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Frequently asked questions from the previous class 

survey

 Is it ok to think of Gntuella (with superpeers) and BitTorrent as semi-

structured networks?

 The trade-off in structured/unstructured systems seems to apply to 

nodes and the resiliency of the networks to be “available”, but what 

about resiliency from a “file” or “data” perspective in these systems

 Replication!



LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.3

Topics covered in this lecture

 Logical clocks

 Vector clocks

 Matrix clocks
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It will not stir for Doctors -

This Pendulum of snow -

The Shopman importunes it -

While cool - concernless No

Nods from the Gilded pointers -

Nods from Seconds slim -

Decades of Arrogance between

The Dial life -

And Him.

Emily Dickinson
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Physical time in a distributed system is problematic

 This is not because of the effects of special relativity, which are 

negligible or non-existent for normal computers

 Unless you count computers travelling in spaceships

 It is because of the inability to accurately timestamp events at different 

nodes

 We need this to order any pairs of events
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If two processes do not interact with each other?

 Their clocks need not be synchronized

 Lack of synchronization is not observable

 Does not cause problems
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Logical clocks

 Within a single process, events are ordered uniquely by times shown 

on local clock

 But we cannot synchronize clocks perfectly across a distributed system 

[Lamport 1978]

 We cannot use physical time to find out the order of an arbitrary pair of 

events in a distributed system
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We can use a scheme that is similar to physical 

causality to order events

① If two events occurred at the same process pi (i=1, 2, …, N) ?

 Then they occurred in the order in which pi  observes them

◼ This is the order →i 

② When a message is sent between processes?

 The event of sending the message occurred before the event of receiving the 

message
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The → relation

 Lamport called the partial ordering obtained by generalizing the 

previous 2 relationships

 The happened-before or happens-before relation

 Sometimes also known as the relation of causal ordering or potential 

causal ordering 
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Lamport’s logical clocks

 The happens-before relation ➔

 a and b are events in the process; and a occurs before b

 Then a ➔ b is true

 a is event of message sent by one process; 

b is event of message being received in another process 

◼ Then a ➔ b is true
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Some more things about the happens-before relation

 If a ➔ b and b ➔ c; then a ➔ c

 Transitive

 If events x and y occur in processes that do not exchange messages, 

then … 

 x ➔ y is not true 

 But, neither is y ➔ x 

 These events are said to be concurrent
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Events occurring at three processes

X

Y

Z

a

c

e f

d

b

❑ a → b and c → d  
– These occur within the same process

❑ b → c and d → f
– Events that correspond to sending and receiving messages

❑ We can use transitivity to say a → f

❑ No relationship between a and e; these are concurrent a || e
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If the → relation holds between two processes

 The first event might or might-not have caused the second

 The → relation only captures potential causality 

◼ i.e. two events can be related by → without a real connection between them

 EXAMPLE 1: If the server receives a request and sends a response?

  Then reply is caused by the request

 EXAMPLE 2: A process might receive a request and subsequently issue 

another message

 But this could be one that it issues every 5 minutes anyway
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A simple example of Lamport timestamps

X

Y

Z

1

3

1 5

4

2
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An example of Lamport’s algorithm: 
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An example of Lamport’s algorithm: 
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Implementing Lamport’s clocks

① Before executing an event; Pi executes 

   Ci = Ci + 1

② When Pi sends a message m to Pj ; it sets m’s timestamp ts(m) to Ci 

in previous step

③ Upon receipt of message m, Pj adjusts its own local counter

 Cj = max {Cj, ts(m)}

do step (1) and deliver message
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The positioning of Lamport’s clocks in distributed 

systems

Middleware sends message

MIDDLEWARE LAYER

APPLICATION LAYER

NETWORK LAYER

Message is received

Adjust local clock and

timestamp message
Adjust local clock

Application sends message
Message is delivered to 

application
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An application of Lamport’s clock:

User has $1000 in bank account initially

REPLICATED DATABASE

San Francisco New York

Add $100 to account Update with 1% interest

Add $100 …. Total:$1100
Give 1% interest on total= $11
Balance: $1111

Give 1% interest … Total= $1010 
Add $100
Balance: $1110
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There is a difference when the orders are reversed

 Our objective for now is consistency

 Both copies must be exactly the same
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Use Lamport’s clock to order messages

 Process puts received messages into local queue

 Ordered according to the message’s timestamp

 Message can be delivered only if it is acknowledged by all the other 

processes

 If a message is at the head of the queue, and acknowledged by all 

processes

 It is delivered and processed
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Lamport’s Clocks order events  based on the 

happened-before relationship

 If a happened before b, then C(a) < C(b)

 But nothing can be said about two events a and b by merely 

comparing their values

 C(a) < C(b)?

 Does not mean a happened before b
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Let’s look a little closer

 Tsnd(mi) : Time mi was sent

 Trcv(mi) : Time mi was received

  Tsnd(mi) < Trcv(mi)

 BUT

  Tsnd(mi) < Trcv(mj) ?

◼ NO
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Concurrent message transmissions
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VECTOR CLOCKS

Devouring time, blunt thou the lion’s paws

And make the earth devour her own sweet brood,

Pluck the keen teeth from the fierce tiger’s jaws

And burn the long-liv’d phoenix in her blood,

Make glad and sorry seasons as thou fleet’st,

And do what e’er thou wilt, swift-footed time

Sonnet 19: Devouring time; William Shakespeare
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Lamport’s Clocks order events  based on the 

happened-before relationship

 If a happened before b, then C(a) < C(b)

 But nothing can be said about two events a and b by merely 

comparing their values

 C(a) < C(b)?

 Does not mean a happened before b
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Let’s look a little closer

 Tsnd(mi) : Time mi was sent

 Trcv(mi) : Time mi was received

  Tsnd(mi) < Trcv(mi)

 BUT

  Tsnd(mi) < Trcv(mj) ?

◼ NO
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Concurrent message transmissions
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Vector clocks

 Developed by Mattern [1989] and Fidge [1991] to overcome 

shortcomings of Lamport’s clocks

 i.e. if C(a) < C(b) then we cannot conclude a → b

 A vector clock for a system of N processes is an array of N integers

 Each process keeps its own vector clock VCi

 Process uses it vector clock to timestamp messages
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Causal precedence can be captured by Vector 

clocks

 Event a is known to causally precede event b iff VC(a) < VC(b)

 VC(a)<VC(b) iff VC(a)[k] ≤ VC(b)[k] for all k and at least one of those 

relationships is strictly smaller

 Each process Pi maintains a vector VCi

 VCi[i] is number of events so far at Pi

 If VCi[j] = k

 Pi knows k events occurred at Pj

 Pi’s knowledge of local time at Pj
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Vectors are piggybacked along with any messages 

that are sent

① Before executing an event (sending, delivering, or internal) Pi 

executes

 VCi[i] = VCi[i] + 1

② When Pi sends a message m to Pj

 Set m’s timestamp ts(m) to VCi  after doing (1)

③ After receiving m, process Pj adjusts its vector

 VCj[k] = max{VCj[k],  ts(m)[k]} for each k

 Execute step (1) and deliver
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Vector clocks example 1

A

B

C

[1,0,0]

[2,1,0]

[0,0,1] [2,2,2]

[2,2,0]

[2,0,0]
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Vector clocks example 2

A

B

C

[1,0,0]

[1,2,0]

[1,3,3] [1,3,4]

[1,3,0]

[1,4,0]

[5,4,0] [7,4,4]



LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.34

Vector timestamps allow us to determine causality 

and concurrency

 Event a happened before event b iff

• ts(a) ≤ ts (b) for each process i

• And one of those relationships is strictly smaller

 If this is not true

 Events a and b are concurrent
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Vector Clocks: Other aspects

 If event a has timestamp, ts(a):

 ts(a)[i]–1

◼ Denotes number of events at Pi that precede a

 When Pj receives message m from Pi with timestamp ts(m)=VCi

 Pj knows about the number of events at Pi that causally preceded m

 Also, Pj knows about how many events at other processes have preceded the 

sending of m, and on which m may causally depend



LOGICAL CLOCKS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L34.36

Vector clocks: Disadvantages

 Storage and message payload is proportional to N, the number of 

processes

 It’s been shown ([Charron-Bost 1991]) that if we are to tell if two 

events are concurrent by inspecting timestamps?

  The dimension of N is unavoidable
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USING VECTOR CLOCKS FOR CAUSALLY ORDERED 

MULTICASTING
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Contrasting totally-ordered and causally-ordered 

multicasting

 Causally-ordered multicasting is weaker than totally-ordered 

multicasting

 If two messages are not in any way related to each other?

 We do not care about the order in which they are delivered to applications

 Could be delivered in different order at different applications
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Using Vector Clocks for causally-ordered multicasting

 Clocks are ONLY adjusted when sending and receiving messages

 Upon sending a message, process Pi will only increment VCi[i] by 1

 When Pi delivers a message m with timestamp ts(m) it adjusts VCi[k] 

 To max(VCi[k], ts(m)[k])   for each  k
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When process Pj receives a message m from Pi

 Delivery of the message m to the application layer is delayed until 2 

conditions are met:

① ts(m)[i] = VCj[i] + 1 

◼ This means m is the next message that Pj was expecting from Pi 

② ts(m)[k]  ≤  VCj[k] for all k ≠ i

◼  This means that Pj has seen all messages that have been seen by Pi when it 

receives m
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An example showing enforcement of causal 

communications

A

B

C

[1,0,0]

[0,0,0] VC2=[1,0,0]

[1,1,0]

[1,1,0]

m

VC2=[1,1,0]

m*

Delivery of m* is delayed until m is delivered

[1,0,0]

[Errata fixed on this slide.]
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Matrix clocks

 Generalizes the notion of vector clocks

 Processes keep estimates of other processes’ vector time [Raynal & 

Singhal, 1996]

 Essentially, a vector of vector clocks for each of the communicating 

processes
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The contents of this slide-set are based on the 

following references

 Distributed Systems: Principles and Paradigms. Andrew S. Tanenbaum and Maarten Van 

der Steen. 2nd Edition. Prentice Hall. ISBN: 0132392275/978-0132392273. 

[Chapter 6]

 Distributed Systems: Concepts and Design. George Coulouris, Jean Dollimore, Tim 

Kindberg, Gordon Blair. 5th Edition. Addison Wesley. ISBN: 978-0132143011. 

[Chapter 14]

 http://en.wikipedia.org/wiki/Matrix_clocks
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