CS x55: DISTRIBUTED SYSTEMS [LOGICAL CLOCKS]

Shrideep Pallickara
Computer Science
Colorado State University

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY



Frequently asked questions from the previous class
survey

s it ok to think of Gntuella (with superpeers) and BitTorrent as semi-
structured networks?

The trade-off in structured /unstructured systems seems to apply to
nodes and the resiliency of the networks to be “available”, but what
about resiliency from a “file” or “data” perspective in these systems

Replication!

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.2



Topics covered in this lecture
N

11 Logical clocks
-1 Vector clocks

1 Matrix clocks

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaGicAL CLOCKS L34.3



LOGICAL CLOCKS

It will not stir for Doctors -
This Pendulum of snow -

The Shopman importunes it -
While cool - concernless No

Nods from the Gilded pointers -
Nods from Seconds slim -
Decades of Arrogance between
The Dial life -

And Him.

Emily Dickinson



Physical time in a distributed system is problematic

This is not because of the effects of special relativity, which are
negligible or non-existent for normal computers

Unless you count computers travelling in spaceships

It is because of the inability to accurately timestamp events at different
nodes

We need this to order any pairs of events

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.5



If two processes do not interact with each other?
—

71 Their clocks need not be synchronized

7 Lack of synchronization is not observable

Does not cause problems

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.6



Logical clocks

Within a single process, events are ordered uniquely by times shown
on local clock

But we cannot synchronize clocks perfectly across a distributed system
[Lamport 1978]

We cannot use physical time to find out the order of an arbitrary pair of
events in a distributed system

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.7



We can use a scheme that is similar to physical
causality to order events

(1) If two events occurred at the same process p; (i=1, 2, ..., N) 2

Then they occurred in the order in which p; observes them
This is the order 2.

(2) When a message is sent between processes?

The event of sending the message occurred before the event of receiving the
message

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.8



The = relation

Lamport called the partial ordering obtained by generalizing the
previous 2 relationships

The happened-before or happens-before relation

Sometimes also known as the relation of causal ordering or potential
causal ordering

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.9



Lamport’s logical clocks

The happens-before relation =»

a and b are events in the process; and a occurs before b
Then a = b is true

a is event of message sent by one process;
b is event of message being received in another process

Then a = b is true

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.10



Some more things about the happens-before relation

fa=» band b = ¢; thena =P ¢

Transitive

If events x and y occur in processes that do not exchange messages,
then ...

X =P y is not true
But, neither is y = x

These events are said to be concurrent

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.11



Events occurring at three processes

X O
0 b
y d
C
Z 2 f

Qa—2>bandc~> d

— These occur within the same process

AQb2candd=2f

— Events that correspond to sending and receiving messages
O We can use transitivity to say a =2 f

O No relationship between a and e; these are concurrent a || e

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY  5uPUTER SCIENCE DEPARTMENT LoGIcAL CLOCKS

1.34.12



If the =2 relation holds between two processes

The first event might or might-not have caused the second

The > relation only captures potential causality

i.e. two events can be related by = without a real connection between them

EXAMPLE 1: If the server receives a request and sends a response?

Then reply is caused by the request

EXAMPLE 2: A process might receive a request and subsequently issue
another message

But this could be one that it issues every 5 minutes anyway

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.13



A simple example of Lamport timestamps

I

1 2

X 0 0—0
4
Y
3

z 0

1 5

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaGicAL CLOCKS L34.14



An example of Lamport’s algorithm:

0]

o)

6

12

ml 8

18

24

Each message carries the

30

sending time according to | 40

36

42

48

54

m4 72

60

80

24 m2
the sender’s clock 48 M
56 m3

Each clock runs at a constant (but different rate)

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

LoaGicAL CLOCKS

10

20

30

50

60

70

80

90

100

L.34.15



An example of Lamport’s algorithm:

0]

6

12

18

24

30

36

42

48

70

m4

76

ml 8
Each message carries the 32
sending time according to | 40

the sender’s clock 48 M
61 m3

o)

69
77
85

Each clock runs at a constant (but different rate)

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

LoaGicAL CLOCKS

10

20

30

50

60

70

80

90

100

L.34.16



Implementing Lamport’s clocks

@ Before executing an event; P; executes

C,=C+1

(2) When P; sends a message m to P; ; it sets m’s timestamp ts(m) to C.
in previous step

(3) Upon receipt of message m, PJ adjusts its own local counter

C; = max {C, ts(m)}

)
do step (1) and deliver message

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.17



The positioning of Lamport’s clocks in distributed

szs’rems
I

APPLICATION LAYER

Message is delivered to

Application sends message o
application

Adjust local clock and
timestamp message

Adjust local clock

MIDDLEWARE LAYER

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaGicAL CLOCKS L34.18



An application of Lamport’s clock:
User has $1000 in bank account initially

_ : o
Add $100 to account Update with 1% interest

O @

A A

San Francisco New York

REPLICATED DATABASE

Add $100 ... Total:$1100 Give 1% interest ... Total= $1010
Give 1% interest on total= $11 Add $100
Balance: $1111 Balance: $1110

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.19



There is a difference when the orders are reversed
—

-1 Our objective for now is consistency

-1 Both copies must be exactly the same

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.20



Use Lamport’s clock to order messages

Process puts received messages into local queue

Ordered according to the message’s timestamp

Message can be delivered only if it is acknowledged by all the other
processes

If a message is at the head of the queue, and acknowledged by all
processes

It is delivered and processed

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.21



Lamport’s Clocks order events based on the

h d-bef lationshi
L s1oRpenea-before relationship

0 If a happened before b, then C(a) < C(b)

-1 But nothing can be said about two events a and b by merely
comparing their values

5 Cla) < C(b)?

Does not mean a happened before b

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.22



Let’s look a little closer
]

0 1,,,(m;) : Time m; was sent
o T,.(m;) : Time m; was received
= Ts*nd(ml) < ]-;'CV(ml)

o BUT

Ts'*nd(mt) < ];cv(mj) ¢
= NO

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.23



Concurrent message transmissions

0 0 0 Sending m3 MAY HAVE
ml depended on m1i

6 8 10
18 24 / 30 Trcv(m]) < Tsncl(m2)

- > \ X L But sending of m2 has noth
ut sending of m2 has nothing
20 gy m 50 to do with receipt of ml
36 48 60
42 61 &~ [70
48 y 69 m4 80 Lampclaf;f clocks do not capture
0 77 90 causality
76 85 100

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.24



VECTOR CLOCKS

(\

Devouring time, blunt thou the lion’s paws
And make the earth devour her own sweet bro

Pluck the keen teeth from the fierce tiger’s jdWws

And burn the long-liv'’d phoenix in her blood,

Make glad and sorry seasons as thou fleet’st,

And do what e’er thou wilt, swift-footed time

Sonnet 19: Devouring time; William Shake

<

S



Lamport’s Clocks order events based on the

h d-bef lationshi
L s1oRpenea-before relationship

0 If a happened before b, then C(a) < C(b)

-1 But nothing can be said about two events a and b by merely
comparing their values

5 Cla) < C(b)?

Does not mean a happened before b

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.26



Let’s look a little closer
]

0 1,,,(m;) : Time m; was sent
o T,.(m;) : Time m; was received
= Ts*nd(ml) < ]-;'CV(ml)

o BUT

Ts'*nd(mt) < ];cv(mj) ¢
= NO

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.27



Concurrent message transmissions

0 0 0 Sending m3 MAY HAVE
ml depended on m1i

6 8 10
18 24 e~ [0

- > \ X L But sending of m2 has noth
ut sending of m2 has nothing

20 gy m 50 to do with receipt of ml
36 48 60 T (ml)<T.

rcv snd m2)
42 61 & [70
48 y 69 m4 80 Lampclaf;f clocks do not capture
0 77 90 causality
76 85 100

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.28



Vector clocks

Developed by Mattern [1989] and Fidge [1991] to overcome
shortcomings of Lamport’s clocks

i.e. if C(a) < C(b) then we cannot conclude a > b
A vector clock for a system of N processes is an array of N integers

Each process keeps its own vector clock VC,

Process uses it vector clock to timestamp messages

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.29



Causal precedence can be captured by Vector
clocks

Event a is known to causally precede event b iff VC(a) < VC(b)
VC(a)<VC(b) iff VC(a)[k] < VC(b)[k] for all £ and at least one of those

relationships is strictly smaller

Each process P; maintains a vector VC,
VC.[1] is number of events so far at P,
P; knows k events occurred at P,

P/’s knowledge of local time at P,

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.30



Vectors are piggybacked along with any messages
that are sent

(1) Before executing an event (sending, delivering, or internal) P;
executes

VC[1]=V(C{i] + 1

(2) When P. sends a message m to P
Set m'’s timestamp ts(m) to VC. after doing (1)

(3) After receiving m, process Pj adjusts its vector
VC[k] = max{VC[k], ts(m)[k]} for each k

Execute step (1) and deliver

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.31



Vector clocks example 1

o
[1,0,0] [2,0,0]
A O 0—0
[2,2,0]
b [2,1,0]
C
[8'0,1] [2,2,2]

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.32



Vector clocks example 2

]

1,0,0 [5.4,0] 7.4.4

A [1.0.0] O o0 0 [ ]
130 /
. e [1.3.0] _
[1,2,0] [1.4.0]
C —.—.
[1,3,3] [1.3.4]

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.33



Vector timestamps allow us to determine causality

and concurrency
——

-1 Event a happened before event b iff
ts(a) <ts (b) for each process 1

- And one of those relationships is strictly smaller

-1 If this is not true

Events @ and b are concurrent

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.34



Vector Clocks: Other aspects

If event a has timestamp, ts(a):

ts(a)[1]-1

Denotes number of events at P, that precede a

When P; receives message m from P; with timestamp £s(m)=V(,
P; knows about the number of events at P; that causally preceded m

Also, P; knows about how many events at other processes have preceded the
sending of m, and on which m may causally depend

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.35



Vector clocks: Disadvantages

Storage and message payload is proportional to N, the number of
processes

It’s been shown ([Charron-Bost 1991]) that if we are to tell if two
events are concurrent by inspecting timestamps?

The dimension of N is unavoidable

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.36



USING VECTOR CLOCKS FOR CAUSALLY ORDERED
MULTICASTING

COMPUTER SCIENCE DEPARTMENT (®%%) COLORADO STATE UNIVERSITY



Contrasting totally-ordered and causally-ordered
multicasting

Causally-ordered multicasting is weaker than totally-ordered
multicasting

If two messages are not in any way related to each other?

We do not care about the order in which they are delivered to applications

Could be delivered in different order at different applications

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.38



Using Vector Clocks for causally-ordered multicasting

Clocks are ONLY adjusted when sending and receiving messages

Upon sending a message, process P, will only increment VC[1] by 1

When P. delivers a message m with timestamp #s(m) it adjusts VC[K]
To max(VC;[K], ts(m)[k]) for each k

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.39



When process P, receives a message m from P,

Delivery of the message m to the application layer is delayed until 2
conditions are met:

@ ts(m)[i] = VCi[i] + 1

This means m is the next message that P; was expecting from P

2) ts(m)[k] < VC[k] for all k£ i
This means that P, has seen all messages that have been seen by P, when it
receives m

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.40



An example showing enforcement of causal

communications
.

[1,0,0] [1,1,0]

[1,0,0] [1,1,0

Delivery of m* is delayed until m is delivered

—

[0,0.0] VC,=[1,0,0] VC,=[1,1,0]

[Errata fixed on this slide.]

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.41



Matrix clocks

Generalizes the notion of vector clocks

Processes keep estimates of other processes’ vector time [Raynal &

Singhal, 1996]

Essentially, a vector of vector clocks for each of the communicating
processes

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.42



The contents of this slide-set are based on the
following references

Distributed Systems: Principles and Paradigms. Andrew S. Tanenbaum and Maarten Van
der Steen. 2nd Edition. Prentice Hall. ISBN: 0132392275/978-013239227 3.
[Chapter 6]

Distributed Systems: Concepts and Design. George Coulouris, Jean Dollimore, Tim

Kindberg, Gordon Blair. 5th Edition. Addison Wesley. ISBN: 978-0132143011.
[Chapter 14]

http: / /en.wikipedia.org /wiki/Matrix_clocks

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT LoaicAL CLOCKS L34.43



	Slide 1: CS x55: Distributed Systems  [Logical Clocks]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: Logical Clocks
	Slide 5: Physical time in a distributed system is problematic
	Slide 6: If two processes do not interact with each other?
	Slide 7: Logical clocks
	Slide 8: We can use a scheme that is similar to physical causality to order events
	Slide 9: The  relation
	Slide 10: Lamport’s logical clocks
	Slide 11: Some more things about the happens-before relation
	Slide 12: Events occurring at three processes
	Slide 13: If the  relation holds between two processes
	Slide 14: A simple example of Lamport timestamps
	Slide 15: An example of Lamport’s algorithm:  
	Slide 16: An example of Lamport’s algorithm:  
	Slide 17: Implementing Lamport’s clocks
	Slide 18: The positioning of Lamport’s clocks in distributed systems
	Slide 19: An application of Lamport’s clock: User has $1000 in bank account initially
	Slide 20: There is a difference when the orders are reversed
	Slide 21: Use Lamport’s clock to order messages
	Slide 22: Lamport’s Clocks order events  based on the happened-before relationship
	Slide 23: Let’s look a little closer
	Slide 24: Concurrent message transmissions
	Slide 25: Vector Clocks
	Slide 26: Lamport’s Clocks order events  based on the happened-before relationship
	Slide 27: Let’s look a little closer
	Slide 28: Concurrent message transmissions
	Slide 29: Vector clocks
	Slide 30: Causal precedence can be captured by Vector clocks
	Slide 31: Vectors are piggybacked along with any messages that are sent
	Slide 32: Vector clocks example 1
	Slide 33: Vector clocks example 2
	Slide 34: Vector timestamps allow us to determine causality and concurrency
	Slide 35: Vector Clocks: Other aspects
	Slide 36: Vector clocks: Disadvantages
	Slide 37: Using Vector Clocks for Causally ordered Multicasting
	Slide 38: Contrasting totally-ordered and causally-ordered multicasting
	Slide 39: Using Vector Clocks for causally-ordered multicasting
	Slide 40: When process Pj receives a message m from Pi
	Slide 41: An example showing enforcement of causal communications
	Slide 42: Matrix clocks
	Slide 43: The contents of this slide-set are based on the following references

