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Drinking from a fire hose 
A packet in isolation seems fine
    Why then, do streams, strain systems design?

If processing lags the rate of arrival?
     Imperil, you will, your process’ survival 
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Frequently asked questions from the previous class 

survey

 Can you edit the schema that Spark infers?

 Yes: schema hints to override, also transforms/type-casting

 Df1→Df2→Df3:   Transformations on Df2 only apply to Df2, and do 

not cascade down to Df1?
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Topics covered in this lecture

 Spark Streaming

 Architecture and Abstractions

 Execution

 Stateful and stateless transformations

 Windowed operations

 Performance considerations

 Example
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Spark Streaming

 Act on data as soon as it arrives

 Track statistics of page views in real time, detect anomalies, etc.

 Spark streaming

 Spark’s module for dealing with streaming data

 Uses an API very similar to what we have seen with batch jobs (centered 

around RDDs)

 Available in Java, Scala, and Python
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Spark Streaming: Core concepts

 Provides an abstraction called DStreams (discretized streams)

 A DStream is a sequence of data arriving over time

 Internally, a DStream is represented as a sequence of RDDs arriving 

at each time step
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DStreams 

 DStreams can be created from various input sources

 Flume, Kafka, or HDFS

 Once built, DStreams offer two types of operations:

 Transformations: Yields a new DStream

 Output operations: Writes data to an external system

 Provides many of the same operations available on RDDs

 PLUS new operations related to time (e.g., sliding windows)
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Simple Streaming Example                      [1/2]

 Start by creating a StreamingContext

 Main entry point for streaming functionality

 Specify batch interval, specifying how often to process new data

 We will use socketTextStream() to create a DStream based on 

text data received over a port

 Transform DStream with filter to get lines that contain “error” 
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Simple Streaming Example                      [2/2]

JavaStreamingContext jssc = 

      new JavaStreamingContext(conf, Durations.seconds(1));

JavaDStream<String> lines = 

      jssc.socketTextStream(“localhost”, 7777);

JavaDStream<String> errorLines =

      lines.filter(new Function<String, Boolean> () {

          public Boolean call(String line) {

             return line.contains(“error”);

          } 

      };
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Previous snippet only sets up the computation

 To start receiving the data?

 Explicitly call start() on StreamContext

 SparkStreaming will start to schedule Spark jobs on the underlying 

SparkContext

 Occurs in a separate thread 

 To keep application from terminating?

◼ Also call awaitTermination() 

jssc.start();

jssc.awaitTermination()
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Spark Streaming Architecture

 Spark Streaming uses a micro-batch architecture

 Streaming computation is treated as continuous series of batch computations 

on small batches of data

 Receives data from various input sources and groups into small batches

 New batches are created at regular intervals

 At the start of each time interval, a new batch is created

◼ Any data arriving in that interval is added to the batch

◼ Size of batch is controlled by the batch interval
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High-level architecture of Spark Streaming

Spark Streaming

Input Data Streams
R

e
ce

iv
e
rs

Batches of 

input data

Spark

Results pushed to 

external systems
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DStream is a sequence of RDDs, where each RDD 

has one slice of data in stream

Data from 

time 0 to 1

Data from 

time 1 to 2

Data from 

time 2 to 3

Data from 

time 3 to 4

time
0 1 2 3 4
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DStreams and the transformations in our example

Server running at 

localhost:7777

Data from 

time 0 to 1

Data from 

time 1 to 2

Data from 

time 2 to 3

Data from 

time 3 to 4

error lines from

time 0 to 1

error lines from

time 1 to 2

error lines from

time 2 to 3

error lines from 

time 3 to 4
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DStreams support output operations, such as 
print()

 Output operations are similar to RDD actions in that they write data to 

an external system

 But in Spark Streaming they run periodically on each time step, 

producing output in batches
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For each input source, Spark Streaming launches 

receivers

 Tasks running within the application’s executors that collect data from 

source and save as RDDs

 Receives input data and replicates it (by default) to another executor 

for fault tolerance

 Data is stored in memory of the executors in the same way that 

RDDs are cached 
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Spark Streaming: Execution

 StreamingContext in the driver program then periodically runs Spark 

jobs to:

 Process this data and …

 Combine it with RDDs from previous time steps
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Spark Streaming: Execution Summary

Driver Program

Spark jobs to process

received data

Streaming Context

Spark Context

Worker Node

Worker Node 

Executor

Task Receiver

Executor

Task Task

Input Stream

Data replicated 

to another node

Output results

in batches
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Spark Streaming: Fault Tolerance                    [1/2]

 Spark Streaming offers the same fault-tolerance properties for 

DStreams as Spark has for RDDs

 As long as a copy of the input data is still available, it can recompute any 

state derived from it using the lineage of the RDDs 

◼ By rerunning the operations used to process it



SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.22

Spark Streaming: Fault Tolerance                             [2/2]

 By default, data is replicated across two nodes

 Can tolerate single worker failures

 Using lineage graphs to recompute any derived state?   Impractical

 Spark Streaming relies on checkpointing

 Saves state periodically 

 Checkpoint every 5-10 batches of data

 When recovering, only go back to the last checkpoint   
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Spark Streaming: Transformations

 Stateless transformations

 Each batch does not depend on data of its previous batches

 Stateful transformations

 Use data or intermediate results from previous batches to compute results of 

the current batch
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STATELESS TRANSFORMATIONS

No, Time, thou shalt not boast that I do change:

Thy pyramids built up with newer might

To me are nothing novel, nothing strange;

They are but dressings of a former sight.

Our dates are brief, and therefore we admire

Sonnet 123: No, Time, thou shalt not boast that I do change

William Shakespeare; Year 1609
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Stateless transformations

 Stateless transformations are simple RDD transformations being 

applied on every batch — that is, every RDD in a DStream

 Many of the RDD transformations that we have looked at are also 

available on DStreams
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Examples of stateless transformations       [1/6]

 map()

 Apply a function to each element in the DStream and return a 

DStream of the result

 ds.map (x => x + 1)
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Examples of stateless transformations       [2/6]

 flatMap()

 Apply a function to each element in the DStream and return a 

DStream of the contents of the iterators returned

 ds.flatMap (x => x.split(“ “) )
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Examples of stateless transformations       [3/6]

 filter()

 Return a DStream consisting of only elements that pass the condition 

passed to filter

 ds.filter (x => x != 1 )
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Examples of stateless transformations       [4/6]

 repartition()

 Change the number of partitions of the DStream

 Distributes the received batches across the specified number of machines in 

the cluster before processing

◼ The physical manifestation of the DStream is different in this case

 ds.repartition(10)
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Examples of stateless transformations       [5/6]

 reduceByKey()

 Combine values with the same key in each batch

 ds.reduceByKey(  (x, y) = > x + y)   )
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Examples of stateless transformations       [6/6]

 groupByKey()

 Group values with the same key in each batch

 ds.groupByKey( )
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A note about stateless operations

 Although it may seem that they are being applied over the whole 

stream  …

 Each DStream has multiple RDDs (batches) 

 Stateless transformation applies separately to each RDD

 E.g., reduceByKey() will reduce data for each timestep, but not across 

timesteps
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Stateful transformations

 Operations on DStreams that track data across time

 Data from previous batches used to generate results for a new batch

 Two types of windowed operations

 Act over sliding window of time periods

 updateStateBykey() track state across events for each key



SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.35

Stateful transformations and fault tolerance

 Requires checkpointing to be enabled in StreamingContext for fault 

tolerance

      ssc.checkpoint(“hdfs:// …”);
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Windowed Transformations

 Compute results across a longer time period than the batch interval

 Two parameters: window and sliding durations

 Both must be a multiple of the batch interval

 Window duration controls how many previous batches of data are 

considered
 window Duration/batchInterval

 If the batch interval is 10 seconds and the sliding window is 30 seconds … 

last 3 batches
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A windowed stream: 

Window duration (3) & slide duration (2)

Every 2 time steps, we 

compute a result over the 

previous 3 time steps

t1

t2

t3

t4

t5

t6

Network Input
Windowed Stream:

Window: 3,   Slide: 2
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Simplest window operation on a DStream

 window()

 Returns new DStream with data from the requested window

 Each RDD in the DStream resulting from window(), will contain data 

from multiple batches
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Other operations on top of window()

 reduceByWindow and reduceByKeyAndWindow

 Includes a special form that allows reduction to be performed 

incrementally

 Considering only the data coming into the window and the data that is 

going out

 Special form requires an inverse of the reduce function

◼ Such as – for + 

 More efficient for large windows if your function has an inverse
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Difference between naïve and incremental 
reduceByWindow()

{1, 1}

{4,2}

{9}

{3}

{3, 1}

{1}

20

22

17

t1

t2

t3

t4

t5

t6

Network Input
Naïve reduce

by Window

Network Input Reduce by 

Window with +-
{1, 1}

{4,2}

{9}

{3}

{3, 1}

{1}

20

22

17

t1

t2

t3

t4

t5

t6

-

-

+

+

+

+
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Maintaining state across batches

 updateStateByKey() 

 Provides access to a state variable for DStreams of key/value pairs

 Given a DStream of (key, value) pairs 

◼ Construct a new DStream of (key, state) pairs by taking a function that specifies how 

to update the state for each key, given new events
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WHAT TO WATCH FOR

Jason Adam Katzenstein. 

October 7, 2025. New Yorker. 

“You insist we’re ‘just friends,’ but then you invite me to stuff like this.”
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Performance considerations

 Batch size

 500 milliseconds is considered a good minimum size

 Start with a large batch size (~10 seconds) and work down to a smaller 

batch size

◼ If processing times remain consistent, explore decreasing the batch size

◼ If the processing times increase? You have reached the limit

 Window size

 Has a great impact on performance

 Consider increasing this for expensive operations 
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Garbage collections and memory usage

 Cache RDDs in serialized form 

 Using Kryo for serialization reduces this even more

◼ Reduces space for in-memory representations

 By default, Spark uses an in-memory cache

 Can also evict RDDs older than a certain time-period

◼ spark.cleaner.ttl

◼ This preemptive eviction of RDDs also reduces the garbage collection pressure 
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Levels of parallelism in data receiving                      [1/4]

 Each input DStream creates a single receiver that receives a single 

stream of data 

 Receiving multiple data streams possible by creating multiple input 

DStreams 

◼ Each Dstream must be configured to receive different partitions of the data stream 

from the source(s)

 For a Kafka DStream receiving data on two topics?

 Split into two DStreams each receiving one topic

◼ Two receivers would run and receive data in parallel 
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Levels of parallelism in data receiving                      [2/4]

 Another approach is to tune the receiver’s block interval

 Determined by spark.streaming.blockInterval

 For most receivers, received data is coalesced into blocks of data 

before storing in memory

 The number of blocks in each batch determines the number of tasks 

used to process the received data in a map-like transformation

 Number of tasks per batch?

 Batch interval/block interval
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Levels of parallelism in data receiving                      [3/4]

 Number of tasks per batch?

 Batch interval/block interval

 Block interval of 200 ms will create 10 tasks per 2 second batches

 If the number of tasks is too low?

 All available cores might not be available to use all the data

 To increase number of tasks for a given batch interval?

 Reduce the block interval 
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Levels of parallelism in data receiving                      [4/4]

 What if you did not want to receive data with multiple input streams?

 Explicitly repartition the input data stream

 Repartitioning is done using the inputStream.repartition(<number of 
partitions>))

 Distributes the received batches of data across the specified number of 

machines in the cluster before further processing
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Data serialization                                   [1/2] 

 Data received through receivers is stored with 

StorageLevel.MEMORY_AND_DISK_SER_2

 Data that does not fit in memory spills over to disk

 Input data and persisted RDDs generated by DStream transformations 

are automatically cleared

 If you are using a window operation of 10 minutes, then Spark Streaming 

will keep the last 10 minutes of data, and actively throw away older data

 Data can be retained for a longer duration by setting 

streamingContext.remember



SPARK STREAMING
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L31.50

Data serialization                                    [2/2] 

 RDDs generated by streaming computations may be persisted in 

memory

 Persisted RDDs generated by streaming computations are persisted with 

StorageLevel.MEMORY_ONLY_SER

 If you are using batch intervals of a few seconds and no window 

operations? 

 You can try disabling serialization in persisted data 

◼ Reduce CPU overheads due to serialization, without excessive GC overheads.
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The contents of this slide-set are based on the 

following references

 Learning Spark: Lightning-Fast Big Data Analysis.  1st Edition.  Holden Karau, Andy 

Konwinski, Patrick Wendell, and Matei Zaharia. O'Reilly. 2015. ISBN-13: 978-

1449358624. 

[Chapter  10]

 Spark Streaming Programming Guide: 

http://spark.apache.org/docs/latest/streaming-programming-guide.html#memory-

tuning

 Processing Twitter Streams using Spark:

https://databricks-training.s3.amazonaws.com/realtime-processing-with-spark-

streaming.html 
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