
COMPUTER SCIENCE DEPARTMENT

CS X55: DISTRIBUTED SYSTEMS [SPARK STREAMING]

Shrideep Pallickara

Computer Science

Colorado State University

Drinking from a fire hose
A packet in isolation seems fine
 Why then, do streams, strain systems design?

If processing lags the rate of arrival?
 Imperil, you will, your process’ survival

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.2

Frequently asked questions from the previous class

survey

 Can you edit the schema that Spark infers?

 Yes: schema hints to override, also transforms/type-casting

 Df1→Df2→Df3: Transformations on Df2 only apply to Df2, and do

not cascade down to Df1?

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.3

Topics covered in this lecture

 Spark Streaming

 Architecture and Abstractions

 Execution

 Stateful and stateless transformations

 Windowed operations

 Performance considerations

 Example

COMPUTER SCIENCE DEPARTMENT

SPARK STREAMING

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.5

Related Work

Thilina Buddhika*, Sangmi Lee Pallickara, and Shrideep Pallickara. Pebbles: Leveraging Sketches for

Processing Voluminous, High Velocity Data Streams. IEEE Transactions on Parallel and Distributed

Systems. Vol 32 (8) pp 2005 - 2020. 2021.

Thilina Buddhika*, Ryan Stern*, Kira Lindburg*, Kathleen Ericson*, and Shrideep Pallickara. Online

Scheduling and Interference Alleviation for Low-latency, High-throughput Processing of Data

Streams. IEEE Transactions on Parallel and Distributed Systems. Vol. 28(12) pp 3553-3569. 2017.

Thilina Buddhika* and Shrideep Pallickara. Neptune: Real Time Stream Processing for Internet of

Things and Sensing Environments. Proceedings of the 30th IEEE International Parallel & Distributed

Processing Symposium. pp 1143-1152. Chicago, USA. 2016.

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.6

Spark Streaming

 Act on data as soon as it arrives

 Track statistics of page views in real time, detect anomalies, etc.

 Spark streaming

 Spark’s module for dealing with streaming data

 Uses an API very similar to what we have seen with batch jobs (centered

around RDDs)

 Available in Java, Scala, and Python

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.7

Spark Streaming: Core concepts

 Provides an abstraction called DStreams (discretized streams)

 A DStream is a sequence of data arriving over time

 Internally, a DStream is represented as a sequence of RDDs arriving

at each time step

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.8

DStreams

 DStreams can be created from various input sources

 Flume, Kafka, or HDFS

 Once built, DStreams offer two types of operations:

 Transformations: Yields a new DStream

 Output operations: Writes data to an external system

 Provides many of the same operations available on RDDs

 PLUS new operations related to time (e.g., sliding windows)

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.9

Simple Streaming Example [1/2]

 Start by creating a StreamingContext

 Main entry point for streaming functionality

 Specify batch interval, specifying how often to process new data

 We will use socketTextStream() to create a DStream based on

text data received over a port

 Transform DStream with filter to get lines that contain “error”

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.10

Simple Streaming Example [2/2]

JavaStreamingContext jssc =

 new JavaStreamingContext(conf, Durations.seconds(1));

JavaDStream<String> lines =

 jssc.socketTextStream(“localhost”, 7777);

JavaDStream<String> errorLines =

 lines.filter(new Function<String, Boolean> () {

 public Boolean call(String line) {

 return line.contains(“error”);

 }

 };

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.11

Previous snippet only sets up the computation

 To start receiving the data?

 Explicitly call start() on StreamContext

 SparkStreaming will start to schedule Spark jobs on the underlying

SparkContext

 Occurs in a separate thread

 To keep application from terminating?

◼ Also call awaitTermination()

jssc.start();

jssc.awaitTermination()

COMPUTER SCIENCE DEPARTMENT

ARCHITECTURE & ABSTRACTIONS

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.13

Spark Streaming Architecture

 Spark Streaming uses a micro-batch architecture

 Streaming computation is treated as continuous series of batch computations

on small batches of data

 Receives data from various input sources and groups into small batches

 New batches are created at regular intervals

 At the start of each time interval, a new batch is created

◼ Any data arriving in that interval is added to the batch

◼ Size of batch is controlled by the batch interval

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.14

High-level architecture of Spark Streaming

Spark Streaming

Input Data Streams
R

e
ce

iv
e
rs

Batches of

input data

Spark

Results pushed to

external systems

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.15

DStream is a sequence of RDDs, where each RDD

has one slice of data in stream

Data from

time 0 to 1

Data from

time 1 to 2

Data from

time 2 to 3

Data from

time 3 to 4

time
0 1 2 3 4

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.16

DStreams and the transformations in our example

Server running at

localhost:7777

Data from

time 0 to 1

Data from

time 1 to 2

Data from

time 2 to 3

Data from

time 3 to 4

error lines from

time 0 to 1

error lines from

time 1 to 2

error lines from

time 2 to 3

error lines from

time 3 to 4

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.17

DStreams support output operations, such as
print()

 Output operations are similar to RDD actions in that they write data to

an external system

 But in Spark Streaming they run periodically on each time step,

producing output in batches

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.18

For each input source, Spark Streaming launches

receivers

 Tasks running within the application’s executors that collect data from

source and save as RDDs

 Receives input data and replicates it (by default) to another executor

for fault tolerance

 Data is stored in memory of the executors in the same way that

RDDs are cached

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.19

Spark Streaming: Execution

 StreamingContext in the driver program then periodically runs Spark

jobs to:

 Process this data and …

 Combine it with RDDs from previous time steps

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.20

Spark Streaming: Execution Summary

Driver Program

Spark jobs to process

received data

Streaming Context

Spark Context

Worker Node

Worker Node

Executor

Task Receiver

Executor

Task Task

Input Stream

Data replicated

to another node

Output results

in batches

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.21

Spark Streaming: Fault Tolerance [1/2]

 Spark Streaming offers the same fault-tolerance properties for

DStreams as Spark has for RDDs

 As long as a copy of the input data is still available, it can recompute any

state derived from it using the lineage of the RDDs

◼ By rerunning the operations used to process it

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.22

Spark Streaming: Fault Tolerance [2/2]

 By default, data is replicated across two nodes

 Can tolerate single worker failures

 Using lineage graphs to recompute any derived state? Impractical

 Spark Streaming relies on checkpointing

 Saves state periodically

 Checkpoint every 5-10 batches of data

 When recovering, only go back to the last checkpoint

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.23

Spark Streaming: Transformations

 Stateless transformations

 Each batch does not depend on data of its previous batches

 Stateful transformations

 Use data or intermediate results from previous batches to compute results of

the current batch

COMPUTER SCIENCE DEPARTMENT

STATELESS TRANSFORMATIONS

No, Time, thou shalt not boast that I do change:

Thy pyramids built up with newer might

To me are nothing novel, nothing strange;

They are but dressings of a former sight.

Our dates are brief, and therefore we admire

Sonnet 123: No, Time, thou shalt not boast that I do change

William Shakespeare; Year 1609

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.25

Stateless transformations

 Stateless transformations are simple RDD transformations being

applied on every batch — that is, every RDD in a DStream

 Many of the RDD transformations that we have looked at are also

available on DStreams

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.26

Examples of stateless transformations [1/6]

 map()

 Apply a function to each element in the DStream and return a

DStream of the result

 ds.map (x => x + 1)

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.27

Examples of stateless transformations [2/6]

 flatMap()

 Apply a function to each element in the DStream and return a

DStream of the contents of the iterators returned

 ds.flatMap (x => x.split(“ “))

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.28

Examples of stateless transformations [3/6]

 filter()

 Return a DStream consisting of only elements that pass the condition

passed to filter

 ds.filter (x => x != 1)

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.29

Examples of stateless transformations [4/6]

 repartition()

 Change the number of partitions of the DStream

 Distributes the received batches across the specified number of machines in

the cluster before processing

◼ The physical manifestation of the DStream is different in this case

 ds.repartition(10)

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.30

Examples of stateless transformations [5/6]

 reduceByKey()

 Combine values with the same key in each batch

 ds.reduceByKey((x, y) = > x + y))

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.31

Examples of stateless transformations [6/6]

 groupByKey()

 Group values with the same key in each batch

 ds.groupByKey()

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.32

A note about stateless operations

 Although it may seem that they are being applied over the whole

stream …

 Each DStream has multiple RDDs (batches)

 Stateless transformation applies separately to each RDD

 E.g., reduceByKey() will reduce data for each timestep, but not across

timesteps

COMPUTER SCIENCE DEPARTMENT

STATEFUL TRANSFORMATIONS

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.34

Stateful transformations

 Operations on DStreams that track data across time

 Data from previous batches used to generate results for a new batch

 Two types of windowed operations

 Act over sliding window of time periods

 updateStateBykey() track state across events for each key

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.35

Stateful transformations and fault tolerance

 Requires checkpointing to be enabled in StreamingContext for fault

tolerance

 ssc.checkpoint(“hdfs:// …”);

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.36

Windowed Transformations

 Compute results across a longer time period than the batch interval

 Two parameters: window and sliding durations

 Both must be a multiple of the batch interval

 Window duration controls how many previous batches of data are

considered
 window Duration/batchInterval

 If the batch interval is 10 seconds and the sliding window is 30 seconds …

last 3 batches

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.37

A windowed stream:

Window duration (3) & slide duration (2)

Every 2 time steps, we

compute a result over the

previous 3 time steps

t1

t2

t3

t4

t5

t6

Network Input
Windowed Stream:

Window: 3, Slide: 2

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.38

Simplest window operation on a DStream

 window()

 Returns new DStream with data from the requested window

 Each RDD in the DStream resulting from window(), will contain data

from multiple batches

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.39

Other operations on top of window()

 reduceByWindow and reduceByKeyAndWindow

 Includes a special form that allows reduction to be performed

incrementally

 Considering only the data coming into the window and the data that is

going out

 Special form requires an inverse of the reduce function

◼ Such as – for +

 More efficient for large windows if your function has an inverse

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.40

Difference between naïve and incremental
reduceByWindow()

{1, 1}

{4,2}

{9}

{3}

{3, 1}

{1}

20

22

17

t1

t2

t3

t4

t5

t6

Network Input
Naïve reduce

by Window

Network Input Reduce by

Window with +-
{1, 1}

{4,2}

{9}

{3}

{3, 1}

{1}

20

22

17

t1

t2

t3

t4

t5

t6

-

-

+

+

+

+

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.41

Maintaining state across batches

 updateStateByKey()

 Provides access to a state variable for DStreams of key/value pairs

 Given a DStream of (key, value) pairs

◼ Construct a new DStream of (key, state) pairs by taking a function that specifies how

to update the state for each key, given new events

COMPUTER SCIENCE DEPARTMENT

PERFORMANCE:

WHAT TO WATCH FOR

Jason Adam Katzenstein.

October 7, 2025. New Yorker.

“You insist we’re ‘just friends,’ but then you invite me to stuff like this.”

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.43

Performance considerations

 Batch size

 500 milliseconds is considered a good minimum size

 Start with a large batch size (~10 seconds) and work down to a smaller

batch size

◼ If processing times remain consistent, explore decreasing the batch size

◼ If the processing times increase? You have reached the limit

 Window size

 Has a great impact on performance

 Consider increasing this for expensive operations

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.44

Garbage collections and memory usage

 Cache RDDs in serialized form

 Using Kryo for serialization reduces this even more

◼ Reduces space for in-memory representations

 By default, Spark uses an in-memory cache

 Can also evict RDDs older than a certain time-period

◼ spark.cleaner.ttl

◼ This preemptive eviction of RDDs also reduces the garbage collection pressure

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.45

Levels of parallelism in data receiving [1/4]

 Each input DStream creates a single receiver that receives a single

stream of data

 Receiving multiple data streams possible by creating multiple input

DStreams

◼ Each Dstream must be configured to receive different partitions of the data stream

from the source(s)

 For a Kafka DStream receiving data on two topics?

 Split into two DStreams each receiving one topic

◼ Two receivers would run and receive data in parallel

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.46

Levels of parallelism in data receiving [2/4]

 Another approach is to tune the receiver’s block interval

 Determined by spark.streaming.blockInterval

 For most receivers, received data is coalesced into blocks of data

before storing in memory

 The number of blocks in each batch determines the number of tasks

used to process the received data in a map-like transformation

 Number of tasks per batch?

 Batch interval/block interval

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.47

Levels of parallelism in data receiving [3/4]

 Number of tasks per batch?

 Batch interval/block interval

 Block interval of 200 ms will create 10 tasks per 2 second batches

 If the number of tasks is too low?

 All available cores might not be available to use all the data

 To increase number of tasks for a given batch interval?

 Reduce the block interval

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.48

Levels of parallelism in data receiving [4/4]

 What if you did not want to receive data with multiple input streams?

 Explicitly repartition the input data stream

 Repartitioning is done using the inputStream.repartition(<number of
partitions>))

 Distributes the received batches of data across the specified number of

machines in the cluster before further processing

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.49

Data serialization [1/2]

 Data received through receivers is stored with

StorageLevel.MEMORY_AND_DISK_SER_2

 Data that does not fit in memory spills over to disk

 Input data and persisted RDDs generated by DStream transformations

are automatically cleared

 If you are using a window operation of 10 minutes, then Spark Streaming

will keep the last 10 minutes of data, and actively throw away older data

 Data can be retained for a longer duration by setting

streamingContext.remember

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.50

Data serialization [2/2]

 RDDs generated by streaming computations may be persisted in

memory

 Persisted RDDs generated by streaming computations are persisted with

StorageLevel.MEMORY_ONLY_SER

 If you are using batch intervals of a few seconds and no window

operations?

 You can try disabling serialization in persisted data

◼ Reduce CPU overheads due to serialization, without excessive GC overheads.

SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.51

The contents of this slide-set are based on the

following references

 Learning Spark: Lightning-Fast Big Data Analysis. 1st Edition. Holden Karau, Andy

Konwinski, Patrick Wendell, and Matei Zaharia. O'Reilly. 2015. ISBN-13: 978-

1449358624.

[Chapter 10]

 Spark Streaming Programming Guide:

http://spark.apache.org/docs/latest/streaming-programming-guide.html#memory-

tuning

 Processing Twitter Streams using Spark:

https://databricks-training.s3.amazonaws.com/realtime-processing-with-spark-

streaming.html

	Slide 1: CS x55: Distributed Systems [Spark Streaming]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: Spark Streaming
	Slide 5: Related Work
	Slide 6: Spark Streaming
	Slide 7: Spark Streaming: Core concepts
	Slide 8: DStreams
	Slide 9: Simple Streaming Example [1/2]
	Slide 10: Simple Streaming Example [2/2]
	Slide 11: Previous snippet only sets up the computation
	Slide 12: Architecture & Abstractions
	Slide 13: Spark Streaming Architecture
	Slide 14: High-level architecture of Spark Streaming
	Slide 15: DStream is a sequence of RDDs, where each RDD has one slice of data in stream
	Slide 16: DStreams and the transformations in our example
	Slide 17: DStreams support output operations, such as print()
	Slide 18: For each input source, Spark Streaming launches receivers
	Slide 19: Spark Streaming: Execution
	Slide 20: Spark Streaming: Execution Summary
	Slide 21: Spark Streaming: Fault Tolerance [1/2]
	Slide 22: Spark Streaming: Fault Tolerance [2/2]
	Slide 23: Spark Streaming: Transformations
	Slide 24: Stateless Transformations
	Slide 25: Stateless transformations
	Slide 26: Examples of stateless transformations [1/6]
	Slide 27: Examples of stateless transformations [2/6]
	Slide 28: Examples of stateless transformations [3/6]
	Slide 29: Examples of stateless transformations [4/6]
	Slide 30: Examples of stateless transformations [5/6]
	Slide 31: Examples of stateless transformations [6/6]
	Slide 32: A note about stateless operations
	Slide 33: Stateful Transformations
	Slide 34: Stateful transformations
	Slide 35: Stateful transformations and fault tolerance
	Slide 36: Windowed Transformations
	Slide 37: A windowed stream: Window duration (3) & slide duration (2)
	Slide 38: Simplest window operation on a DStream
	Slide 39: Other operations on top of window()
	Slide 40: Difference between naïve and incremental reduceByWindow()
	Slide 41: Maintaining state across batches
	Slide 42: Performance: What to Watch For
	Slide 43: Performance considerations
	Slide 44: Garbage collections and memory usage
	Slide 45: Levels of parallelism in data receiving [1/4]
	Slide 46: Levels of parallelism in data receiving [2/4]
	Slide 47: Levels of parallelism in data receiving [3/4]
	Slide 48: Levels of parallelism in data receiving [4/4]
	Slide 49: Data serialization [1/2]
	Slide 50: Data serialization [2/2]
	Slide 51: The contents of this slide-set are based on the following references

