CS X55: DISTRIBUTED SYSTEMS [SPARK]

Transformations: Narrow and Wide
Though their numbers are few
Don'’t let them beguile you
Innocuous though
they may seem

The wrong invocation
Is all it takes
To amplify inefficiencies

And protract computations Shrideep Pallickara
Computer Science
Colorado State University

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

Frequently asked questions from the previous class
survey

What happens if you persist an RDD and then you don’t use it?

How do Spark and Hadoop make money?

Data underpinning transformation operations ... where are they (on
disk, in memory)?

How do you choose the right persistence strategy?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.2

Topics covered in this lecture
N

-1 Data Frames

21 Column manipulations

1 Orchestration Plans

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.3

DATAFRAMES

“Painting was her love, but framing was her passion.”

Paint was her love. John Klossner. New Yorker. April 2023.

COMPUTER SCIENCE DEPARTMENT) COLORADD STATE UNIVERSITY

Spark DataFrame

DataFrames consist of
A series of records (like rows in a table) that are of type Row

A number of columns (like columns in a spreadsheet)

Rows

You can create rows by manually instantiating a Row object with the values
that belong in each column

Columns

You can select, manipulate, and remove columns from DataFrames and
these operations are represented as expressions

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.5

Schemas

A schema defines the column names and types of a DataFrame

You can let a data source define the schema (called schema-on-read)
or define it explicitly

Note that only DataFrames have schemas

Rows themselves do not have schemas
If you create a Row manually?

You must specify the values in the same order as the schema of the DataFrame to
which they might be appended

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.6

We can create DataFrames from raw data sources

Spark has six ‘““core’” data sources
CSV
JSON
Parquet
ORC: Apache Optimized Row Columnar (ORC) file format
JDBC/ODBC connections

Plain-text files

Hundreds of external data sources written by the community
E.g.: Cassandra, HBase, MongoDB, AWS, Redshift, XML etc.

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.7

The foundation for reading data in Spark is the
DataFrameReader

We access this through the SparkSession via the read attribute:
spark.read

After we have a DataFrame reader, we specify several aspects:
The format: Input data source format
The schema
The read mode {permissive, DropMalformed, Failfast}

A series of options

The format, options, and schema each return a DataFrameReader
that can undergo further transformations and are all optional

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.8

spark.read.format ("csv")

.option ("mode", "FAILFAST")

.option("inferSchema", "true")

.option ("path", "path/to/file(s)")
(

.Schema (someSchema)
.load ()
Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY 0 mER SCIENCE DEPARTMENT SPARK

However, at a minimum, the DataFrameReader
must have a path from which to read

L.30.9

Writing data is quite similar to that of reading data
——

7 Instead of the DataFrameReader , we have the DataFrameWriter

7 We access the DataFrameWriter on a per-DataFrame basis via
the wr1te attribute:

dataFrame.write

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.10

Writing Data

After we have a DataFrameWriter, we specify three values:

The format, a series of options, and the save mode (e.g., append or overwrite)

At a minimum, you must supply a path

Options may vary from data source to data source

dataframe.write.format ("csv")
.option ("mode", "APPEND")

.option ("dateFormat", "yyyy-MM-dd")
.option ("path", "path/to/file(s)")

.save ()

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.11

You can make any DataFrame into a table or view

Done via a simple method call: createOrReplaceTempView

This then allows you to query the data using SQL

val df = spark.read
.format ("json")
.load (" /data/flight-data/json/2022-summary.json")

df.createOrReplaceTempView ("dfTable")

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.12

DATAFRAME TRANSFORMATIONS

DataFrame transformations

Add rows or columns
Remove rows or columns
Transform a row into a column (or vice versa)

Change the order of rows based on the values in columns

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.14

Adding Columns

Use the withColumn method on the DataFrame

For example, let’s add a column that just adds the number “1” as a
column:

df .withColumn ("numberOne", 11t (1))

1it is short for “literal”
1it () wraps a constant so Spark can treat it

like a column in expressions

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.15

Renaming Columns

Done using the withColumnRenamed method

Will rename the column with the name of the string in the first
argument to the string in the second argument:

df .withColumnRenamed ("DEST COUNTRY NAME", "dest")

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.16

Removing Columns

Done using a method called drop
df .drop ("ORIGIN COUNTRY NAME")

We can drop multiple columns by passing in multiple columns as
arguments

dfWithLongColName.drop ("ORIGIN COUNTRY NAME",
"DEST COUNTRY NAME")

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.17

Filtering Rows

To filter rows, we create an expression that evaluates to true or false

Those rows where the expression evaluates to false are filtered out

df.filter (col("count") < 2)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.18

Getting Unique Rows

A very common use case is to extract the unique or distinct values in a
DatalFrame
These values can be in one or more columns

Done by using the distinct method on a DataFrame

Allows deduplication of any rows that are in that DataFrame.

Again, this is a transformation that will return a new DataFrame with only
unique rows:

df .select ("ORIGIN_COUNTRY_NAME "o DEST_COUNTRY_NAME ")
.distinct ()

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.19

Random Samples

You might want to sample some random records from a DataFrame

Done by using the sample method on a DataFrame

Specify a fraction of rows to extract from a DataFrame and whether the
sample will be with or without replacement

val seed = 5
val withReplacement = false
val fraction = 0.5

df .sample (withReplacement, fraction, seed)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.20

Random Splits

Random splits are helpful when you need to break up a DataFrame
info a random “splits” of the original DataFrame

Often used with machine learning algorithms to create training,
validation, and test sets

val dataFrames =
df . randomSplit (Array (0.60, 0.20, 0.20), seed)

E.g.: 60% for training, 20% for validation (tuning), 20% for test (reality check)

seed: ensures the split is reproducible

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.21

Column Manipulations [1/4]

withColumn (columnName, func)

Return a Dataframe with the additional column

Invocation: df .withColumn (Y“dogYears”, df.age / 7)

dropColumn (columnName)

Return a Dataframe without the column

Invocation: df .dropColumn (“age”)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.22

Column Manipulations [2/4]

select (columnNames)

Return a DataFrame with the specified columns

Invocation: df . select (“firstName”, “age”)

describe (columnName)

Compute summary statistics over DataFrame columns

Invocation: df .describe (Yage”), df.describe()

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.23

Column Manipulations

val df = Seq(
(“Peterson”, “Marcus”, 54),
(“"Batevy”, “Edward”, 30),
(“Bruce”, "Karen", 35)

)-tODF("lastName", “firstName”, vvage//)

df .withColumn (“dogYears”, df.age / 7.0)

df .describe (Yage”, “dogYears”)

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY 5uPUTER SCIENCE DEPARTMENT SPARK

[3/4]

1.30.24

Column Manipulations [4/4]
1

e e e +
| summary | age| dogYears|
t——————— t—— to———— +
| count | 3 3|
| mean | 41.0667 | 5.95238|
| stddev| 10.69268| 1.52753]
| min | 35 5|
| max | 54| 7.714286|
t——— to———— to———— +

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.25

Dataframe joins

join (other, <columnComparison>, <joinType>)

Performs a join between 2 Dataframes

Invocation: dfl.join (df2, Seg(“id”))
Spark matches rows where the value of id in df 1 equals the value of 1d in df2

The result is a new DataFrame containing columns from both, aligned on the
matching keys

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.26

Join column comparison

Supports a variety of criteria

Sequence of column names (e.g., Seg(“1d”, Y“age”))

Elaborate comparison definitions (e.g., dfl (Yage”) >= df2 (Yage”))

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.27

Join Type

DataFrames may perform multiple styles of join

Inner: typical dataset join with key-to-key match

Outer, left-outer, right-outer: result contains all rows, filling in columns with
‘null’ values where data doesn’t exist

Left-semi, right-semi: similar to outer join, but result only contains rows in
specified source dataset

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.28

Example: Spark SQL

val df = Seq(
(“Peterson”, "“Marcus”, 54),
(“Batey”, “Edward”, 30),
(“Bruce”, "Karen", 35)

) .toDF ("lastName", “firstName”, "age”)
df .createOrReplaceTempView (“people”)

spark.sql ("SELECT firstName, age, age / 7.0 as dogYears
FROM people where age < 507)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.29

VOLumg

TUNING THE LEVEL OF PARALLELISM

Tuning the level of parallelism

Every RDD has a fixed number of partitions

Determine the degree of parallelism when executing operations

During aggregations or grouping operations, you can ask Spark to use
a specific number of partitions

This will override defaults that Spark uses

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.31

Example: Tuning the level of parallelism

L R EEEEE———————————————,
data = [(Ya”, 3), ("b”, 4), (TMa”, 1)]

sc.parallelize (data).
reduceByKey (lambda x, y: x + y) #default

sc.parallelize (data).
reduceByKey (lambda x, y: x + vy, 10) #Custom

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.32

What if you want to tune parallelism outside of grouping
and aggregation operations?

There is repartition ()
Shuffles data across the network to create a new set of partitions

Very expensive operation!

There is the coalesce () operation

Allows avoiding data movement

But only if you are decreasing the number of partitions

Check rdd.getNumPartitions () and make sure you are coalescing to
fewer partitions than current

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.33

DATASETS VS DATAFRAMES

COMPUTER SCIENCE DEPARTMENT (®%%) COLORADO STATE UNIVERSITY

Datasets vs DataFrames

In Spark’s supported languages, Datasets make sense only in Java and
Scala, whereas in Python and R only DataFrames make sense

This is because Python and R are not compile-time type-safe

Types are dynamically inferred or assigned during execution, not during
compile time

The reverse is true in Scala and Java: types are bound to variables
and objects at compile time

Professor: SHRIDEEP PALLICKARA
OME’EI?R?!DIJ STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.35

Scala typing: explicit when you must, inferred when
you can

You can tell Scala exactly what you mean

val number: Int = 25 : :
Scala’s type inference often lets you

omit type declarations, which makes

Or let Scala figure it out for you
val inferredNumber = 25

code leaner.

However, for clarity (and also when

Scala infers this as an Int) : .
inference may mislead) explicit type

declarations are valuable!

val vs var
val creates an immutable value (constant).

var creates a mutable variable you can reassign

var anotherMutableInt = 5
anotherMutableInt = 15

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.36

ORCHESTRATION PLANS

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

Executing Spark code in clusters: Overview

Write DataFrame /Dataset /SQL Code
If the code is valid, Spark converts this to a Logical Plan

Spark transforms this Logical Plan to a Physical Plan, checking for
optimizations along the way

Spark then executes this Physical Plan (which involves RDD
manipulations) on the cluster

Professor: SHRIDEEP PALLICKARA
ommnmnn STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.38

Once you have the code ready

Code is submitted either through the console or via a submitted job

This code passes through the Catalyst Optimizer

Decides how the code should be executed

Lays out a plan for doing so before, finally, the code is run

And the result returned to the user

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.39

The Catalyst Optimizer

Physical Plan

SQL

DataFrames

Datasets

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.40

Logical Planning

The logical plan only represents a set of abstract transformations
Does not refer to executors or drivers

Simply converts the user’s set of expressions into the most optimized version

Converting user’s code into an unresolved logical plan

This plan is unresolved because although your code might be valid, the
tables or columns that it refers to might or might not exist

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.41

How are columns and tables resolved?

Spark uses the catalog, a repository of all table and DataFrame
information, to resolve columns and tables in the analyzer optimizations

The analyzer might reject the unresolved logical plan if the required
table or column name does not exist in the catalog

If the analyzer can resolve it, the result is passed through the Catalyst
Optimizer

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.42

The Structured API Logical Planning Process
B

Logical
User Unresolved Resolved Optimization Qptimized
———————————————
Code Logical Plan logical plan logical plan

Catalog

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.43

Catalyst Optimizer

A collection of rules that attempt to optimize the logical plan by
pushing down predicates or selections

Catalyst is extensible

Users can include their own rules for domain-specific optimizations

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.44

Physical Planning [1/2]

The physical plan specifies how the logical plan will execute on the
cluster

Involves generating different physical execution strategies and
comparing them through a cost model

An example of the cost comparison might be choosing how to perform
a given join by looking at the physical attributes of a given table

How big the table is or

How big its partitions are

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.45

Physical Planning [2/2]

Physical planning results in a series of RDDs and transformations

This is why Spark is also referred to as a compiler

Takes queries in DataFrames, Datasets, and SQL and compiles them into
RDD transformations

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.46

The Physical Planning Process

T
Optimized Physical Executed on the
Logical Plan Plans cluster
TN - Cost S
Model Best Physical
—]

Plan

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.47

Execution

Spark performs further optimizations at runtime

Generating native Java bytecode that can remove entire tasks or
stages during execution

Finally, the result is returned to the user

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.48

Transformations and Dependencies

Two categories of dependencies

Narrow

Each partition of the parent RDD is used by at most one partition of the child RDD
Wide
Multiple child RDD partitions may depend on a single parent RDD partition

The narrow versus wide distinction has significant implications for the
way Spark evaluates a transformation and ...

consequently, for its performance

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.50

Narrow Transformations

Narrow transformations are those in which each partition in the child RDD
has simple, finite dependencies on partitions in the parent RDD

Dependencies can be determined at design time, irrespective of the values
of the records in the parent partitions

Partitions in narrow transformations can either depend on:
One parent (such as in the map operator), or

A unique subset of the parent partitions that is known at design time (coalesce)

Narrow transformations can be executed on an arbitrary subset of the data
without any information about the other partitions

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.51

Dependencies between partitions for narrow

transformations
—
PARENT
CHILD

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.52

Wide Transformations

Transformations with wide dependencies cannot be executed on
arbitrary rows

Require the data to be partitioned in a particular way, e.g., according
the value of their key

In sort, for example, records have to be partitioned so that keys in the same
range are on the same partition

Transformations with wide dependencies include sort, reduceByKey,
groupByKey, join, and anything that calls the rePartition function

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.53

Dependencies between partitions for wide
transformations

L i

Wide dependencies cannot be known fully before the data is evaluated

PARENT

CHILD

The dependency graph for any operations that cause a shuffle (such as groupByKey,
reduceByKey, sort, and sortByKey) follows this pattern

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.54

PAIR RDDs: WHAT TO WATCH FOR

COMPUTER SCIENCE DEPARTMENT @ COLORADDO STATE UNIVERSITY

Despite their utility, key/value operations can lead

to a number of performance issues

7 Most expensive operations in Spark fit into the key/value pair
paradigm
Because most wide transformations are key/ value transformations,

® And most require some fine tuning and care to be performant

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.56

In particular, operations on key /value pairs can

cause ...

1. Out-of-memory errors in the driver

Out-of-memory errors on the executor nodes

Shuffle failures

“Straggler tasks” or partitions, which are especially slow to compute

A @D

[0 The last three performance issues are all most often caused by
shuffles associated with the wide transformations

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.57

Memory errors in the driver, are usually caused by
actions

Several key /value actions (including countByKey, countByValue,
lookUp, and collectAsMap) return data to the driver

In most instances they return unbounded data since the number of keys
and the number of values are unknown

In addition to number of records, the size of each record is an
important factor in causing memory errors

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.58

Preventing out-of-memory errors with aggregation
operations [1/2]

combineByKey and all of the aggregation operators built on top of it
(reduceByKey, foldLeft, foldRight, aggregateByKey) may
lead to memory errors if they cause the accumulator to become too
large for one key

What about groupByKey?

It is actually implemented using combineByKey where the accumulator is
an iterator with all the data.

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.59

Preventing out-of-memory errors with aggregation
operations [2/2]

Use functions that implement map-side combinations

Meaning that records with the same key are combined before they are
shuffled

This can greatly reduce the shuffled read

The following four functions are implemented to use map-side
combinations
reduceByKey
treeAggregate: Use a tree pattern rather than a linear patter to merge
aggregateByKey
foldByKey : Similar to reduceByKey but lets you use a starting value

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.60

The contents of this slide-set are based on the
following references

Learning Spark: Lightning-Fast Big Data Analysis. 1st Edition. Holden Karau, Andy
Konwinski, Patrick Wendell, and Matei Zaharia. O Reilly. 2015. ISBN-13: 978-
1449358624. [Chapters 1-4, 10]

Chambers, Bill, and Zaharia, Matei. Spark: The Definitive Guide: Big Data Processing
Made Simple. O'Reilly Media. ISBN-13: 978-1491912218. 2018. [Chapters 5 and
Q1.

Karau, Holden; Warren, Rachel. High Performance Spark: Best Practices for Scaling

and Optimizing Apache Spark. O'Reilly Media. 2017. ISBN-13: 978-1491943205.
[Chapter 2]

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.61

	Slide 1: CS x55: Distributed Systems [Spark]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: DataFrames
	Slide 5: Spark DataFrame
	Slide 6: Schemas
	Slide 7: We can create DataFrames from raw data sources
	Slide 8: The foundation for reading data in Spark is the DataFrameReader
	Slide 9: However, at a minimum, the DataFrameReader must have a path from which to read
	Slide 10: Writing data is quite similar to that of reading data
	Slide 11: Writing Data
	Slide 12: You can make any DataFrame into a table or view
	Slide 13: DataFrame Transformations
	Slide 14: DataFrame transformations
	Slide 15: Adding Columns
	Slide 16: Renaming Columns
	Slide 17: Removing Columns
	Slide 18: Filtering Rows
	Slide 19: Getting Unique Rows
	Slide 20: Random Samples
	Slide 21: Random Splits
	Slide 22: Column Manipulations [1/4]
	Slide 23: Column Manipulations [2/4]
	Slide 24: Column Manipulations [3/4]
	Slide 25: Column Manipulations [4/4]
	Slide 26: Dataframe joins
	Slide 27: Join column comparison
	Slide 28: Join Type
	Slide 29: Example: Spark SQL
	Slide 30: Tuning the level of parallelism
	Slide 31: Tuning the level of parallelism
	Slide 32: Example: Tuning the level of parallelism
	Slide 33: What if you want to tune parallelism outside of grouping and aggregation operations?
	Slide 34: Datasets Vs DataFrames
	Slide 35: Datasets vs DataFrames
	Slide 36: Scala typing: explicit when you must, inferred when you can
	Slide 37: Orchestration Plans
	Slide 38: Executing Spark code in clusters: Overview
	Slide 39: Once you have the code ready
	Slide 40: The Catalyst Optimizer
	Slide 41: Logical Planning
	Slide 42: How are columns and tables resolved?
	Slide 43: The Structured API Logical Planning Process
	Slide 44: Catalyst Optimizer
	Slide 45: Physical Planning [1/2]
	Slide 46: Physical Planning [2/2]
	Slide 47: The Physical Planning Process
	Slide 48: Execution
	Slide 49: Wide and Narrow Transformations
	Slide 50: Transformations and Dependencies
	Slide 51: Narrow Transformations
	Slide 52: Dependencies between partitions for narrow transformations
	Slide 53: Wide Transformations
	Slide 54: Dependencies between partitions for wide transformations
	Slide 55: PAIR RDDs: What to watch for
	Slide 56: Despite their utility, key/value operations can lead to a number of performance issues
	Slide 57: In particular, operations on key/value pairs can cause …
	Slide 58: Memory errors in the driver, are usually caused by actions
	Slide 59: Preventing out-of-memory errors with aggregation operations [1/2]
	Slide 60: Preventing out-of-memory errors with aggregation operations [2/2]
	Slide 61: The contents of this slide-set are based on the following references

