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Though their numbers are few

    Don’t let them beguile you

Innocuous though 

        they may seem

The wrong invocation 

        Is all it takes 

To amplify inefficiencies 

    And protract computations
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Frequently asked questions from the previous class 

survey

 What happens if you persist an RDD and then you don’t use it?

 How do Spark and Hadoop make money?

 Data underpinning transformation operations … where are they (on 

disk, in memory)?

 How do you choose the right persistence strategy?
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Topics covered in this lecture

 Data Frames

 Column manipulations

 Orchestration Plans
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Paint was her love.  John Klossner. New Yorker. April 2023.
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Spark DataFrame 

 DataFrames consist of

 A series of records (like rows in a table) that are of type Row

 A number of columns (like columns in a spreadsheet)

 Rows

 You can create rows by manually instantiating a Row object with the values 

that belong in each column

 Columns

 You can select, manipulate, and remove columns from DataFrames and 

these operations are represented as expressions
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Schemas

 A schema defines the column names and types of a DataFrame 

 You can let a data source define the schema (called schema-on-read) 

or define it explicitly

 Note that only DataFrames have schemas

 Rows themselves do not have schemas 

 If you create a Row manually? 

◼ You must specify the values in the same order as the schema of the DataFrame to 

which they might be appended
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We can create DataFrames from raw data sources

 Spark has six “core” data sources 

 CSV

 JSON

 Parquet

 ORC: Apache Optimized Row Columnar (ORC) file format

 JDBC/ODBC connections

 Plain-text files

 Hundreds of external data sources written by the community

 E.g.: Cassandra, HBase, MongoDB, AWS, Redshift, XML etc.
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The foundation for reading data in Spark is the 
DataFrameReader

 We access this through the SparkSession via the read attribute: 

spark.read

 After we have a DataFrame reader, we specify several aspects: 

 The format: Input data source format

 The schema 

 The read mode {Permissive, DropMalformed, Failfast}

 A series of options 

 The format, options, and schema each return a DataFrameReader 

that can undergo further transformations and are all optional
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However, at a minimum, the DataFrameReader 

must have a path from which to read

spark.read.format("csv")

.option("mode", "FAILFAST")

.option("inferSchema", "true")

.option("path", "path/to/file(s)")

.schema(someSchema)

.load() 
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Writing data is quite similar to that of reading data 

 Instead of the DataFrameReader , we have the DataFrameWriter 

 We access the DataFrameWriter on a per-DataFrame basis via 

the write attribute: 

dataFrame.write 
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Writing Data

 After we have a DataFrameWriter, we specify three values: 

 The format, a series of options, and the save mode (e.g., append or overwrite)

 At a minimum, you must supply a path 

 Options may vary from data source to data source

dataframe.write.format( "csv" ) 

               .option("mode", "APPEND")

               .option("dateFormat", "yyyy-MM-dd" ) 

               .option ("path", "path/to/file(s)" )

               .save () 



SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.12

You can make any DataFrame into a table or view

 Done via a simple method call: createOrReplaceTempView

 This then allows you to query the data using SQL

val df = spark.read

              .format("json" )

              .load("/data/flight-data/json/2022-summary.json") 

df.createOrReplaceTempView("dfTable") 
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DataFrame transformations

 Add rows or columns

 Remove rows or columns

 Transform a row into a column (or vice versa)

 Change the order of rows based on the values in columns
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Adding Columns

 Use the withColumn method on the DataFrame 

 For example, let’s add a column that just adds the number “1” as a 

column: 

 

 df.withColumn("numberOne", lit(1)) 

lit is short for “literal”

lit() wraps a constant so Spark can treat it 

       like a column in expressions
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Renaming Columns

 Done using the withColumnRenamed method

 Will rename the column with the name of the string in the first 

argument to the string in the second argument: 

 

df.withColumnRenamed ("DEST_COUNTRY_NAME","dest") 
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Removing Columns

 Done using a method called drop 

     df.drop("ORIGIN_COUNTRY_NAME" )

 We can drop multiple columns by passing in multiple columns as 

arguments

   dfWithLongColName.drop("ORIGIN_COUNTRY_NAME",

                          "DEST_COUNTRY_NAME") 
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Filtering Rows

 To filter rows, we create an expression that evaluates to true or false 

 Those rows where the expression evaluates to false are filtered out

     df.filter( col( "count" ) < 2)
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Getting Unique Rows

 A very common use case is to extract the unique or distinct values in a 

DataFrame

 These values can be in one or more columns

 Done by using the distinct method on a DataFrame

◼ Allows deduplication of any rows that are in that DataFrame. 

 Again, this is a transformation that will return a new DataFrame with only 

unique rows: 

df.select("ORIGIN_COUNTRY_NAME","DEST_COUNTRY_NAME")

  .distinct()
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Random Samples 

 You might want to sample some random records from a DataFrame 

 Done by using the sample method on a DataFrame 

 Specify a fraction of rows to extract from a DataFrame and whether the 

sample will be with or without replacement

val seed = 5 

val withReplacement = false 

val fraction = 0.5 

df.sample(withReplacement, fraction, seed )
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Random Splits

 Random splits are helpful when you need to break up a DataFrame 

into a random “splits” of the original DataFrame

 Often used with machine learning algorithms to create training, 

validation, and test sets 

val dataFrames = 

   df.randomSplit(Array (0.60, 0.20, 0.20 ), seed )

❑ E.g.: 60% for training, 20% for validation (tuning), 20% for test (reality check) 

❑ seed: ensures the split is reproducible
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Column Manipulations                              [1/4]

 withColumn(columnName, func)

 Return a Dataframe with the additional column

 Invocation: df.withColumn(“dogYears”, df.age / 7)

 dropColumn(columnName)

 Return a Dataframe without the column

 Invocation: df.dropColumn(“age”)
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Column Manipulations                              [2/4]

 select(columnNames)

 Return a DataFrame with the specified columns

 Invocation: df.select(“firstName”, “age”)

 describe(columnName)

 Compute summary statistics over DataFrame columns

 Invocation: df.describe(“age”), df.describe()
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Column Manipulations                              [3/4]

val df = Seq(

    (“Peterson”, “Marcus”, 54),

    (“Batey”, “Edward”, 36),

    (“Bruce”, "Karen", 35)

  ).toDF("lastName", “firstName”, "age”)

  df.withColumn(“dogYears”, df.age / 7.0)

  df.describe(“age”, “dogYears”)
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Column Manipulations                              [4/4]

+-------+---------+---------+

    |summary|      age| dogYears|

    +-------+---------+---------+

    |  count|        3|        3|

    |   mean|  41.6667|  5.95238|

    | stddev| 10.69268|  1.52753|

    |    min|       35|        5|

    |    max|       54| 7.714286|

    +-------+---------+---------+
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Dataframe joins

 join(other, <columnComparison>, <joinType>)

 Performs a join between 2 Dataframes  

 Invocation: df1.join(df2, Seq(“id”))

 Spark matches rows where the value of id in df1 equals the value of id in df2

 The result is a new DataFrame containing columns from both, aligned on the 

matching keys
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Join column comparison

 Supports a variety of criteria

 Sequence of column names (e.g., Seq(“id”, “age”))

 Elaborate comparison definitions (e.g., df1(“age”) >= df2(“age”))
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Join Type

 DataFrames may perform multiple styles of join

 Inner: typical dataset join with key-to-key match

 Outer, left-outer, right-outer: result contains all rows, filling in columns with 

‘null’ values where data doesn’t exist

 Left-semi, right-semi: similar to outer join, but result only contains rows in 

specified source dataset
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Example: Spark SQL

val df = Seq(

    (“Peterson”, “Marcus”, 54),

    (“Batey”, “Edward”, 36),

    (“Bruce”, "Karen", 35)

  ).toDF("lastName", “firstName”, "age”)

  df.createOrReplaceTempView(“people”)

  spark.sql(“SELECT firstName, age, age / 7.0 as dogYears

    FROM people where age < 50”)
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Tuning the level of parallelism

 Every RDD has a fixed number of partitions 

 Determine the degree of parallelism when executing operations

 During aggregations or grouping operations, you can ask Spark to use 

a specific number of partitions

 This will override defaults that Spark uses
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Example: Tuning the level of parallelism

data = [(“a”, 3), (“b”, 4), (“a”, 1)]

sc.parallelize(data).

       reduceByKey(lambda x, y: x + y) #default

sc.parallelize(data).

       reduceByKey(lambda x, y: x + y, 10) #Custom
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What if you want to tune parallelism outside of grouping 

and aggregation operations?

 There is repartition()

 Shuffles data across the network to create a new set of partitions

 Very expensive operation! 

 There is the coalesce() operation

 Allows avoiding data movement

◼ But only if you are decreasing the number of partitions

 Check rdd.getNumPartitions() and make sure you are coalescing to 

fewer partitions than current
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Datasets vs DataFrames

October 5, 2021

 In Spark’s supported languages, Datasets make sense only in Java and 

Scala, whereas in Python and R only DataFrames make sense 

 This is because Python and R are not compile-time type-safe

 Types are dynamically inferred or assigned during execution, not during 

compile time

 The reverse is true in Scala and Java: types are bound to variables 

and objects at compile time 
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Scala typing: explicit when you must, inferred when 

you can

 You can tell Scala exactly what you mean

 val number: Int = 25

 Or let Scala figure it out for you

 val inferredNumber = 25

◼ Scala infers this as an Int

 val vs var

 val creates an immutable value (constant).

 var creates a mutable variable you can reassign
◼ var anotherMutableInt = 5

◼ anotherMutableInt = 15

Scala’s type inference often lets you 

omit type declarations, which makes 

code leaner.

However, for clarity (and also when 

inference may mislead) explicit type 

declarations are valuable!
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Executing Spark code in clusters: Overview

October 5, 2021

 Write DataFrame/Dataset/SQL Code

 If the code is valid, Spark converts this to a Logical Plan

 Spark transforms this Logical Plan to a Physical Plan, checking for 

optimizations along the way

 Spark then executes this Physical Plan (which involves RDD 

manipulations) on the cluster
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Once you have the code ready

 Code is submitted either through the console or via a submitted job

 This code passes through the Catalyst Optimizer

 Decides how the code should be executed 

 Lays out a plan for doing so before, finally, the code is run 

◼ And the result returned to the user 
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The Catalyst Optimizer

SQL

DataFrames

Datasets

Catalyst 

Optimizer

Physical Plan
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Logical Planning

 The logical plan only represents a set of abstract transformations 

 Does not refer to executors or drivers

 Simply converts the user’s set of expressions into the most optimized version

 Converting user’s code into an unresolved logical plan

 This plan is unresolved because although your code might be valid, the 

tables or columns that it refers to might or might not exist
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How are columns and tables resolved?

 Spark uses the catalog, a repository of all table and DataFrame 

information, to resolve columns and tables in the analyzer optimizations

 The analyzer might reject the unresolved logical plan if the required 

table or column name does not exist in the catalog

 If the analyzer can resolve it, the result is passed through the Catalyst 

Optimizer
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The Structured API Logical Planning Process

User 

Code

Unresolved 

Logical Plan

Catalog

Resolved 

logical plan

Optimized 

logical plan

Analysis

Logical 

Optimization
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Catalyst Optimizer

 A collection of rules that attempt to optimize the logical plan by 

pushing down predicates or selections

 Catalyst is extensible

 Users can include their own rules for domain-specific optimizations
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Physical Planning                                     [1/2]

 The physical plan specifies how the logical plan will execute on the 

cluster

 Involves generating different physical execution strategies and 

comparing them through a cost model

 An example of the cost comparison might be choosing how to perform 

a given join by looking at the physical attributes of a given table 

 How big the table is or 

 How big its partitions are 
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Physical Planning                                     [2/2]

 Physical planning results in a series of RDDs and transformations

 This is why Spark is also referred to as a compiler 

 Takes queries in DataFrames, Datasets, and SQL and compiles them into 

RDD transformations
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The Physical Planning Process

Physical 

Plans

Optimized 

Logical Plan

Cost 

Model Best Physical

Plan

Executed on the

cluster
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Execution

 Spark performs further optimizations at runtime

 Generating native Java bytecode that can remove entire tasks or 

stages during execution

 Finally, the result is returned to the user
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Transformations and Dependencies

 Two categories of dependencies

 Narrow

◼ Each partition of the parent RDD is used by at most one partition of the child RDD

 Wide

◼ Multiple child RDD partitions may depend on a single parent RDD partition

 The narrow versus wide distinction has significant implications for the 

way Spark evaluates a transformation and … 

 consequently, for its performance
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Narrow Transformations

 Narrow transformations are those in which each partition in the child RDD 

has simple, finite dependencies on partitions in the parent RDD

 Dependencies can be determined at design time, irrespective of the values 

of the records in the parent partitions

 Partitions in narrow transformations can either depend on:

 One parent (such as in the map operator), or 

 A unique subset of the parent partitions that is known at design time (coalesce) 

 Narrow transformations can be executed on an arbitrary subset of the data 

without any information about the other partitions
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Dependencies between partitions for narrow 

transformations

PARENT

CHILD
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Wide Transformations

 Transformations with wide dependencies cannot be executed on 

arbitrary rows 

 Require the data to be partitioned in a particular way, e.g., according 

the value of their key

 In sort, for example, records have to be partitioned so that keys in the same 

range are on the same partition

 Transformations with wide dependencies include sort, reduceByKey, 

groupByKey, join, and anything that calls the rePartition function
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Dependencies between partitions for wide 

transformations

PARENT

CHILD

Wide dependencies cannot be known fully before the data is evaluated

The dependency graph for any operations that cause a shuffle (such as groupByKey, 

reduceByKey, sort, and sortByKey) follows this pattern
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Despite their utility,  key/value operations can lead 

to a number of performance issues

 Most expensive operations in Spark fit into the key/value pair 

paradigm 

 Because most wide transformations are key/ value transformations, 

◼ And most require some fine tuning and care to be performant
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In particular, operations on key/value pairs can 

cause …

1. Out-of-memory errors in the driver 

2. Out-of-memory errors on the executor nodes 

3. Shuffle failures

4. “Straggler tasks” or partitions, which are especially slow to compute

 The last three performance issues are all most often caused by 

shuffles associated with the wide transformations
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Memory errors in the driver, are usually caused by 

actions

 Several key/value actions (including countByKey, countByValue, 

lookUp, and collectAsMap) return data to the driver

 In most instances they return unbounded data since the number of keys 

and the number of values are unknown

 In addition to number of records, the size of each record is an 

important factor in causing memory errors
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Preventing out-of-memory errors with aggregation 

operations                                                  [1/2]

 combineByKey and all of the aggregation operators built on top of it 

(reduceByKey, foldLeft, foldRight, aggregateByKey) may 

lead to memory errors if they cause the accumulator to become too 

large for one key

 What about groupByKey?

 It is actually implemented using combineByKey where the accumulator is 

an iterator with all the data.
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Preventing out-of-memory errors with aggregation 

operations                                                  [2/2]

 Use functions that implement map-side combinations

 Meaning that records with the same key are combined before they are 
shuffled

 This can greatly reduce the shuffled read

 The following four functions are implemented to use map-side 
combinations 
 reduceByKey

 treeAggregate: Use a tree pattern rather than a linear patter to merge

 aggregateByKey

 foldByKey : Similar to reduceByKey but lets you use a starting value
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The contents of this slide-set are based on the 

following references

 Learning Spark: Lightning-Fast Big Data Analysis.  1st Edition.  Holden Karau, Andy 

Konwinski, Patrick Wendell, and Matei Zaharia. O'Reilly. 2015. ISBN-13: 978-

1449358624. [Chapters 1-4, 10]

 Chambers, Bill, and Zaharia, Matei. Spark: The Definitive Guide: Big Data Processing 

Made Simple. O'Reilly Media. ISBN-13: 978-1491912218. 2018. [Chapters 5 and 

9].

 Karau, Holden; Warren, Rachel. High Performance Spark: Best Practices for Scaling 

and Optimizing Apache Spark. O'Reilly Media. 2017. ISBN-13: 978-1491943205. 

[Chapter 2]
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