CS X55: DISTRIBUTED SYSTEMS [SPARK STREAMING]

Drinking from a fire hose
A packet in isolation seems fine
Why then, do streams, strain systems design?

If processing lags the rate of arrival?
Imperil, you will, your process’ survival

Shrideep Pallickara
Computer Science
Colorado State University

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

Frequently asked questions from the previous class
survey

Can you edit the schema that Spark infers?

Yes: schema hints to override, also transforms/type-casting

Df12>Df2->Df3: Transformations on Df2 only apply to Df2, and do
not cascade down to Df1¢

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.2

Topics covered in this lecture

Spark Streaming
Architecture and Abstractions
Execution
Stateful and stateless transformations
Windowed operations
Performance considerations

Example

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.3

SPARK STREAMING

Related Work

Thilina Buddhika™, Sangmi Lee Pallickara, and Shrideep Pallickara. Pebbles: Leveraging Sketches for
Processing Voluminous, High Velocity Data Streams. |EEE Transactions on Parallel and Distributed
Systems. Vol 32 (8) pp 2005 - 2020. 2021.

Thilina Buddhika™, Ryan Stern™, Kira Lindburg™, Kathleen Ericson™®, and Shrideep Pallickara. Online

Scheduling and Interference Alleviation for Low-latency, High-throughput Processing of Data
Streams. |IEEE Transactions on Parallel and Distributed Systems. Vol. 28(12) pp 3553-3569. 2017.

Thilina Buddhika™ and Shrideep Pallickara. Neptune: Real Time Stream Processing for Internet of
Things and Sensing Environments. Proceedings of the 30th IEEE International Parallel & Distributed
Processing Symposium. pp 1143-1152. Chicago, USA. 2016.

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.5

Spark Streaming

Act on data as soon as it arrives

Track statistics of page views in real time, detect anomalies, etc.

Spark streaming
Spark’s module for dealing with streaming data

Uses an API very similar to what we have seen with batch jobs (centered
around RDDs)

Available in Java, Scala, and Python

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.6

Spark Streaming: Core concepts

Provides an abstraction called DStreams (discretized streams)

A DStream is a sequence of data arriving over time

Internally, a DStream is represented as a sequence of RDDs arriving
at each time step

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.7

DStreams

DStreams can be created from various input sources
Flume, Kafka, or HDFS

Once built, DStreams offer two types of operations:
Transformations: Yields a new DStream

Ovutput operations: Writes data to an external system

Provides many of the same operations available on RDDs

PLUS new operations related to time (e.g., sliding windows)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.8

Simple Streaming Example [1/2]

Start by creating a StreamingContext
Main entry point for streaming functionality

Specify batch interval, specifying how often to process new data

We will use socketTextStream () to create a DStream based on
text data received over a port

Transform DStream with filter to get lines that contain “error”

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.9

Simple Streaming Example [2/2]
—

JavaStreamingContext jssc =
new JavaStreamingContext (conf, Durations.seconds(1l));

JavaDStream<String> lines =
Jssc.socketTextStream (“localhost”, 7777);

JavaDStream<String> errorlLines =
lines.filter (new Function<String, Boolean> () {

public Boolean call (String line) {

return line.contains (Y“error”);

Y

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.10

Previous snippet only sets up the computation

To start receiving the data?

Explicitly call start () on StreamContext

SparkStreaming will start to schedule Spark jobs on the underlying
SparkContext
Occurs in a separate thread

To keep application from terminating?

Also call awaitTermination ()

jssc.start () ;

Jssc.awaltTermination ()

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.11

COLORADDO STATE UNIVERSITY

COMPUTER SCIENCE DEPARTMENT

Spark Streaming Architecture

Spark Streaming uses a micro-batch architecture

Streaming computation is treated as continuous series of batch computations
on small batches of data

Receives data from various input sources and groups into small batches

New batches are created at regular intervals

At the start of each time interval, a new batch is created
Any data arriving in that interval is added to the batch
Size of batch is controlled by the batch interval

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.13

High-level architecture of Spark Streaming

Spark Streaming

[wek mEE -

Batches of
input data Results pushed to

Input Data Streams external systems

i

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.14

DStream is a sequence of RDDs, where each RDD

has one slice of data in stream
N

Data from Data from Data from Data from
time O to 1 time 1 to 2 time 2 to 3 time 3 to 4

— -
e
e
e —

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.15

DStreams and the transformations in our example

Server running at
localhost:7777
Data from Data from Data from Data from
time O to 1 time 1 to 2 time 2to 3 time 3 to 4
error lines from error lines from error lines from error lines from
time O to 1 time 1 to 2 time 2 to 3 time 3 to 4

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.16

D3Streams support output operations, such as
print ()

Output operations are similar to RDD actions in that they write data to
an external system

But in Spark Streaming they run periodically on each time step,
producing output in batches

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.17

For each input source, Spark Streaming launches
receivers

Tasks running within the application’s executors that collect data from
source and save as RDDs

Receives input data and replicates it (by default) to another executor
for fault tolerance

Data is stored in memory of the executors in the same way that
RDDs are cached

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.18

Spark Streaming: Execution

StreamingContext in the driver program then periodically runs Spark
jobs to:

Process this data and ...

Combine it with RDDs from previous time steps

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.19

Spark Streaming: Execution Summary

. Input Stream
Driver Program

Streaming Context

Spark jobs to process

i Data replicated
received data

to another node

Spark Context

Output results
in batches

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.20

Spark Streaming: Fault Tolerance [1/2]

Spark Streaming offers the same fault-tolerance properties for
DStreams as Spark has for RDDs

As long as a copy of the input data is still available, it can recompute any
state derived from it using the lineage of the RDDs

By rerunning the operations used to process it

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.21

Spark Streaming: Fault Tolerance [2/2]

By default, data is replicated across two nodes

Can tolerate single worker failures
Using lineage graphs to recompute any derived state? Impractical

Spark Streaming relies on checkpointing
Saves state periodically
Checkpoint every 5-10 batches of data

When recovering, only go back to the last checkpoint

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.22

Spark Streaming: Transformations

Stateless transformations

Each batch does not depend on data of its previous batches

Stateful transformations

Use data or intermediate results from previous batches to compute results of
the current batch

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.23

No, Time, thou shalt not boast that | do change:
Thy pyramids built up with newer might

To me are nothing novel, nothing strange;

They are but dressings of a former sight.

Our dates are brief, and therefore we admire
Sonnet 123: No, Time, thou shalt not boast that | do change
William Shakespeare; Year 1609

STATELESS TRANSFORMATIONS

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

Stateless transformations

Stateless transformations are simple RDD transformations being
applied on every batch — that is, every RDD in a DStream

Many of the RDD transformations that we have looked at are also
available on DStreams

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.25

Examples of stateless transformations [1/6]

I
0 map ()

0 Apply a function to each element in the DStream and return a
DStream of the result

nds.map (x => x + 1)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.26

Examples of stateless transformations [2/6]

-
0 flatMap ()

7 Apply a function to each element in the DStream and return a
DStream of the contents of the iterators returned

nds.flatMap (x => x.split(“™ %))

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.27

Examples of stateless transformations [3/6]

I
0 filter()

71 Return a DStream consisting of only elements that pass the condition
passed to filter

D ds.filter (x => x != 1)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.28

Examples of stateless transformations [4/6]

repartition ()

Change the number of partitions of the DStream

Distributes the received batches across the specified number of machines in
the cluster before processing

The physical manifestation of the DStream is different in this case

ds.repartition (10)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.29

Examples of stateless transformations [5/6]

_
1 reduceByKey ()

1 Combine values with the same key in each batch

0 ds.reduceByKey ((x, y) = > X + V))

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.30

Examples of stateless transformations [6/6]

I i
0 groupByKevy ()

1 Group values with the same key in each batch

0 ds.groupByKey ()

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.31

A note about stateless operations

Although it may seem that they are being applied over the whole
stream

Each DStream has multiple RDDs (batches)

Stateless transformation applies separately to each RDD

E.g., reduceByKey () will reduce data for each timestep, but not across

timesteps

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.32

STATEFUL TRANSFORMATIONS

Stateful transformations

Operations on DStreams that track data across time

Data from previous batches used to generate results for a new batch

Two types of windowed operations
Act over sliding window of time periods

updateStateBykey () track state across events for each key

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.34

Stateful transformations and fault tolerance
—

1 Requires checkpointing to be enabled in StreamingContext for fault
tolerance

ssc.checkpoint (“hdfs:// ..”);

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.35

Windowed Transformations

Compute results across a longer time period than the batch interval

Two parameters: window and sliding durations

Both must be a multiple of the batch interval

Window duration controls how many previous batches of data are
considered

window Duration/batchInterval

If the batch interval is 10 seconds and the sliding window is 30 seconds ...
last 3 batches

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.36

A windowed stream:
Window duration (3) & slide duration (2)

tl

t2

t3

t4d

tb

to

Network Input
Windowed Stream:

Window: 3, Slide: 2

)
”

Every 2 time steps, we

compute a result over the

previous 3 time steps

N\

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING

1L.31.37

Simplest window operation on a DStream

window ()

Returns new DStream with data from the requested window

Each RDD in the DStream resulting from window (), will contain data
from multiple batches

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.38

Other operations on top of window ()

reduceByWindow and reduceByKeyAndWindow

Includes a special form that allows reduction to be performed
incrementally

Considering only the data coming into the window and the data that is
going out
Special form requires an inverse of the reduce function

Such as — for +

More efficient for large windows if your function has an inverse

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.39

Difference between naive and incremental
reduceByWindow ()

Network Input twork Input
Naive reduce Network Inpy Reduce by

EL 1 1,1} by Window e [a0 Window with +-
t2 | {4,2} o [@2
£3 | {9} 3 [9
s [0 \ '
d 22 t5 | {3, 1} ™ > 22
v+
te | {1} 17 te | {1} — 17

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.40

Maintaining state across batches

updateStateByKevy ()
Provides access to a state variable for DStreams of key /value pairs

Given a DStream of (key, value) pairs

Construct a new DStream of (key, state) pairs by taking a function that specifies how
to update the state for each key, given new events

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.41

PERFORMANCE:
WHAT TO WATCH FOR

1

“You insist we're ‘just friends,’” but then you invite me to stuff like this.

Jason Adam Katzenstein.

COMPUTER SCIENCE DEPARTMENT October 7, 2025. New Yorker.

R¥) COLORADO STATE UNIVERSITY

Performance considerations

Batch size
500 milliseconds is considered a good minimum size

Start with a large batch size (~10 seconds) and work down to a smaller
batch size

If processing times remain consistent, explore decreasing the batch size

If the processing times increase?¢ You have reached the limit

Window size
Has a great impact on performance

Consider increasing this for expensive operations

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.43

Garbage collections and memory usage

Cache RDDs in serialized form

Using Kryo for serialization reduces this even more

Reduces space for in-memory representations

By default, Spark uses an in-memory cache

Can also evict RDDs older than a certain time-period
spark.cleaner.ttl

This preemptive eviction of RDDs also reduces the garbage collection pressure

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.44

Levels of parallelism in data receiving [1/4]

Each input DStream creates a single receiver that receives a single
stream of data

Receiving multiple data streams possible by creating multiple input
DStreams

Each Dstream must be configured to receive different partitions of the data stream
from the source(s)

For a Kafka DStream receiving data on two topics?

Split into two DStreams each receiving one topic

Two receivers would run and receive data in parallel

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY 5uPUTER SCIENCE DEPARTMENT SPARK STREAMING 1.31.45

Levels of parallelism in data receiving [2 /4]

Another approach is to tune the receiver’s block interval

Determined by spark.streaming.blockInterval

For most receivers, received data is coalesced into blocks of data
before storing in memory

The number of blocks in each batch determines the number of tasks
used to process the received data in a map-like transformation

Number of tasks per batch?

Batch interval /block interval

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.46

Levels of parallelism in data receiving [3/4]

Number of tasks per batch?

Batch interval /block interval
Block interval of 200 ms will create 10 tasks per 2 second batches

If the number of tasks is too low?

All available cores might not be available to use all the data

To increase number of tasks for a given batch interval?

Reduce the block interval

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.47

Levels of parallelism in data receiving [4 /4]

What if you did not want to receive data with multiple input streams?
Explicitly repartition the input data stream

Repartitioning is done using the inputStream.repartition (<number of
partitions>))

Distributes the received batches of data across the specified number of
machines in the cluster before further processing

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.48

Data serialization [1/2]

Data received through receivers is stored with
StoragelLeve MEMORY_AND_DISK_SER_ 2

Data that does not fit in memory spills over to disk

Input data and persisted RDDs generated by DStream transformations
are automatically cleared

If you are using a window operation of 10 minutes, then Spark Streaming
will keep the last 10 minutes of data, and actively throw away older data

Data can be retained for a longer duration by setting
streamingContext.remember

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.49

Data serialization [2/2]

RDDs generated by streaming computations may be persisted in
memory

Persisted RDDs generated by streaming computations are persisted with
Storagelevel MEMORY_ONLY_SER

If you are using batch intervals of a few seconds and no window
operations?

You can try disabling serialization in persisted data

Reduce CPU overheads due to serialization, without excessive GC overheads.

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.50

The contents of this slide-set are based on the
following references

Learning Spark: Lightning-Fast Big Data Analysis. 1st Edition. Holden Karau, Andy
Konwinski, Patrick Wendell, and Matei Zaharia. O Reilly. 2015. ISBN-13: 978-
1449358624.

[Chapter 10]

Spark Streaming Programming Guide:
http:/ /spark.apache.org /docs/latest /streaming-programming-guide.html#memory-
tuning

Processing Twitter Streams using Spark:
https: / /databricks-training.s3.amazonaws.com /realtime-processing-with-spark-
streaming.html

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK STREAMING L31.51

	Slide 1: CS x55: Distributed Systems [Spark Streaming]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: Spark Streaming
	Slide 5: Related Work
	Slide 6: Spark Streaming
	Slide 7: Spark Streaming: Core concepts
	Slide 8: DStreams
	Slide 9: Simple Streaming Example [1/2]
	Slide 10: Simple Streaming Example [2/2]
	Slide 11: Previous snippet only sets up the computation
	Slide 12: Architecture & Abstractions
	Slide 13: Spark Streaming Architecture
	Slide 14: High-level architecture of Spark Streaming
	Slide 15: DStream is a sequence of RDDs, where each RDD has one slice of data in stream
	Slide 16: DStreams and the transformations in our example
	Slide 17: DStreams support output operations, such as print()
	Slide 18: For each input source, Spark Streaming launches receivers
	Slide 19: Spark Streaming: Execution
	Slide 20: Spark Streaming: Execution Summary
	Slide 21: Spark Streaming: Fault Tolerance [1/2]
	Slide 22: Spark Streaming: Fault Tolerance [2/2]
	Slide 23: Spark Streaming: Transformations
	Slide 24: Stateless Transformations
	Slide 25: Stateless transformations
	Slide 26: Examples of stateless transformations [1/6]
	Slide 27: Examples of stateless transformations [2/6]
	Slide 28: Examples of stateless transformations [3/6]
	Slide 29: Examples of stateless transformations [4/6]
	Slide 30: Examples of stateless transformations [5/6]
	Slide 31: Examples of stateless transformations [6/6]
	Slide 32: A note about stateless operations
	Slide 33: Stateful Transformations
	Slide 34: Stateful transformations
	Slide 35: Stateful transformations and fault tolerance
	Slide 36: Windowed Transformations
	Slide 37: A windowed stream: Window duration (3) & slide duration (2)
	Slide 38: Simplest window operation on a DStream
	Slide 39: Other operations on top of window()
	Slide 40: Difference between naïve and incremental reduceByWindow()
	Slide 41: Maintaining state across batches
	Slide 42: Performance: What to Watch For
	Slide 43: Performance considerations
	Slide 44: Garbage collections and memory usage
	Slide 45: Levels of parallelism in data receiving [1/4]
	Slide 46: Levels of parallelism in data receiving [2/4]
	Slide 47: Levels of parallelism in data receiving [3/4]
	Slide 48: Levels of parallelism in data receiving [4/4]
	Slide 49: Data serialization [1/2]
	Slide 50: Data serialization [2/2]
	Slide 51: The contents of this slide-set are based on the following references

