thread is said to be alive

 The isAlive() method tells you about the state

▪ true: Thread has been started and is executing its run() method

▪ false: Thread may not be started yet or may be terminated
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Terminating a thread

 Once started, a thread executes only one method: run()

 This run() may be complicated

 May execute forever

 Call several other methods

 Once the run() finishes executing, the thread has completed its 

execution
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Like all Java methods, run() finishes when it …

① Executes a return statement

② Executes the last statement in its method body

③ When it throws an exception

 Or fails to catch an exception thrown to it
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The only way to terminate a thread?

 Arrange for its run() method to complete

 But the documentation for the Thread class lists a stop() method?

 This has a race condition (unsafe), and has been deprecated
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Some more about the run() method

 Cannot throw a checked exception

 But it can throw an unchecked exception

 Exception that extends the RuntimeException

 A thread can be stopped by:

① Throwing an unchecked exception in run()

② Failing to catch an unchecked exception thrown by something that run() 

has called
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Pausing, suspending and resuming threads

 Some thread models support the concept of thread suspension

 Thread is told to pause execution and then told to resume its execution

 Thread contains suspend() and resume()

 Suffers from vulnerability to race conditions: deprecated

 Thread can suspend its own execution for a specified period

 By calling the sleep() method
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But sleeping is not the same thing as thread 

suspension

 With true thread suspension

 One thread can suspend (and later resume) another thread

 sleep() affects only the thread that executes it

 Not possible to tell another thread to go to sleep
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But you can achieve the functionality of suspension 

and resumption

 Use wait and notify mechanisms

 Threads must be coded to use this technique

 This is not a generic suspend/resume that is imposed by another thread
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Thread cleanup

 As long as some other active object holds a reference to the 

terminated thread object

 Other threads can execute methods on the terminated thread … retrieve 

information

 If the object representing the terminated thread goes out of scope?

 The thread object is garbage collected
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Holding onto a thread reference allows us to 

determine if work was completed

 Done using the join() method

 The join() method

 Blocks until the thread has completed

 Returns immediately if

◼ The thread has already completed its run() method

◼ You can call join() any number of times

 Don’t use join() to poll if the thread is still running

 Use isAlive()
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The contents of this slide-set are based on the 

following references

 Java Threads. Scott Oaks and Henry Wong. . 3rd Edition. O’Reilly Press. ISBN: 0-596-

00782-5/978-0-596-00782-9. [Chapters 3, 4]
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