CS X55: DISTRIBUTED SYSTEMS [SPARK]

Transformations: Narrow and Wide
Though their numbers are few
Don'’t let them beguile you
Innocuous though
they may seem

The wrong invocation
Is all it takes
To amplify inefficiencies

And protract computations Shrideep Pallickara
Computer Science
Colorado State University
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Frequently asked questions from the previous class
survey

What happens if you persist an RDD and then you don’t use it?

How do Spark and Hadoop make money?

Data underpinning transformation operations ... where are they (on
disk, in memory)?

How do you choose the right persistence strategy?
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Topics covered in this lecture
N

-1 Data Frames

21 Column manipulations

1 Orchestration Plans
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DATAFRAMES

“Painting was her love, but framing was her passion.”

Paint was her love. John Klossner. New Yorker. April 2023.
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Spark DataFrame

DataFrames consist of
A series of records (like rows in a table) that are of type Row

A number of columns (like columns in a spreadsheet)

Rows

You can create rows by manually instantiating a Row object with the values
that belong in each column

Columns

You can select, manipulate, and remove columns from DataFrames and
these operations are represented as expressions
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Schemas

A schema defines the column names and types of a DataFrame

You can let a data source define the schema (called schema-on-read)
or define it explicitly

Note that only DataFrames have schemas

Rows themselves do not have schemas
If you create a Row manually?

You must specify the values in the same order as the schema of the DataFrame to
which they might be appended
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We can create DataFrames from raw data sources

Spark has six ‘““core’” data sources
CSV
JSON
Parquet
ORC: Apache Optimized Row Columnar (ORC) file format
JDBC/ODBC connections

Plain-text files

Hundreds of external data sources written by the community
E.g.: Cassandra, HBase, MongoDB, AWS, Redshift, XML etc.
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The foundation for reading data in Spark is the
DataFrameReader

We access this through the SparkSession via the read attribute:
spark.read

After we have a DataFrame reader, we specify several aspects:
The format: Input data source format
The schema
The read mode {permissive, DropMalformed, Failfast}

A series of options

The format, options, and schema each return a DataFrameReader
that can undergo further transformations and are all optional
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spark.read.format ("csv")

.option ("mode", "FAILFAST")

.option("inferSchema", "true")

.option ("path", "path/to/file(s)")
(

.Schema (someSchema)
.load ()
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Writing data is quite similar to that of reading data
——

7 Instead of the DataFrameReader , we have the DataFrameWriter

7 We access the DataFrameWriter on a per-DataFrame basis via
the wr1te attribute:

dataFrame.write
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Writing Data

After we have a DataFrameWriter, we specify three values:

The format, a series of options, and the save mode (e.g., append or overwrite)

At a minimum, you must supply a path

Options may vary from data source to data source

dataframe.write.format ( "csv" )
.option ("mode", "APPEND")

.option ("dateFormat", "yyyy-MM-dd" )
.option ("path", "path/to/file(s)" )

.save ()
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You can make any DataFrame into a table or view

Done via a simple method call: createOrReplaceTempView

This then allows you to query the data using SQL

val df = spark.read
.format ("json" )
.load (" /data/flight-data/json/2022-summary.json")

df.createOrReplaceTempView ("dfTable")

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.12



DATAFRAME TRANSFORMATIONS




DataFrame transformations

Add rows or columns
Remove rows or columns
Transform a row into a column (or vice versa)

Change the order of rows based on the values in columns
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Adding Columns

Use the withColumn method on the DataFrame

For example, let’s add a column that just adds the number “1” as a
column:

df .withColumn ("numberOne", 11t (1))

1it is short for “literal”
1it () wraps a constant so Spark can treat it

like a column in expressions
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Renaming Columns

Done using the withColumnRenamed method

Will rename the column with the name of the string in the first
argument to the string in the second argument:

df .withColumnRenamed ("DEST COUNTRY NAME", "dest")
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Removing Columns

Done using a method called drop
df .drop ("ORIGIN COUNTRY NAME" )

We can drop multiple columns by passing in multiple columns as
arguments

dfWithLongColName.drop ("ORIGIN COUNTRY NAME",
"DEST COUNTRY NAME")
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Filtering Rows

To filter rows, we create an expression that evaluates to true or false

Those rows where the expression evaluates to false are filtered out

df.filter ( col( "count" ) < 2)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.18



Getting Unique Rows

A very common use case is to extract the unique or distinct values in a
DatalFrame
These values can be in one or more columns

Done by using the distinct method on a DataFrame

Allows deduplication of any rows that are in that DataFrame.

Again, this is a transformation that will return a new DataFrame with only
unique rows:

df .select ("ORIGIN_COUNTRY_NAME "o DEST_COUNTRY_NAME ")
.distinct ()
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Random Samples

You might want to sample some random records from a DataFrame

Done by using the sample method on a DataFrame

Specify a fraction of rows to extract from a DataFrame and whether the
sample will be with or without replacement

val seed = 5
val withReplacement = false
val fraction = 0.5

df .sample (withReplacement, fraction, seed )
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Random Splits

Random splits are helpful when you need to break up a DataFrame
info a random “splits” of the original DataFrame

Often used with machine learning algorithms to create training,
validation, and test sets

val dataFrames =
df . randomSplit (Array (0.60, 0.20, 0.20 ), seed )

E.g.: 60% for training, 20% for validation (tuning), 20% for test (reality check)

seed: ensures the split is reproducible
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Column Manipulations [1/4]

withColumn (columnName, func)

Return a Dataframe with the additional column

Invocation: df .withColumn (Y“dogYears”, df.age / 7)

dropColumn (columnName)

Return a Dataframe without the column

Invocation: df .dropColumn (“age”)
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Column Manipulations [2/4]

select (columnNames)

Return a DataFrame with the specified columns

Invocation: df . select (“firstName”, “age”)

describe (columnName)

Compute summary statistics over DataFrame columns

Invocation: df .describe (Yage”), df.describe()
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Column Manipulations

val df = Seq(
(“Peterson”, “Marcus”, 54),
(“"Batevy”, “Edward”, 30),
(“Bruce”, "Karen", 35)

)-tODF("lastName", “firstName”, vvage//)

df .withColumn (“dogYears”, df.age / 7.0)

df .describe (Yage”, “dogYears”)
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Column Manipulations [4/4]
1

e e e +
| summary | age| dogYears|
t——————— t—— to———— +
|  count | 3 3|
| mean | 41.0667 | 5.95238|
| stddev| 10.69268| 1.52753]
| min | 35 5|
| max | 54| 7.714286|
t——— to———— to———— +
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Dataframe joins

join (other, <columnComparison>, <joinType>)

Performs a join between 2 Dataframes

Invocation: dfl.join (df2, Seg(“id”))
Spark matches rows where the value of id in df 1 equals the value of 1d in df2

The result is a new DataFrame containing columns from both, aligned on the
matching keys
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Join column comparison

Supports a variety of criteria

Sequence of column names (e.g., Seg(“1d”, Y“age”))

Elaborate comparison definitions (e.g., dfl (Yage”) >= df2 (Yage”))
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Join Type

DataFrames may perform multiple styles of join

Inner: typical dataset join with key-to-key match

Outer, left-outer, right-outer: result contains all rows, filling in columns with
‘null’ values where data doesn’t exist

Left-semi, right-semi: similar to outer join, but result only contains rows in
specified source dataset
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Example: Spark SQL

val df = Seq(
(“Peterson”, "“Marcus”, 54),
(“Batey”, “Edward”, 30),
(“Bruce”, "Karen", 35)

) .toDF ("lastName", “firstName”, "age”)
df .createOrReplaceTempView (“people”)

spark.sql ("SELECT firstName, age, age / 7.0 as dogYears
FROM people where age < 507)
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Tuning the level of parallelism

Every RDD has a fixed number of partitions

Determine the degree of parallelism when executing operations

During aggregations or grouping operations, you can ask Spark to use
a specific number of partitions

This will override defaults that Spark uses
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Example: Tuning the level of parallelism

L R EEEEE———————————————,
data = [(Ya”, 3), ("b”, 4), (TMa”, 1)]

sc.parallelize (data).
reduceByKey (lambda x, y: x + y) #default

sc.parallelize (data).
reduceByKey (lambda x, y: x + vy, 10) #Custom
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What if you want to tune parallelism outside of grouping
and aggregation operations?

There is repartition ()
Shuffles data across the network to create a new set of partitions

Very expensive operation!

There is the coalesce () operation

Allows avoiding data movement

But only if you are decreasing the number of partitions

Check rdd.getNumPartitions () and make sure you are coalescing to
fewer partitions than current
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DATASETS VS DATAFRAMES
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Datasets vs DataFrames

In Spark’s supported languages, Datasets make sense only in Java and
Scala, whereas in Python and R only DataFrames make sense

This is because Python and R are not compile-time type-safe

Types are dynamically inferred or assigned during execution, not during
compile time

The reverse is true in Scala and Java: types are bound to variables
and objects at compile time
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Scala typing: explicit when you must, inferred when
you can

You can tell Scala exactly what you mean

val number: Int = 25 : :
Scala’s type inference often lets you

omit type declarations, which makes

Or let Scala figure it out for you
val inferredNumber = 25

code leaner.

However, for clarity (and also when

Scala infers this as an Int ) : .
inference may mislead) explicit type

declarations are valuable!

val vs var
val creates an immutable value (constant).

var creates a mutable variable you can reassign

var anotherMutableInt = 5
anotherMutableInt = 15
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ORCHESTRATION PLANS
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Executing Spark code in clusters: Overview

Write DataFrame /Dataset /SQL Code
If the code is valid, Spark converts this to a Logical Plan

Spark transforms this Logical Plan to a Physical Plan, checking for
optimizations along the way

Spark then executes this Physical Plan (which involves RDD
manipulations) on the cluster
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Once you have the code ready

Code is submitted either through the console or via a submitted job

This code passes through the Catalyst Optimizer

Decides how the code should be executed

Lays out a plan for doing so before, finally, the code is run

And the result returned to the user
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The Catalyst Optimizer

Physical Plan

SQL

DataFrames

Datasets
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Logical Planning

The logical plan only represents a set of abstract transformations
Does not refer to executors or drivers

Simply converts the user’s set of expressions into the most optimized version

Converting user’s code into an unresolved logical plan

This plan is unresolved because although your code might be valid, the
tables or columns that it refers to might or might not exist
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How are columns and tables resolved?

Spark uses the catalog, a repository of all table and DataFrame
information, to resolve columns and tables in the analyzer optimizations

The analyzer might reject the unresolved logical plan if the required
table or column name does not exist in the catalog

If the analyzer can resolve it, the result is passed through the Catalyst
Optimizer
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The Structured API Logical Planning Process
B

Logical
User Unresolved Resolved Optimization Qptimized
———————————————
Code Logical Plan logical plan logical plan

Catalog
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Catalyst Optimizer

A collection of rules that attempt to optimize the logical plan by
pushing down predicates or selections

Catalyst is extensible

Users can include their own rules for domain-specific optimizations
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Physical Planning [1/2]

The physical plan specifies how the logical plan will execute on the
cluster

Involves generating different physical execution strategies and
comparing them through a cost model

An example of the cost comparison might be choosing how to perform
a given join by looking at the physical attributes of a given table

How big the table is or

How big its partitions are
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Physical Planning [2/2]

Physical planning results in a series of RDDs and transformations

This is why Spark is also referred to as a compiler

Takes queries in DataFrames, Datasets, and SQL and compiles them into
RDD transformations
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The Physical Planning Process

T
Optimized Physical Executed on the
Logical Plan Plans cluster
TN - Cost S
Model Best Physical
—]

Plan

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.47



Execution

Spark performs further optimizations at runtime

Generating native Java bytecode that can remove entire tasks or
stages during execution

Finally, the result is returned to the user
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Transformations and Dependencies

Two categories of dependencies

Narrow

Each partition of the parent RDD is used by at most one partition of the child RDD
Wide
Multiple child RDD partitions may depend on a single parent RDD partition

The narrow versus wide distinction has significant implications for the
way Spark evaluates a transformation and ...

consequently, for its performance
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Narrow Transformations

Narrow transformations are those in which each partition in the child RDD
has simple, finite dependencies on partitions in the parent RDD

Dependencies can be determined at design time, irrespective of the values
of the records in the parent partitions

Partitions in narrow transformations can either depend on:
One parent (such as in the map operator), or

A unique subset of the parent partitions that is known at design time (coalesce)

Narrow transformations can be executed on an arbitrary subset of the data
without any information about the other partitions
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Dependencies between partitions for narrow

transformations
—
PARENT
CHILD
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Wide Transformations

Transformations with wide dependencies cannot be executed on
arbitrary rows

Require the data to be partitioned in a particular way, e.g., according
the value of their key

In sort, for example, records have to be partitioned so that keys in the same
range are on the same partition

Transformations with wide dependencies include sort, reduceByKey,
groupByKey, join, and anything that calls the rePartition function
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Dependencies between partitions for wide
transformations

L i

Wide dependencies cannot be known fully before the data is evaluated

PARENT

CHILD

The dependency graph for any operations that cause a shuffle (such as groupByKey,
reduceByKey, sort, and sortByKey) follows this pattern
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PAIR RDDs: WHAT TO WATCH FOR
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Despite their utility, key/value operations can lead

to a number of performance issues

7 Most expensive operations in Spark fit into the key/value pair
paradigm
Because most wide transformations are key/ value transformations,

® And most require some fine tuning and care to be performant
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In particular, operations on key /value pairs can

cause ...

1. Out-of-memory errors in the driver

Out-of-memory errors on the executor nodes

Shuffle failures

“Straggler tasks” or partitions, which are especially slow to compute

A @D

[0 The last three performance issues are all most often caused by
shuffles associated with the wide transformations

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.57



Memory errors in the driver, are usually caused by
actions

Several key /value actions (including countByKey, countByValue,
lookUp, and collectAsMap) return data to the driver

In most instances they return unbounded data since the number of keys
and the number of values are unknown

In addition to number of records, the size of each record is an
important factor in causing memory errors

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.58



Preventing out-of-memory errors with aggregation
operations [1/2]

combineByKey and all of the aggregation operators built on top of it
(reduceByKey, foldLeft, foldRight, aggregateByKey) may
lead to memory errors if they cause the accumulator to become too
large for one key

What about groupByKey?

It is actually implemented using combineByKey where the accumulator is
an iterator with all the data.
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Preventing out-of-memory errors with aggregation
operations [2/2]

Use functions that implement map-side combinations

Meaning that records with the same key are combined before they are
shuffled

This can greatly reduce the shuffled read

The following four functions are implemented to use map-side
combinations
reduceByKey
treeAggregate: Use a tree pattern rather than a linear patter to merge
aggregateByKey
foldByKey : Similar to reduceByKey but lets you use a starting value
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The contents of this slide-set are based on the
following references

Learning Spark: Lightning-Fast Big Data Analysis. 1st Edition. Holden Karau, Andy
Konwinski, Patrick Wendell, and Matei Zaharia. O Reilly. 2015. ISBN-13: 978-
1449358624. [Chapters 1-4, 10]

Chambers, Bill, and Zaharia, Matei. Spark: The Definitive Guide: Big Data Processing
Made Simple. O'Reilly Media. ISBN-13: 978-1491912218. 2018. [Chapters 5 and
Q1.

Karau, Holden; Warren, Rachel. High Performance Spark: Best Practices for Scaling

and Optimizing Apache Spark. O'Reilly Media. 2017. ISBN-13: 978-1491943205.
[Chapter 2]
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