
COMPUTER SCIENCE DEPARTMENT

CS X55: DISTRIBUTED SYSTEMS [SPARK]

Shrideep Pallickara

Computer Science

Colorado State University

Transformations: Narrow and Wide

Though their numbers are few

 Don’t let them beguile you

Innocuous though

 they may seem

The wrong invocation

 Is all it takes

To amplify inefficiencies

 And protract computations

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.2

Frequently asked questions from the previous class

survey

 What happens if you persist an RDD and then you don’t use it?

 How do Spark and Hadoop make money?

 Data underpinning transformation operations … where are they (on

disk, in memory)?

 How do you choose the right persistence strategy?

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.3

Topics covered in this lecture

 Data Frames

 Column manipulations

 Orchestration Plans

COMPUTER SCIENCE DEPARTMENT

DATAFRAMES

Paint was her love. John Klossner. New Yorker. April 2023.

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.5

Spark DataFrame

 DataFrames consist of

 A series of records (like rows in a table) that are of type Row

 A number of columns (like columns in a spreadsheet)

 Rows

 You can create rows by manually instantiating a Row object with the values

that belong in each column

 Columns

 You can select, manipulate, and remove columns from DataFrames and

these operations are represented as expressions

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.6

Schemas

 A schema defines the column names and types of a DataFrame

 You can let a data source define the schema (called schema-on-read)

or define it explicitly

 Note that only DataFrames have schemas

 Rows themselves do not have schemas

 If you create a Row manually?

◼ You must specify the values in the same order as the schema of the DataFrame to

which they might be appended

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.7

We can create DataFrames from raw data sources

 Spark has six “core” data sources

 CSV

 JSON

 Parquet

 ORC: Apache Optimized Row Columnar (ORC) file format

 JDBC/ODBC connections

 Plain-text files

 Hundreds of external data sources written by the community

 E.g.: Cassandra, HBase, MongoDB, AWS, Redshift, XML etc.

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.8

The foundation for reading data in Spark is the
DataFrameReader

 We access this through the SparkSession via the read attribute:

spark.read

 After we have a DataFrame reader, we specify several aspects:

 The format: Input data source format

 The schema

 The read mode {Permissive, DropMalformed, Failfast}

 A series of options

 The format, options, and schema each return a DataFrameReader

that can undergo further transformations and are all optional

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.9

However, at a minimum, the DataFrameReader

must have a path from which to read

spark.read.format("csv")

.option("mode", "FAILFAST")

.option("inferSchema", "true")

.option("path", "path/to/file(s)")

.schema(someSchema)

.load()

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.10

Writing data is quite similar to that of reading data

 Instead of the DataFrameReader , we have the DataFrameWriter

 We access the DataFrameWriter on a per-DataFrame basis via

the write attribute:

dataFrame.write

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.11

Writing Data

 After we have a DataFrameWriter, we specify three values:

 The format, a series of options, and the save mode (e.g., append or overwrite)

 At a minimum, you must supply a path

 Options may vary from data source to data source

dataframe.write.format("csv")

 .option("mode", "APPEND")

 .option("dateFormat", "yyyy-MM-dd")

 .option ("path", "path/to/file(s)")

 .save ()

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.12

You can make any DataFrame into a table or view

 Done via a simple method call: createOrReplaceTempView

 This then allows you to query the data using SQL

val df = spark.read

 .format("json")

 .load("/data/flight-data/json/2022-summary.json")

df.createOrReplaceTempView("dfTable")

COMPUTER SCIENCE DEPARTMENT

DATAFRAME TRANSFORMATIONS

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.14

DataFrame transformations

 Add rows or columns

 Remove rows or columns

 Transform a row into a column (or vice versa)

 Change the order of rows based on the values in columns

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.15

Adding Columns

 Use the withColumn method on the DataFrame

 For example, let’s add a column that just adds the number “1” as a

column:

 df.withColumn("numberOne", lit(1))

lit is short for “literal”

lit() wraps a constant so Spark can treat it

 like a column in expressions

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.16

Renaming Columns

 Done using the withColumnRenamed method

 Will rename the column with the name of the string in the first

argument to the string in the second argument:

df.withColumnRenamed ("DEST_COUNTRY_NAME","dest")

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.17

Removing Columns

 Done using a method called drop

 df.drop("ORIGIN_COUNTRY_NAME")

 We can drop multiple columns by passing in multiple columns as

arguments

 dfWithLongColName.drop("ORIGIN_COUNTRY_NAME",

 "DEST_COUNTRY_NAME")

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.18

Filtering Rows

 To filter rows, we create an expression that evaluates to true or false

 Those rows where the expression evaluates to false are filtered out

 df.filter(col("count") < 2)

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.19

Getting Unique Rows

 A very common use case is to extract the unique or distinct values in a

DataFrame

 These values can be in one or more columns

 Done by using the distinct method on a DataFrame

◼ Allows deduplication of any rows that are in that DataFrame.

 Again, this is a transformation that will return a new DataFrame with only

unique rows:

df.select("ORIGIN_COUNTRY_NAME","DEST_COUNTRY_NAME")

 .distinct()

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.20

Random Samples

 You might want to sample some random records from a DataFrame

 Done by using the sample method on a DataFrame

 Specify a fraction of rows to extract from a DataFrame and whether the

sample will be with or without replacement

val seed = 5

val withReplacement = false

val fraction = 0.5

df.sample(withReplacement, fraction, seed)

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.21

Random Splits

 Random splits are helpful when you need to break up a DataFrame

into a random “splits” of the original DataFrame

 Often used with machine learning algorithms to create training,

validation, and test sets

val dataFrames =

 df.randomSplit(Array (0.60, 0.20, 0.20), seed)

❑ E.g.: 60% for training, 20% for validation (tuning), 20% for test (reality check)

❑ seed: ensures the split is reproducible

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.22

Column Manipulations [1/4]

 withColumn(columnName, func)

 Return a Dataframe with the additional column

 Invocation: df.withColumn(“dogYears”, df.age / 7)

 dropColumn(columnName)

 Return a Dataframe without the column

 Invocation: df.dropColumn(“age”)

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.23

Column Manipulations [2/4]

 select(columnNames)

 Return a DataFrame with the specified columns

 Invocation: df.select(“firstName”, “age”)

 describe(columnName)

 Compute summary statistics over DataFrame columns

 Invocation: df.describe(“age”), df.describe()

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.24

Column Manipulations [3/4]

val df = Seq(

 (“Peterson”, “Marcus”, 54),

 (“Batey”, “Edward”, 36),

 (“Bruce”, "Karen", 35)

).toDF("lastName", “firstName”, "age”)

 df.withColumn(“dogYears”, df.age / 7.0)

 df.describe(“age”, “dogYears”)

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.25

Column Manipulations [4/4]

+-------+---------+---------+

 |summary| age| dogYears|

 +-------+---------+---------+

 | count| 3| 3|

 | mean| 41.6667| 5.95238|

 | stddev| 10.69268| 1.52753|

 | min| 35| 5|

 | max| 54| 7.714286|

 +-------+---------+---------+

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.26

Dataframe joins

 join(other, <columnComparison>, <joinType>)

 Performs a join between 2 Dataframes

 Invocation: df1.join(df2, Seq(“id”))

 Spark matches rows where the value of id in df1 equals the value of id in df2

 The result is a new DataFrame containing columns from both, aligned on the

matching keys

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.27

Join column comparison

 Supports a variety of criteria

 Sequence of column names (e.g., Seq(“id”, “age”))

 Elaborate comparison definitions (e.g., df1(“age”) >= df2(“age”))

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.28

Join Type

 DataFrames may perform multiple styles of join

 Inner: typical dataset join with key-to-key match

 Outer, left-outer, right-outer: result contains all rows, filling in columns with

‘null’ values where data doesn’t exist

 Left-semi, right-semi: similar to outer join, but result only contains rows in

specified source dataset

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.29

Example: Spark SQL

val df = Seq(

 (“Peterson”, “Marcus”, 54),

 (“Batey”, “Edward”, 36),

 (“Bruce”, "Karen", 35)

).toDF("lastName", “firstName”, "age”)

 df.createOrReplaceTempView(“people”)

 spark.sql(“SELECT firstName, age, age / 7.0 as dogYears

 FROM people where age < 50”)

COMPUTER SCIENCE DEPARTMENT
TUNING THE LEVEL OF PARALLELISM

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.31

Tuning the level of parallelism

 Every RDD has a fixed number of partitions

 Determine the degree of parallelism when executing operations

 During aggregations or grouping operations, you can ask Spark to use

a specific number of partitions

 This will override defaults that Spark uses

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.32

Example: Tuning the level of parallelism

data = [(“a”, 3), (“b”, 4), (“a”, 1)]

sc.parallelize(data).

 reduceByKey(lambda x, y: x + y) #default

sc.parallelize(data).

 reduceByKey(lambda x, y: x + y, 10) #Custom

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.33

What if you want to tune parallelism outside of grouping

and aggregation operations?

 There is repartition()

 Shuffles data across the network to create a new set of partitions

 Very expensive operation!

 There is the coalesce() operation

 Allows avoiding data movement

◼ But only if you are decreasing the number of partitions

 Check rdd.getNumPartitions() and make sure you are coalescing to

fewer partitions than current

COMPUTER SCIENCE DEPARTMENT

DATASETS VS DATAFRAMES

October 5, 2021

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.35

Datasets vs DataFrames

October 5, 2021

 In Spark’s supported languages, Datasets make sense only in Java and

Scala, whereas in Python and R only DataFrames make sense

 This is because Python and R are not compile-time type-safe

 Types are dynamically inferred or assigned during execution, not during

compile time

 The reverse is true in Scala and Java: types are bound to variables

and objects at compile time

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.36

Scala typing: explicit when you must, inferred when

you can

 You can tell Scala exactly what you mean

 val number: Int = 25

 Or let Scala figure it out for you

 val inferredNumber = 25

◼ Scala infers this as an Int

 val vs var

 val creates an immutable value (constant).

 var creates a mutable variable you can reassign
◼ var anotherMutableInt = 5

◼ anotherMutableInt = 15

Scala’s type inference often lets you

omit type declarations, which makes

code leaner.

However, for clarity (and also when

inference may mislead) explicit type

declarations are valuable!

COMPUTER SCIENCE DEPARTMENT

ORCHESTRATION PLANS

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.38

Executing Spark code in clusters: Overview

October 5, 2021

 Write DataFrame/Dataset/SQL Code

 If the code is valid, Spark converts this to a Logical Plan

 Spark transforms this Logical Plan to a Physical Plan, checking for

optimizations along the way

 Spark then executes this Physical Plan (which involves RDD

manipulations) on the cluster

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.39

Once you have the code ready

 Code is submitted either through the console or via a submitted job

 This code passes through the Catalyst Optimizer

 Decides how the code should be executed

 Lays out a plan for doing so before, finally, the code is run

◼ And the result returned to the user

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.40

The Catalyst Optimizer

SQL

DataFrames

Datasets

Catalyst

Optimizer

Physical Plan

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.41

Logical Planning

 The logical plan only represents a set of abstract transformations

 Does not refer to executors or drivers

 Simply converts the user’s set of expressions into the most optimized version

 Converting user’s code into an unresolved logical plan

 This plan is unresolved because although your code might be valid, the

tables or columns that it refers to might or might not exist

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.42

How are columns and tables resolved?

 Spark uses the catalog, a repository of all table and DataFrame

information, to resolve columns and tables in the analyzer optimizations

 The analyzer might reject the unresolved logical plan if the required

table or column name does not exist in the catalog

 If the analyzer can resolve it, the result is passed through the Catalyst

Optimizer

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.43

The Structured API Logical Planning Process

User

Code

Unresolved

Logical Plan

Catalog

Resolved

logical plan

Optimized

logical plan

Analysis

Logical

Optimization

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.44

Catalyst Optimizer

 A collection of rules that attempt to optimize the logical plan by

pushing down predicates or selections

 Catalyst is extensible

 Users can include their own rules for domain-specific optimizations

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.45

Physical Planning [1/2]

 The physical plan specifies how the logical plan will execute on the

cluster

 Involves generating different physical execution strategies and

comparing them through a cost model

 An example of the cost comparison might be choosing how to perform

a given join by looking at the physical attributes of a given table

 How big the table is or

 How big its partitions are

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.46

Physical Planning [2/2]

 Physical planning results in a series of RDDs and transformations

 This is why Spark is also referred to as a compiler

 Takes queries in DataFrames, Datasets, and SQL and compiles them into

RDD transformations

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.47

The Physical Planning Process

Physical

Plans

Optimized

Logical Plan

Cost

Model Best Physical

Plan

Executed on the

cluster

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.48

Execution

 Spark performs further optimizations at runtime

 Generating native Java bytecode that can remove entire tasks or

stages during execution

 Finally, the result is returned to the user

COMPUTER SCIENCE DEPARTMENT

WIDE AND NARROW

TRANSFORMATIONS

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.50

Transformations and Dependencies

 Two categories of dependencies

 Narrow

◼ Each partition of the parent RDD is used by at most one partition of the child RDD

 Wide

◼ Multiple child RDD partitions may depend on a single parent RDD partition

 The narrow versus wide distinction has significant implications for the

way Spark evaluates a transformation and …

 consequently, for its performance

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.51

Narrow Transformations

 Narrow transformations are those in which each partition in the child RDD

has simple, finite dependencies on partitions in the parent RDD

 Dependencies can be determined at design time, irrespective of the values

of the records in the parent partitions

 Partitions in narrow transformations can either depend on:

 One parent (such as in the map operator), or

 A unique subset of the parent partitions that is known at design time (coalesce)

 Narrow transformations can be executed on an arbitrary subset of the data

without any information about the other partitions

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.52

Dependencies between partitions for narrow

transformations

PARENT

CHILD

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.53

Wide Transformations

 Transformations with wide dependencies cannot be executed on

arbitrary rows

 Require the data to be partitioned in a particular way, e.g., according

the value of their key

 In sort, for example, records have to be partitioned so that keys in the same

range are on the same partition

 Transformations with wide dependencies include sort, reduceByKey,

groupByKey, join, and anything that calls the rePartition function

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.54

Dependencies between partitions for wide

transformations

PARENT

CHILD

Wide dependencies cannot be known fully before the data is evaluated

The dependency graph for any operations that cause a shuffle (such as groupByKey,

reduceByKey, sort, and sortByKey) follows this pattern

COMPUTER SCIENCE DEPARTMENT

PAIR RDDS: WHAT TO WATCH FOR

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.56

Despite their utility, key/value operations can lead

to a number of performance issues

 Most expensive operations in Spark fit into the key/value pair

paradigm

 Because most wide transformations are key/ value transformations,

◼ And most require some fine tuning and care to be performant

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.57

In particular, operations on key/value pairs can

cause …

1. Out-of-memory errors in the driver

2. Out-of-memory errors on the executor nodes

3. Shuffle failures

4. “Straggler tasks” or partitions, which are especially slow to compute

 The last three performance issues are all most often caused by

shuffles associated with the wide transformations

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.58

Memory errors in the driver, are usually caused by

actions

 Several key/value actions (including countByKey, countByValue,

lookUp, and collectAsMap) return data to the driver

 In most instances they return unbounded data since the number of keys

and the number of values are unknown

 In addition to number of records, the size of each record is an

important factor in causing memory errors

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.59

Preventing out-of-memory errors with aggregation

operations [1/2]

 combineByKey and all of the aggregation operators built on top of it

(reduceByKey, foldLeft, foldRight, aggregateByKey) may

lead to memory errors if they cause the accumulator to become too

large for one key

 What about groupByKey?

 It is actually implemented using combineByKey where the accumulator is

an iterator with all the data.

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.60

Preventing out-of-memory errors with aggregation

operations [2/2]

 Use functions that implement map-side combinations

 Meaning that records with the same key are combined before they are
shuffled

 This can greatly reduce the shuffled read

 The following four functions are implemented to use map-side
combinations
 reduceByKey

 treeAggregate: Use a tree pattern rather than a linear patter to merge

 aggregateByKey

 foldByKey : Similar to reduceByKey but lets you use a starting value

SPARK
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L30.61

The contents of this slide-set are based on the

following references

 Learning Spark: Lightning-Fast Big Data Analysis. 1st Edition. Holden Karau, Andy

Konwinski, Patrick Wendell, and Matei Zaharia. O'Reilly. 2015. ISBN-13: 978-

1449358624. [Chapters 1-4, 10]

 Chambers, Bill, and Zaharia, Matei. Spark: The Definitive Guide: Big Data Processing

Made Simple. O'Reilly Media. ISBN-13: 978-1491912218. 2018. [Chapters 5 and

9].

 Karau, Holden; Warren, Rachel. High Performance Spark: Best Practices for Scaling

and Optimizing Apache Spark. O'Reilly Media. 2017. ISBN-13: 978-1491943205.

[Chapter 2]

	Slide 1: CS x55: Distributed Systems [Spark]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: DataFrames
	Slide 5: Spark DataFrame
	Slide 6: Schemas
	Slide 7: We can create DataFrames from raw data sources
	Slide 8: The foundation for reading data in Spark is the DataFrameReader
	Slide 9: However, at a minimum, the DataFrameReader must have a path from which to read
	Slide 10: Writing data is quite similar to that of reading data
	Slide 11: Writing Data
	Slide 12: You can make any DataFrame into a table or view
	Slide 13: DataFrame Transformations
	Slide 14: DataFrame transformations
	Slide 15: Adding Columns
	Slide 16: Renaming Columns
	Slide 17: Removing Columns
	Slide 18: Filtering Rows
	Slide 19: Getting Unique Rows
	Slide 20: Random Samples
	Slide 21: Random Splits
	Slide 22: Column Manipulations [1/4]
	Slide 23: Column Manipulations [2/4]
	Slide 24: Column Manipulations [3/4]
	Slide 25: Column Manipulations [4/4]
	Slide 26: Dataframe joins
	Slide 27: Join column comparison
	Slide 28: Join Type
	Slide 29: Example: Spark SQL
	Slide 30: Tuning the level of parallelism
	Slide 31: Tuning the level of parallelism
	Slide 32: Example: Tuning the level of parallelism
	Slide 33: What if you want to tune parallelism outside of grouping and aggregation operations?
	Slide 34: Datasets Vs DataFrames
	Slide 35: Datasets vs DataFrames
	Slide 36: Scala typing: explicit when you must, inferred when you can
	Slide 37: Orchestration Plans
	Slide 38: Executing Spark code in clusters: Overview
	Slide 39: Once you have the code ready
	Slide 40: The Catalyst Optimizer
	Slide 41: Logical Planning
	Slide 42: How are columns and tables resolved?
	Slide 43: The Structured API Logical Planning Process
	Slide 44: Catalyst Optimizer
	Slide 45: Physical Planning [1/2]
	Slide 46: Physical Planning [2/2]
	Slide 47: The Physical Planning Process
	Slide 48: Execution
	Slide 49: Wide and Narrow Transformations
	Slide 50: Transformations and Dependencies
	Slide 51: Narrow Transformations
	Slide 52: Dependencies between partitions for narrow transformations
	Slide 53: Wide Transformations
	Slide 54: Dependencies between partitions for wide transformations
	Slide 55: PAIR RDDs: What to watch for
	Slide 56: Despite their utility, key/value operations can lead to a number of performance issues
	Slide 57: In particular, operations on key/value pairs can cause …
	Slide 58: Memory errors in the driver, are usually caused by actions
	Slide 59: Preventing out-of-memory errors with aggregation operations [1/2]
	Slide 60: Preventing out-of-memory errors with aggregation operations [2/2]
	Slide 61: The contents of this slide-set are based on the following references

