CSXx55: DISTRIBUTED SYSTEMS [THREADS]

The House of Heap and Stacks
Stacks clean up after themselves
But over deep recursions they fret

The cheerful heap has nary a care
Harboring memory leaks, hurtling to a crash

Shrideep Pallickara
Computer Science
Colorado State University

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

Frequently asked questions from the previous class
survey

Why do we call it “wire formats”
But ... a server needs only one ServerSocket

Yes, but we are referring to multiple regular Sockets on the server side
Shortest paths¢ |s there an optimal way, is it tractable?

Dijkstra's algorithm

O(V?) dense graphs ands arrays; O(ElogV) when using a binary heap for
sparse graphs

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.2

Topics covered in this lecture
N

o1 Threads
o1 Thread Creation
o1 Heaps and Stacks
o1 Thread Lifecycle

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.3

Many hands make light work. John Heywood (1546)

THREADS

COMPUTER SCIENCE DEPARTMENT

R¥5) COLORADO STATE UNIVERSITY

Why should you care about threads?

CPU clock rates have tapered off

Days when you could count on “free” speed-up are long gone
Manufacturers have transitioned to multicore processors
Each with multiple hardware execution pipelines

A single threaded process can utilize only one of these execution
pipelines

Reduced throughput

But more importantly, threads are awesome!

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.5

What we will look at
—

o Threads and its relation to processes
o Thread lifecycle
o1 Contrasting approaches to writing threads

-1 Data synchronization and visibility

o1 Avoiding race conditions
o Thread safety
o Sharing objects and confinement
11 Locking strategies

7 Writing thread-safe classes

Professor: SHRIDEEP PALLICKARA ._}‘\l
COLORADO STATE UNIVERSITY (o men SeIENGE DEPARTI L

What are threads?

Miniprocesses or lightweight processes

Why would anyone want to have a kind of process within a process?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.7

The main reason for using threads

In many applications multiple activities are going on at once

Some of these may block from time to time

Decompose application into multiple sequential threads

Running concurrently

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.8

Isn’t this precisely the argument for processes?

Yes, but there is a new dimension ...

Threads have the ability to share the address space (and all of its
data) among themselves

For several applications

Processes (with their separate address spaces) don’t work

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.9

Threads execute their own piece of code
independently of other threads, but ...

No attempt is made to achieve high-degree of concurrency
fransparency

Especially, not at the cost of performance

Only maintains information to allow a CPU to be shared among
several threads

Thread context

CPU Context + Thread Management info
List of blocked threads

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.10

Information not strictly necessary to manage multiple

threads is ignored
——

11 Protecting data against inappropriate accesses by multiple threads
within a process?

Developers must deal with this

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.11

Contrasting items unique & shared across threads

Per process items Per thread items
{Shared by threads with a process} {Items unique to a thread}

Address space Program Counter

Global variables Registers
Open files Stack
Child Processes State

Pending alarms
Signals and signal handlers

Accounting Information

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.12

A process with multiple threads of control can

erform more than 1 task at a time
-—

CODE DATA FILES CODE DATA FILES

Traditional Heavy weight process Process with multiple threads

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.13

THREADS VS. MULTIPLE PROCESSES

Why prefer multiple threads over multiple
pProcesses?

Threads are cheaper to create and manage than processes

Resource sharing can be achieved more efficiently between threads
than processes

Threads within a process share the address space of the process
Switching between threads is cheaper than for processes

BUT ... threads within a process are not protected from one another

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.15

Other costs for processes

When a new process is created to perform a task there are other costs

In a kernel supporting virtual memory the new process will incur page faults

Due to data and instructions being referenced for the first time

Hardware caches must acquire new cache entries for that particular
process

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.16

Contrasting the costs for threads [1/2]

With threads these overheads may also occur, but they are likely to be
smaller

When thread accesses code & data that was accessed recently by other
threads in the process?

Automatically take advantage of any hardware or main memory caching

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.17

Contrasting the costs for threads [2/2]

Switching between threads is much faster than that between
processes

This is a cost that is incurred many times throughout the lifecycle of the
thread or process

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.18

Implications?

Performance of a multithreaded application is seldom worse than a
single threaded one

Actually, leads to performance gains

Development requires additional effort

No automatic protection against each other

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.19

Another drawback of processes is the overheads for

IPC (Inter Process Communications)
—

Switch from Process A Process B
user space to ~ _ Switch from kernel
kernel space = ™S, K| _4** space To user space

| "‘\ Switch context from
process A to B

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.20

Operating System

A process in memory

max {Function parameters,
stack return addresses,

f and local variables}

{Memory allocated dynamically

heap during runtime}
data {Global variables}
text {Program code}

low

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.21

Why each thread needs its own stack [1/2]
]

o Stack contains one frame for each procedure called but not returned
from

-1 Frame contains
Local variables

Procedure’s return address

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.22

Why each thread needs its own stack [2/2]

Procedure X calls procedure Y, Y then calls Z

When Z is executing?

Frames for X, Y and Z will be on the stack

Each thread calls different procedures

So has a different execution history

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.23

Each thread has its own stack
N

Stack for
thread

Kernel

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.24

Almost impossible to write programs in Java without

threads
e

1 We use multiple threads without even realizing it

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.25

Blocking | /O: Reading data from a socket

Program blocks until data is available to satisfy the read () method

Problems:

Data may not be available
Data may be delayed (in transit)

The other endpoint sends data sporadically

If program blocks when it tries to read from socket?

Unable to do anything else until data is actually available

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.26

Three techniques to handle such such situations

/O multiplexing

Take all input sources and use system call, select (), to notify data availability
on any of them

Polling

Test if data is available from a particular source
System call such as pol1l () is used
In Java, available () onthe FilterInputStream

Signals
File descriptor representing signal is set
Asynchronous signal delivered to program when data is available
Java does not support this

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.27

Writing to a socket may also block

If there is a backlog getting data onto the network
Does not happen in fast LAN settings

But if it's over the Internet? Possible.

So, often handling TCP connections requires both a sender and
receiver thread

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.28

Writing programs that do 1/O in Java?
—

1 Use multiple threads
Handle traditional, blocking | /O

71 Use the NIO library
1 Or both

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.29

We are trained to think linearly

Often don’t see concurrent paths our programs may take

No reason why processes that we conventionally think of as single-
threaded should remain so

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.30

Thread Abstraction

A thread is a single execution sequence that represents a separately
schedulable task

Single execution sequence

Each thread executes sequence of instructions — assignments, conditionals, loops,
procedures, etc. — just as the sequential programming model

Separately schedulable task

The OS can run, suspend, or resume a thread at any time

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.31

THREAD CREATION & MANAGEMENT

COMPUTER SCIENCE DEPARTMENT @ COLORADDO STATE UNIVERSITY

Computing the factorial of a number
—

public class Factorial {

public static void main(String[] args) {
int n = Integer.parselnt(args[0]);

int factorial = 1;

while (n>1) {
factorial *=n;
n—--=y

}

System.out.println(factorial);

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.33

Behind the scenes ...

Instructions are executed as machine-level assembly instructions

Each logical step requires many machine instructions to execute

Applications are executed as a series of instructions

The execution path of these instructions?
Thread

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.34

Every program has at least one thread

Thread executes the body of the application

In Java, this is called the main thread

Begins executing statements starting with the first statement of the main () method

In Java every program has more than 1 thread

E.g., threads that do garbage collection, compile bytecodes into machine-level
instructions, etc.

Programs are highly threaded
You may add additional application threads to this

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.35

Let’s add another task to our program

Say, computing the square-root of a number

What if we wrote these as separate threads?

JVM has two distinct lists of instructions to execute

Threads can be thought of as fasks that we execute at roughly the same
time

But in that case, why not just write multiple applications?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.36

Threads that run within the same application process

Share the memory space of the process

Information sharing is seamless

Two diverse applications within the same machine may not
communicate so well

For e.g., mail client and music application

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.37

In a multi-process environment data is separated by
default

This is fine for dissimilar programs

Not OK for certain types of programs; e.g., a network server sends
stock quotes to clients
Discrete task: Sending quote to client
Could be done in a separate thread

Data sent to the clients is the same
No point having a separate server for each client and ...

Replicating data held by the network server

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.38

Threads and sharing

Threads within a process can access and share any object on the heap

Each thread has space for its own local variables (stack)

A thread is a discrete task that operates on data shared with other
threads

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.39

THREAD CREATION

COLORADDO STATE UNIVERSITY

Thread creation

S 1 —
11 Using the Thread class

7 Using the Runnable interface

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.41

The Thread class

package java.lang;

public class Thread implements Runnable {

public Thread()

public Thread (Runnable target);

public Thread (ThreadGroup group, Runnable target);

public Thread (String name) ;

public Thread (ThreadGroup group, String name) ;

public Thread (Runnable target, String name) ;

public Thread (ThreadGroup group, Runnable target,
String name) ;

public Thread(ThreadGroup group, Runnable target,
String name, long stackSize);

public voilid start();
public void run() ;

}

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.42

Threads require 4 pieces of information

Thread name
Default is Thread-N; N is a unique number

Runnable target
List of instructions that the thread executes
Default: run () method of the thread itself

Thread group

A thread is assigned to the thread group of the thread that calls the constructor

Stack size
Store temporary variables during method execution
Platform-dependent: range of legal values, optimal value, etc.

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.43

A simple thread

private Random random;
private int nextNumber;
public RandomGen () {random

public void run() {
for (;7) |

Ery f{

return;

public class RandomGen extends Thread ({

new Random () ; }

nextNumber = random.nextInt () ;

} catch (InterruptedException ie)

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

THREADS

L3.44

About the code snippet

Extends the Thread class

Actual instructions we want to execute is in the run () method
Standard method of the Thread class

Place where Thread begins execution

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.45

Contrasting the run () and main () methods
—

7 main () method
This is where the first thread starts executing

The main thread

7 The run () method

Subsequent threads start executing with this method

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.46

THREADS AND ...
HEAPS AND STACKS

COMPUTER SCIENCE DEPARTMENT @ COLORADDO STATE UNIVERSITY

Threads and heaps

For performance reasons, heaps may internally subdivide their space into
per-thread regions

Threads can allocate objects at the same time without interfering with each other

By allocating objects used by the same thread from the same memory region?

Cache hit rates may improve

Each subdivision of the heap has thread-local variables

Track parts of thread-local heap in use, those that are free, etc.

New memory allocations (malloc () and new ()) can take memory from
shared heap, only if local heap is used up

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.48

How big a stack? [1/2]

The size of the stack must be large enough to accommodate the
deepest nesting level needed during the thread’s lifetime

Kernel threads
Kernel stacks are allocated in physical memory
The nesting depth for kernel threads tends to be small

E.g., 8KB default in Linux on an Intel x86

Buffers and data structures are allocated on the heap and never as
procedure local variables

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.49

How big a stack? [2/2]

User-level stacks are allocated in virtual memory

To catch program errors

Most OS will trigger error if the program stack grows too large too quickly
Indication of an unbounded recursion

Google’s GO will automatically grow the stack as needed ... this is very
uncommon

POSIX, for e.g., allows default stack size to be library dependent (e.g.
larger on a desktop, smaller on a phone)

“Exceeding default stack limit is very easy to do, with the usual results”
Program termination

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.50

THREAD LIFECYCLE

Lifecycle of a thread
N

o Creation
0 Starting
01 Terminating

01 Pausing, suspending, and resuming

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.52

Thread: Methods that impact the thread’s lifecycle

public class Thread implements Runnable ({
public void start();
public void run() ;
public void stop();
public void resume () ; }Depr‘eca‘red, do not use
public void suspend() ;
public static void sleep(long millis);
public boolean isAlive() ;
public void interrupt() ;
public boolean isInterrupted() ;
public static boolean interrupted();
public void join();

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS

L3.53

Thread creation

Threads are represented by instances of the Thread class

When you extend the Thread class?

Your instances are also Threads

We looked at the 4 constructor arguments in the Thread class

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.54

Starting a thread [1/2]

Thread exists once it's been constructed

But it is not executing ... if’s in a waiting state

In the waiting state, other threads can interact with the existing thread
object

Object state may be changed by other threads

Via method invocations

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.55

Starting a thread [2/2]

When we’re ready for a thread to begin executing code
Call the start () method

start () performs internal house-keeping and then calls the run () method

When the start () method returns?

Two threads are executing in parallel
(1) The original thread which just returned from calling start ()
@ The newly started thread that is executing its run () method

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.56

After a thread’s start () method is called

The new thread is said to be alive

The isAlive () method tells you about the state
true: Thread has been started and is executing its run () method

false: Thread may not be started yet or may be terminated

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.57

Terminating a thread

Once started, a thread executes only one method: run ()

This run () may be complicated

May execute forever

Call several other methods

Once the run () finishes executing, the thread has completed its
execution

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.58

Like all Java methods, run () finishes when it ...
—

(1) Executes a return statement
(2) Executes the last statement in its method body

(3) When it throws an exception

Or fails to catch an exception thrown to it

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.59

The only way to terminate a thread?

Arrange for its run () method to complete

But the documentation for the Thread class lists a stop () method?

This has a race condition (unsafe), and has been deprecated

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.60

Some more about the run () method

Cannot throw a checked exception

But it can throw an unchecked exception

Exception that extends the RuntimeException

A thread can be stopped by:
(1) Throwing an unchecked exception in run ()

(2) Failing to catch an unchecked exception thrown by something that run ()
has called

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.61

Pausing, suspending and resuming threads

Some thread models support the concept of thread suspension

Thread is told to pause execution and then told to resume its execution

Thread contains suspend () and resume ()

Suffers from vulnerability to race conditions: deprecated

Thread can suspend its own execution for a specified period
By calling the sleep () method

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.62

But sleeping is not the same thing as thread
suspension

With true thread suspension

One thread can suspend (and later resume) another thread

sleep () affects only the thread that executes it

Not possible to tell another thread to go to sleep

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.63

But you can achieve the functionality of suspension

and resumption
=

1 Use wait and notify mechanisms

1 Threads must be coded to use this technique

This is not a generic suspend /resume that is imposed by another thread

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.64

Thread cleanup

As long as some other active object holds a reference to the
terminated thread object

Other threads can execute methods on the terminated thread ... retrieve
information

If the object representing the terminated thread goes out of scope?

The thread object is garbage collected

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.65

Holding onto a thread reference allows us to

determine if work was completed

Done using the join () method

The join () method
Blocks until the thread has completed

Returns immediately if

The thread has already completed its run () method

You can call join () any number of times

Don’t use join () to poll if the thread is still running

Use isAlive ()

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS

L3.66

The contents of this slide-set are based on the

following references
——

= Java Threads. Scott Oaks and Henry Wong. . 3rd Edition. O’Reilly Press. ISBN: 0-596-
00782-5/978-0-596-00782-9. [Chapters 3, 4]

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.67

	Slide 1: CSx55: Distributed Systems [Threads]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: Threads
	Slide 5: Why should you care about threads?
	Slide 6: What we will look at
	Slide 7: What are threads?
	Slide 8: The main reason for using threads
	Slide 9: Isn’t this precisely the argument for processes?
	Slide 10: Threads execute their own piece of code independently of other threads, but …
	Slide 11: Information not strictly necessary to manage multiple threads is ignored
	Slide 12: Contrasting items unique & shared across threads
	Slide 13: A process with multiple threads of control can perform more than 1 task at a time
	Slide 14: Threads Vs. Multiple Processes
	Slide 15: Why prefer multiple threads over multiple processes?
	Slide 16: Other costs for processes
	Slide 17: Contrasting the costs for threads [1/2]
	Slide 18: Contrasting the costs for threads [2/2]
	Slide 19: Implications?
	Slide 20: Another drawback of processes is the overheads for IPC (Inter Process Communications)
	Slide 21: A process in memory
	Slide 22: Why each thread needs its own stack [1/2]
	Slide 23: Why each thread needs its own stack [2/2]
	Slide 24: Each thread has its own stack
	Slide 25: Almost impossible to write programs in Java without threads
	Slide 26: Blocking I/O: Reading data from a socket
	Slide 27: Three techniques to handle such such situations
	Slide 28: Writing to a socket may also block
	Slide 29: Writing programs that do I/O in Java?
	Slide 30: We are trained to think linearly
	Slide 31: Thread Abstraction
	Slide 32: Thread Creation & Management
	Slide 33: Computing the factorial of a number
	Slide 34: Behind the scenes …
	Slide 35: Every program has at least one thread
	Slide 36: Let’s add another task to our program
	Slide 37: Threads that run within the same application process
	Slide 38: In a multi-process environment data is separated by default
	Slide 39: Threads and sharing
	Slide 40: Thread Creation
	Slide 41: Thread creation
	Slide 42: The Thread class
	Slide 43: Threads require 4 pieces of information
	Slide 44: A simple thread
	Slide 45: About the code snippet
	Slide 46: Contrasting the run() and main() methods
	Slide 47: Threads and … Heaps And Stacks
	Slide 48: Threads and heaps
	Slide 49: How big a stack? [1/2]
	Slide 50: How big a stack? [2/2]
	Slide 51: Thread Lifecycle
	Slide 52: Lifecycle of a thread
	Slide 53: Thread: Methods that impact the thread’s lifecycle
	Slide 54: Thread creation
	Slide 55: Starting a thread [1/2]
	Slide 56: Starting a thread [2/2]
	Slide 57: After a thread’s start() method is called
	Slide 58: Terminating a thread
	Slide 59: Like all Java methods, run() finishes when it …
	Slide 60: The only way to terminate a thread?
	Slide 61: Some more about the run() method
	Slide 62: Pausing, suspending and resuming threads
	Slide 63: But sleeping is not the same thing as thread suspension
	Slide 64: But you can achieve the functionality of suspension and resumption
	Slide 65: Thread cleanup
	Slide 66: Holding onto a thread reference allows us to determine if work was completed
	Slide 67: The contents of this slide-set are based on the following references

