
COMPUTER SCIENCE DEPARTMENT

CSX55: DISTRIBUTED SYSTEMS [THREADS]

Shrideep Pallickara

Computer Science

Colorado State University

The House of Heap and Stacks

Stacks clean up after themselves

 But over deep recursions they fret

The cheerful heap has nary a care

 Harboring memory leaks, hurtling to a crash

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.2

Frequently asked questions from the previous class

survey

 Why do we call it “wire formats”

 But … a server needs only one ServerSocket

 Yes, but we are referring to multiple regular Sockets on the server side

 Shortest paths? Is there an optimal way, is it tractable?

 Dijkstra's algorithm

 O(V2) dense graphs ands arrays; O(ElogV) when using a binary heap for

sparse graphs

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.3

Topics covered in this lecture

 Threads

 Thread Creation

 Heaps and Stacks

 Thread Lifecycle

COMPUTER SCIENCE DEPARTMENT

THREADS

Many hands make light work. John Heywood (1546)

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.5

Why should you care about threads?

 CPU clock rates have tapered off

 Days when you could count on “free” speed-up are long gone

 Manufacturers have transitioned to multicore processors

 Each with multiple hardware execution pipelines

 A single threaded process can utilize only one of these execution

pipelines

 Reduced throughput

 But more importantly, threads are awesome!

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.6

What we will look at

 Threads and its relation to processes

 Thread lifecycle

 Contrasting approaches to writing threads

 Data synchronization and visibility

 Avoiding race conditions

 Thread safety

 Sharing objects and confinement

 Locking strategies

 Writing thread-safe classes

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.7

What are threads?

 Miniprocesses or lightweight processes

 Why would anyone want to have a kind of process within a process?

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.8

The main reason for using threads

 In many applications multiple activities are going on at once

 Some of these may block from time to time

 Decompose application into multiple sequential threads

 Running concurrently

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.9

Isn’t this precisely the argument for processes?

 Yes, but there is a new dimension …

 Threads have the ability to share the address space (and all of its

data) among themselves

 For several applications

 Processes (with their separate address spaces) don’t work

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.10

Threads execute their own piece of code

independently of other threads, but …

 No attempt is made to achieve high-degree of concurrency

transparency

 Especially, not at the cost of performance

 Only maintains information to allow a CPU to be shared among

several threads

 Thread context

 CPU Context + Thread Management info

◼ List of blocked threads

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.11

Information not strictly necessary to manage multiple

threads is ignored

 Protecting data against inappropriate accesses by multiple threads

within a process?

 Developers must deal with this

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.12

Contrasting items unique & shared across threads

Per process items
{Shared by threads with a process}

Per thread items
{Items unique to a thread}

Address space

Global variables

Open files

Child Processes

Pending alarms

Signals and signal handlers

Accounting Information

Program Counter

Registers

Stack

State

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.13

A process with multiple threads of control can

perform more than 1 task at a time

CODE DATA FILES CODE DATA FILES

Registers Stack
Registers

Stack

Registers

Stack

Registers

Stack

Traditional Heavy weight process Process with multiple threads

THREADS VS. MULTIPLE PROCESSES

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.15

Why prefer multiple threads over multiple

processes?

 Threads are cheaper to create and manage than processes

 Resource sharing can be achieved more efficiently between threads

than processes

 Threads within a process share the address space of the process

 Switching between threads is cheaper than for processes

 BUT … threads within a process are not protected from one another

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.16

Other costs for processes

 When a new process is created to perform a task there are other costs

 In a kernel supporting virtual memory the new process will incur page faults

◼ Due to data and instructions being referenced for the first time

 Hardware caches must acquire new cache entries for that particular

process

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.17

Contrasting the costs for threads [1/2]

 With threads these overheads may also occur, but they are likely to be

smaller

 When thread accesses code & data that was accessed recently by other

threads in the process?

 Automatically take advantage of any hardware or main memory caching

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.18

Contrasting the costs for threads [2/2]

 Switching between threads is much faster than that between

processes

 This is a cost that is incurred many times throughout the lifecycle of the

thread or process

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.19

Implications?

 Performance of a multithreaded application is seldom worse than a

single threaded one

 Actually, leads to performance gains

 Development requires additional effort

 No automatic protection against each other

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.20

Another drawback of processes is the overheads for

IPC (Inter Process Communications)

Process A Process B

Operating System

Switch from kernel
space to user space

Switch context from
process A to B

Switch from
user space to
kernel space

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.21

A process in memory

stack

heap

data

text {Program code}

{Global variables}

{Memory allocated dynamically

during runtime}

{Function parameters,

 return addresses,

 and local variables}

max

low

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.22

Why each thread needs its own stack [1/2]

 Stack contains one frame for each procedure called but not returned

from

 Frame contains

 Local variables

 Procedure’s return address

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.23

Why each thread needs its own stack [2/2]

 Procedure X calls procedure Y, Y then calls Z

 When Z is executing?

◼Frames for X, Y and Z will be on the stack

 Each thread calls different procedures

 So has a different execution history

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.24

Each thread has its own stack

Kernel

Stack for
thread

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.25

Almost impossible to write programs in Java without

threads

 We use multiple threads without even realizing it

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.26

Blocking I/O: Reading data from a socket

 Program blocks until data is available to satisfy the read() method

 Problems:

 Data may not be available

 Data may be delayed (in transit)

 The other endpoint sends data sporadically

 If program blocks when it tries to read from socket?

 Unable to do anything else until data is actually available

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.27

Three techniques to handle such such situations

 I/O multiplexing

 Take all input sources and use system call, select(), to notify data availability
on any of them

 Polling

 Test if data is available from a particular source
◼ System call such as poll() is used

◼ In Java, available() on the FilterInputStream

 Signals

 File descriptor representing signal is set

 Asynchronous signal delivered to program when data is available

 Java does not support this

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.28

Writing to a socket may also block

 If there is a backlog getting data onto the network

 Does not happen in fast LAN settings

 But if it’s over the Internet? Possible.

 So, often handling TCP connections requires both a sender and

receiver thread

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.29

Writing programs that do I/O in Java?

 Use multiple threads

 Handle traditional, blocking I/O

 Use the NIO library

 Or both

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.30

We are trained to think linearly

 Often don’t see concurrent paths our programs may take

 No reason why processes that we conventionally think of as single-

threaded should remain so

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.31

Thread Abstraction

 A thread is a single execution sequence that represents a separately

schedulable task

 Single execution sequence

◼ Each thread executes sequence of instructions – assignments, conditionals, loops,

procedures, etc. – just as the sequential programming model

 Separately schedulable task

◼ The OS can run, suspend, or resume a thread at any time

COMPUTER SCIENCE DEPARTMENT

THREAD CREATION & MANAGEMENT

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.33

Computing the factorial of a number

public class Factorial {

 public static void main(String[] args) {

 int n = Integer.parseInt(args[0]);

 int factorial = 1;

 while (n>1) {

 factorial *=n;

 n--;

 }

 System.out.println(factorial);

 }

}

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.34

Behind the scenes …

 Instructions are executed as machine-level assembly instructions

 Each logical step requires many machine instructions to execute

 Applications are executed as a series of instructions

 The execution path of these instructions?

◼ Thread

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.35

Every program has at least one thread

 Thread executes the body of the application

 In Java, this is called the main thread

◼ Begins executing statements starting with the first statement of the main() method

 In Java every program has more than 1 thread

 E.g., threads that do garbage collection, compile bytecodes into machine-level

instructions, etc.

 Programs are highly threaded

◼ You may add additional application threads to this

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.36

Let’s add another task to our program

 Say, computing the square-root of a number

 What if we wrote these as separate threads?

 JVM has two distinct lists of instructions to execute

 Threads can be thought of as tasks that we execute at roughly the same

time

 But in that case, why not just write multiple applications?

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.37

Threads that run within the same application process

 Share the memory space of the process

 Information sharing is seamless

 Two diverse applications within the same machine may not

communicate so well

 For e.g., mail client and music application

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.38

In a multi-process environment data is separated by

default

 This is fine for dissimilar programs

 Not OK for certain types of programs; e.g., a network server sends

stock quotes to clients

 Discrete task: Sending quote to client

◼ Could be done in a separate thread

 Data sent to the clients is the same

◼ No point having a separate server for each client and …

◼ Replicating data held by the network server

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.39

Threads and sharing

 Threads within a process can access and share any object on the heap

 Each thread has space for its own local variables (stack)

 A thread is a discrete task that operates on data shared with other

threads

COMPUTER SCIENCE DEPARTMENT

THREAD CREATION

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.41

Thread creation

 Using the Thread class

 Using the Runnable interface

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.42

The Thread class
package java.lang;

public class Thread implements Runnable {

 public Thread();

 public Thread(Runnable target);

 public Thread(ThreadGroup group, Runnable target);

 public Thread(String name);

 public Thread(ThreadGroup group, String name);

 public Thread(Runnable target, String name);

 public Thread(ThreadGroup group, Runnable target,

 String name);

 public Thread(ThreadGroup group, Runnable target,

 String name, long stackSize);

 public void start();

 public void run();

}

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.43

Threads require 4 pieces of information

 Thread name

 Default is Thread-N; N is a unique number

 Runnable target
 List of instructions that the thread executes

 Default: run() method of the thread itself

 Thread group

 A thread is assigned to the thread group of the thread that calls the constructor

 Stack size

 Store temporary variables during method execution

 Platform-dependent: range of legal values, optimal value, etc.

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.44

A simple thread

public class RandomGen extends Thread {

 private Random random;

 private int nextNumber;

 public RandomGen() {random = new Random();}

 public void run() {

 for (;;) {

 nextNumber = random.nextInt();

 try {

 } catch (InterruptedException ie) {

 ... return;

 }

 }

 }

}

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.45

About the code snippet

 Extends the Thread class

 Actual instructions we want to execute is in the run() method

 Standard method of the Thread class

◼ Place where Thread begins execution

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.46

Contrasting the run() and main() methods

 main() method

 This is where the first thread starts executing

 The main thread

 The run() method

 Subsequent threads start executing with this method

COMPUTER SCIENCE DEPARTMENT

THREADS AND …

HEAPS AND STACKS

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.48

Threads and heaps

 For performance reasons, heaps may internally subdivide their space into

per-thread regions

 Threads can allocate objects at the same time without interfering with each other

 By allocating objects used by the same thread from the same memory region?

◼ Cache hit rates may improve

 Each subdivision of the heap has thread-local variables

 Track parts of thread-local heap in use, those that are free, etc.

 New memory allocations (malloc() and new()) can take memory from

shared heap, only if local heap is used up

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.49

How big a stack? [1/2]

 The size of the stack must be large enough to accommodate the

deepest nesting level needed during the thread’s lifetime

 Kernel threads

 Kernel stacks are allocated in physical memory

 The nesting depth for kernel threads tends to be small

 E.g., 8KB default in Linux on an Intel x86

 Buffers and data structures are allocated on the heap and never as

procedure local variables

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.50

How big a stack? [2/2]

 User-level stacks are allocated in virtual memory

 To catch program errors

 Most OS will trigger error if the program stack grows too large too quickly

◼ Indication of an unbounded recursion

 Google’s GO will automatically grow the stack as needed … this is very
uncommon

 POSIX, for e.g., allows default stack size to be library dependent (e.g.
larger on a desktop, smaller on a phone)

◼ “Exceeding default stack limit is very easy to do, with the usual results”

◼ Program termination

COMPUTER SCIENCE DEPARTMENT

THREAD LIFECYCLE

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.52

Lifecycle of a thread

 Creation

 Starting

 Terminating

 Pausing, suspending, and resuming

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.53

Thread: Methods that impact the thread’s lifecycle

public class Thread implements Runnable {

 public void start();

 public void run();

 public void stop();

 public void resume();

 public void suspend();

 public static void sleep(long millis);

 public boolean isAlive();

 public void interrupt();

 public boolean isInterrupted();

 public static boolean interrupted();

 public void join();

}

Deprecated, do not use

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.54

Thread creation

 Threads are represented by instances of the Thread class

 When you extend the Thread class?

 Your instances are also Threads

 We looked at the 4 constructor arguments in the Thread class

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.55

Starting a thread [1/2]

 Thread exists once it’s been constructed

 But it is not executing … it’s in a waiting state

 In the waiting state, other threads can interact with the existing thread

object

 Object state may be changed by other threads

◼ Via method invocations

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.56

Starting a thread [2/2]

 When we’re ready for a thread to begin executing code

 Call the start() method

 start() performs internal house-keeping and then calls the run() method

 When the start() method returns?

 Two threads are executing in parallel

① The original thread which just returned from calling start()

② The newly started thread that is executing its run() method

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.57

After a thread’s start() method is called

 The new thread is said to be alive

 The isAlive() method tells you about the state

▪ true: Thread has been started and is executing its run() method

▪ false: Thread may not be started yet or may be terminated

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.58

Terminating a thread

 Once started, a thread executes only one method: run()

 This run() may be complicated

 May execute forever

 Call several other methods

 Once the run() finishes executing, the thread has completed its

execution

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.59

Like all Java methods, run() finishes when it …

① Executes a return statement

② Executes the last statement in its method body

③ When it throws an exception

 Or fails to catch an exception thrown to it

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.60

The only way to terminate a thread?

 Arrange for its run() method to complete

 But the documentation for the Thread class lists a stop() method?

 This has a race condition (unsafe), and has been deprecated

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.61

Some more about the run() method

 Cannot throw a checked exception

 But it can throw an unchecked exception

 Exception that extends the RuntimeException

 A thread can be stopped by:

① Throwing an unchecked exception in run()

② Failing to catch an unchecked exception thrown by something that run()

has called

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.62

Pausing, suspending and resuming threads

 Some thread models support the concept of thread suspension

 Thread is told to pause execution and then told to resume its execution

 Thread contains suspend() and resume()

 Suffers from vulnerability to race conditions: deprecated

 Thread can suspend its own execution for a specified period

 By calling the sleep() method

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.63

But sleeping is not the same thing as thread

suspension

 With true thread suspension

 One thread can suspend (and later resume) another thread

 sleep() affects only the thread that executes it

 Not possible to tell another thread to go to sleep

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.64

But you can achieve the functionality of suspension

and resumption

 Use wait and notify mechanisms

 Threads must be coded to use this technique

 This is not a generic suspend/resume that is imposed by another thread

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.65

Thread cleanup

 As long as some other active object holds a reference to the

terminated thread object

 Other threads can execute methods on the terminated thread … retrieve

information

 If the object representing the terminated thread goes out of scope?

 The thread object is garbage collected

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.66

Holding onto a thread reference allows us to

determine if work was completed

 Done using the join() method

 The join() method

 Blocks until the thread has completed

 Returns immediately if

◼ The thread has already completed its run() method

◼ You can call join() any number of times

 Don’t use join() to poll if the thread is still running

 Use isAlive()

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L3.67

The contents of this slide-set are based on the

following references

 Java Threads. Scott Oaks and Henry Wong. . 3rd Edition. O’Reilly Press. ISBN: 0-596-

00782-5/978-0-596-00782-9. [Chapters 3, 4]

	Slide 1: CSx55: Distributed Systems [Threads]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: Threads
	Slide 5: Why should you care about threads?
	Slide 6: What we will look at
	Slide 7: What are threads?
	Slide 8: The main reason for using threads
	Slide 9: Isn’t this precisely the argument for processes?
	Slide 10: Threads execute their own piece of code independently of other threads, but …
	Slide 11: Information not strictly necessary to manage multiple threads is ignored
	Slide 12: Contrasting items unique & shared across threads
	Slide 13: A process with multiple threads of control can perform more than 1 task at a time
	Slide 14: Threads Vs. Multiple Processes
	Slide 15: Why prefer multiple threads over multiple processes?
	Slide 16: Other costs for processes
	Slide 17: Contrasting the costs for threads [1/2]
	Slide 18: Contrasting the costs for threads [2/2]
	Slide 19: Implications?
	Slide 20: Another drawback of processes is the overheads for IPC (Inter Process Communications)
	Slide 21: A process in memory
	Slide 22: Why each thread needs its own stack [1/2]
	Slide 23: Why each thread needs its own stack [2/2]
	Slide 24: Each thread has its own stack
	Slide 25: Almost impossible to write programs in Java without threads
	Slide 26: Blocking I/O: Reading data from a socket
	Slide 27: Three techniques to handle such such situations
	Slide 28: Writing to a socket may also block
	Slide 29: Writing programs that do I/O in Java?
	Slide 30: We are trained to think linearly
	Slide 31: Thread Abstraction
	Slide 32: Thread Creation & Management
	Slide 33: Computing the factorial of a number
	Slide 34: Behind the scenes …
	Slide 35: Every program has at least one thread
	Slide 36: Let’s add another task to our program
	Slide 37: Threads that run within the same application process
	Slide 38: In a multi-process environment data is separated by default
	Slide 39: Threads and sharing
	Slide 40: Thread Creation
	Slide 41: Thread creation
	Slide 42: The Thread class
	Slide 43: Threads require 4 pieces of information
	Slide 44: A simple thread
	Slide 45: About the code snippet
	Slide 46: Contrasting the run() and main() methods
	Slide 47: Threads and … Heaps And Stacks
	Slide 48: Threads and heaps
	Slide 49: How big a stack? [1/2]
	Slide 50: How big a stack? [2/2]
	Slide 51: Thread Lifecycle
	Slide 52: Lifecycle of a thread
	Slide 53: Thread: Methods that impact the thread’s lifecycle
	Slide 54: Thread creation
	Slide 55: Starting a thread [1/2]
	Slide 56: Starting a thread [2/2]
	Slide 57: After a thread’s start() method is called
	Slide 58: Terminating a thread
	Slide 59: Like all Java methods, run() finishes when it …
	Slide 60: The only way to terminate a thread?
	Slide 61: Some more about the run() method
	Slide 62: Pausing, suspending and resuming threads
	Slide 63: But sleeping is not the same thing as thread suspension
	Slide 64: But you can achieve the functionality of suspension and resumption
	Slide 65: Thread cleanup
	Slide 66: Holding onto a thread reference allows us to determine if work was completed
	Slide 67: The contents of this slide-set are based on the following references

