
COMPUTER SCIENCE DEPARTMENT

CS X55: DISTRIBUTED SYSTEMS [LOGICAL CLOCKS]

Shrideep Pallickara

Computer Science

Colorado State University

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.2

Frequently asked questions from the previous class

survey

 Is it ok to think of Gntuella (with superpeers) and BitTorrent as semi-

structured networks?

 The trade-off in structured/unstructured systems seems to apply to

nodes and the resiliency of the networks to be “available”, but what

about resiliency from a “file” or “data” perspective in these systems

 Replication!

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.3

Topics covered in this lecture

 Logical clocks

 Vector clocks

 Matrix clocks

COMPUTER SCIENCE DEPARTMENT

LOGICAL CLOCKS

It will not stir for Doctors -

This Pendulum of snow -

The Shopman importunes it -

While cool - concernless No

Nods from the Gilded pointers -

Nods from Seconds slim -

Decades of Arrogance between

The Dial life -

And Him.

Emily Dickinson

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.5

Physical time in a distributed system is problematic

 This is not because of the effects of special relativity, which are

negligible or non-existent for normal computers

 Unless you count computers travelling in spaceships

 It is because of the inability to accurately timestamp events at different

nodes

 We need this to order any pairs of events

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.6

If two processes do not interact with each other?

 Their clocks need not be synchronized

 Lack of synchronization is not observable

 Does not cause problems

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.7

Logical clocks

 Within a single process, events are ordered uniquely by times shown

on local clock

 But we cannot synchronize clocks perfectly across a distributed system

[Lamport 1978]

 We cannot use physical time to find out the order of an arbitrary pair of

events in a distributed system

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.8

We can use a scheme that is similar to physical

causality to order events

① If two events occurred at the same process pi (i=1, 2, …, N) ?

 Then they occurred in the order in which pi observes them

◼ This is the order →i

② When a message is sent between processes?

 The event of sending the message occurred before the event of receiving the

message

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.9

The → relation

 Lamport called the partial ordering obtained by generalizing the

previous 2 relationships

 The happened-before or happens-before relation

 Sometimes also known as the relation of causal ordering or potential

causal ordering

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.10

Lamport’s logical clocks

 The happens-before relation ➔

 a and b are events in the process; and a occurs before b

 Then a ➔ b is true

 a is event of message sent by one process;

b is event of message being received in another process

◼ Then a ➔ b is true

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.11

Some more things about the happens-before relation

 If a ➔ b and b ➔ c; then a ➔ c

 Transitive

 If events x and y occur in processes that do not exchange messages,

then …

 x ➔ y is not true

 But, neither is y ➔ x

 These events are said to be concurrent

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.12

Events occurring at three processes

X

Y

Z

a

c

e f

d

b

❑ a → b and c → d
– These occur within the same process

❑ b → c and d → f
– Events that correspond to sending and receiving messages

❑ We can use transitivity to say a → f

❑ No relationship between a and e; these are concurrent a || e

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.13

If the → relation holds between two processes

 The first event might or might-not have caused the second

 The → relation only captures potential causality

◼ i.e. two events can be related by → without a real connection between them

 EXAMPLE 1: If the server receives a request and sends a response?

 Then reply is caused by the request

 EXAMPLE 2: A process might receive a request and subsequently issue

another message

 But this could be one that it issues every 5 minutes anyway

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.14

A simple example of Lamport timestamps

X

Y

Z

1

3

1 5

4

2

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.15

An example of Lamport’s algorithm:

0

6

12

18

24

30

36

42

48

54

60

0

8

16

24

32

40

48

56

64

72

80

0

10

20

30

40

50

60

70

80

90

100

m1

m2

Each clock runs at a constant (but different rate)

m3

m4

Each message carries the

sending time according to

the sender’s clock

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.16

An example of Lamport’s algorithm:

0

6

12

18

24

30

36

42

48

0

8

16

24

32

40

48

0

10

20

30

40

50

60

70

80

90

100

m1

m2

Each clock runs at a constant (but different rate)

m3

m4

61

69

77

85

70

76

Each message carries the

sending time according to

the sender’s clock

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.17

Implementing Lamport’s clocks

① Before executing an event; Pi executes

 Ci = Ci + 1

② When Pi sends a message m to Pj ; it sets m’s timestamp ts(m) to Ci

in previous step

③ Upon receipt of message m, Pj adjusts its own local counter

 Cj = max {Cj, ts(m)}

do step (1) and deliver message

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.18

The positioning of Lamport’s clocks in distributed

systems

Middleware sends message

MIDDLEWARE LAYER

APPLICATION LAYER

NETWORK LAYER

Message is received

Adjust local clock and

timestamp message
Adjust local clock

Application sends message
Message is delivered to

application

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.19

An application of Lamport’s clock:

User has $1000 in bank account initially

REPLICATED DATABASE

San Francisco New York

Add $100 to account Update with 1% interest

Add $100 …. Total:$1100
Give 1% interest on total= $11
Balance: $1111

Give 1% interest … Total= $1010
Add $100
Balance: $1110

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.20

There is a difference when the orders are reversed

 Our objective for now is consistency

 Both copies must be exactly the same

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.21

Use Lamport’s clock to order messages

 Process puts received messages into local queue

 Ordered according to the message’s timestamp

 Message can be delivered only if it is acknowledged by all the other

processes

 If a message is at the head of the queue, and acknowledged by all

processes

 It is delivered and processed

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.22

Lamport’s Clocks order events based on the

happened-before relationship

 If a happened before b, then C(a) < C(b)

 But nothing can be said about two events a and b by merely

comparing their values

 C(a) < C(b)?

 Does not mean a happened before b

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.23

Let’s look a little closer

 Tsnd(mi) : Time mi was sent

 Trcv(mi) : Time mi was received

 Tsnd(mi) < Trcv(mi)

 BUT

 Tsnd(mi) < Trcv(mj) ?

◼ NO

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.24

Concurrent message transmissions

0

6

12

18

24

30

36

42

48

70

76

0

8

16

24

32

40

48

61

69

77

85

0

10

20

30

40

50

60

70

80

90

100

m1

m3

m4m5

m2

Sending m3 MAY HAVE
 depended on m1

Trcv(m1) < Tsnd(m2)

But sending of m2 has nothing
to do with receipt of m1

Lamport clocks do not capture
causality

COMPUTER SCIENCE DEPARTMENT

VECTOR CLOCKS

Devouring time, blunt thou the lion’s paws

And make the earth devour her own sweet brood,

Pluck the keen teeth from the fierce tiger’s jaws

And burn the long-liv’d phoenix in her blood,

Make glad and sorry seasons as thou fleet’st,

And do what e’er thou wilt, swift-footed time

Sonnet 19: Devouring time; William Shakespeare

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.26

Lamport’s Clocks order events based on the

happened-before relationship

 If a happened before b, then C(a) < C(b)

 But nothing can be said about two events a and b by merely

comparing their values

 C(a) < C(b)?

 Does not mean a happened before b

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.27

Let’s look a little closer

 Tsnd(mi) : Time mi was sent

 Trcv(mi) : Time mi was received

 Tsnd(mi) < Trcv(mi)

 BUT

 Tsnd(mi) < Trcv(mj) ?

◼ NO

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.28

Concurrent message transmissions

0

6

12

18

24

30

36

42

48

70

76

0

8

16

24

32

40

48

61

69

77

85

0

10

20

30

40

50

60

70

80

90

100

m1

m3

m4m5

m2

Sending m3 MAY HAVE
 depended on m1

Trcv(m1) < Tsnd(m2)

But sending of m2 has nothing
to do with receipt of m1

Lamport clocks do not capture
causality

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.29

Vector clocks

 Developed by Mattern [1989] and Fidge [1991] to overcome

shortcomings of Lamport’s clocks

 i.e. if C(a) < C(b) then we cannot conclude a → b

 A vector clock for a system of N processes is an array of N integers

 Each process keeps its own vector clock VCi

 Process uses it vector clock to timestamp messages

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.30

Causal precedence can be captured by Vector

clocks

 Event a is known to causally precede event b iff VC(a) < VC(b)

 VC(a)<VC(b) iff VC(a)[k] ≤ VC(b)[k] for all k and at least one of those

relationships is strictly smaller

 Each process Pi maintains a vector VCi

 VCi[i] is number of events so far at Pi

 If VCi[j] = k

 Pi knows k events occurred at Pj

 Pi’s knowledge of local time at Pj

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.31

Vectors are piggybacked along with any messages

that are sent

① Before executing an event (sending, delivering, or internal) Pi

executes

 VCi[i] = VCi[i] + 1

② When Pi sends a message m to Pj

 Set m’s timestamp ts(m) to VCi after doing (1)

③ After receiving m, process Pj adjusts its vector

 VCj[k] = max{VCj[k], ts(m)[k]} for each k

 Execute step (1) and deliver

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.32

Vector clocks example 1

A

B

C

[1,0,0]

[2,1,0]

[0,0,1] [2,2,2]

[2,2,0]

[2,0,0]

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.33

Vector clocks example 2

A

B

C

[1,0,0]

[1,2,0]

[1,3,3] [1,3,4]

[1,3,0]

[1,4,0]

[5,4,0] [7,4,4]

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.34

Vector timestamps allow us to determine causality

and concurrency

 Event a happened before event b iff

• ts(a) ≤ ts (b) for each process i

• And one of those relationships is strictly smaller

 If this is not true

 Events a and b are concurrent

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.35

Vector Clocks: Other aspects

 If event a has timestamp, ts(a):

 ts(a)[i]–1

◼ Denotes number of events at Pi that precede a

 When Pj receives message m from Pi with timestamp ts(m)=VCi

 Pj knows about the number of events at Pi that causally preceded m

 Also, Pj knows about how many events at other processes have preceded the

sending of m, and on which m may causally depend

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.36

Vector clocks: Disadvantages

 Storage and message payload is proportional to N, the number of

processes

 It’s been shown ([Charron-Bost 1991]) that if we are to tell if two

events are concurrent by inspecting timestamps?

 The dimension of N is unavoidable

COMPUTER SCIENCE DEPARTMENT

USING VECTOR CLOCKS FOR CAUSALLY ORDERED

MULTICASTING

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.38

Contrasting totally-ordered and causally-ordered

multicasting

 Causally-ordered multicasting is weaker than totally-ordered

multicasting

 If two messages are not in any way related to each other?

 We do not care about the order in which they are delivered to applications

 Could be delivered in different order at different applications

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.39

Using Vector Clocks for causally-ordered multicasting

 Clocks are ONLY adjusted when sending and receiving messages

 Upon sending a message, process Pi will only increment VCi[i] by 1

 When Pi delivers a message m with timestamp ts(m) it adjusts VCi[k]

 To max(VCi[k], ts(m)[k]) for each k

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.40

When process Pj receives a message m from Pi

 Delivery of the message m to the application layer is delayed until 2

conditions are met:

① ts(m)[i] = VCj[i] + 1

◼ This means m is the next message that Pj was expecting from Pi

② ts(m)[k] ≤ VCj[k] for all k ≠ i

◼ This means that Pj has seen all messages that have been seen by Pi when it

receives m

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.41

An example showing enforcement of causal

communications

A

B

C

[1,0,0]

[0,0,0] VC2=[1,0,0]

[1,1,0]

[1,1,0]

m

VC2=[1,1,0]

m*

Delivery of m* is delayed until m is delivered

[1,0,0]

[Errata fixed on this slide.]

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.42

Matrix clocks

 Generalizes the notion of vector clocks

 Processes keep estimates of other processes’ vector time [Raynal &

Singhal, 1996]

 Essentially, a vector of vector clocks for each of the communicating

processes

LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.43

The contents of this slide-set are based on the

following references

 Distributed Systems: Principles and Paradigms. Andrew S. Tanenbaum and Maarten Van

der Steen. 2nd Edition. Prentice Hall. ISBN: 0132392275/978-0132392273.

[Chapter 6]

 Distributed Systems: Concepts and Design. George Coulouris, Jean Dollimore, Tim

Kindberg, Gordon Blair. 5th Edition. Addison Wesley. ISBN: 978-0132143011.

[Chapter 14]

 http://en.wikipedia.org/wiki/Matrix_clocks

	Slide 1: CS x55: Distributed Systems [Logical Clocks]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: Logical Clocks
	Slide 5: Physical time in a distributed system is problematic
	Slide 6: If two processes do not interact with each other?
	Slide 7: Logical clocks
	Slide 8: We can use a scheme that is similar to physical causality to order events
	Slide 9: The  relation
	Slide 10: Lamport’s logical clocks
	Slide 11: Some more things about the happens-before relation
	Slide 12: Events occurring at three processes
	Slide 13: If the  relation holds between two processes
	Slide 14: A simple example of Lamport timestamps
	Slide 15: An example of Lamport’s algorithm:
	Slide 16: An example of Lamport’s algorithm:
	Slide 17: Implementing Lamport’s clocks
	Slide 18: The positioning of Lamport’s clocks in distributed systems
	Slide 19: An application of Lamport’s clock: User has $1000 in bank account initially
	Slide 20: There is a difference when the orders are reversed
	Slide 21: Use Lamport’s clock to order messages
	Slide 22: Lamport’s Clocks order events based on the happened-before relationship
	Slide 23: Let’s look a little closer
	Slide 24: Concurrent message transmissions
	Slide 25: Vector Clocks
	Slide 26: Lamport’s Clocks order events based on the happened-before relationship
	Slide 27: Let’s look a little closer
	Slide 28: Concurrent message transmissions
	Slide 29: Vector clocks
	Slide 30: Causal precedence can be captured by Vector clocks
	Slide 31: Vectors are piggybacked along with any messages that are sent
	Slide 32: Vector clocks example 1
	Slide 33: Vector clocks example 2
	Slide 34: Vector timestamps allow us to determine causality and concurrency
	Slide 35: Vector Clocks: Other aspects
	Slide 36: Vector clocks: Disadvantages
	Slide 37: Using Vector Clocks for Causally ordered Multicasting
	Slide 38: Contrasting totally-ordered and causally-ordered multicasting
	Slide 39: Using Vector Clocks for causally-ordered multicasting
	Slide 40: When process Pj receives a message m from Pi
	Slide 41: An example showing enforcement of causal communications
	Slide 42: Matrix clocks
	Slide 43: The contents of this slide-set are based on the following references

