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Go virtual!

Looking to scale
As things fail?

Go with nodes that are virtual
And, yes, they are just as real

Allowing nodes to take on load

That balance  without arduous code Shrideep qulicquq

Commensurate with ability

With hotspots a very slim possibility Compu’rer Science
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Frequently asked questions from the previous class

survey
N

1 Do sloppy quorums need DHTs as its underlying structure?

1 Virtual nodes ...2
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Topics covered in this lecture
—

7 Amazon’s Dynamo
Partitioning Algorithm
Replication & Versioning

Experiences

1 The Google File System
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My room is round when | lay down, when | wake up it’s square
When | go outside it’s on a spiral set of stairs
The people that surround me are waiting out there

In a round room they can’t find me anywhere
The Round Room; Mike Gordon; Phish
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The Chord System

Assigns IDs to keys and nodes from the same 1-dimensional ID space

Nodes are organized into a ring

Data item with key k is mapped to a node with the smallest id 2 k

Also referred to as successor (k)
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Mapping of data items to nodes in Chord

I
Actual Node
OR 0%
e S o1 | 2
14 ) {13,14,15} .+ Node does not exist

Associated data keys
{8,9,10,11,12}

e ~,
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An example of inserting a new node

P ~

{0,1} { 2 |

Succ(12) = 15 Associated data keys

Pred(12) = 7 {8,9,10,11,12} {2,3,4}
11 (5
YT (5,6,7)
New node 10 .\ '° L —. 8
will be inserted : \1 ) oo - 12
N’ Pred(7) = 4
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An example of inserting a new node

- ~

SN

Associated data keys

Succ(12) = 15 {2,3,4}
(11,12} =y
Pred(12) = 10
oy 5 )
S 8,9,10} . _ _ . oy
{ booos,6,71 o
o o
Suce(10) = 12 AW /@M
Pred(10) = 7 /1 8 ] Succ(7) = 10
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A key requirement is that Dynamo must scale

incrementally
=

o1 Dynamically partition data over a set of storage nodes

7 Uses consistent hashing
DHT

Data item identified by key
u Assigned to node responsible for MD5-hash(key)
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Basic hashing scheme presents some challenges
—

1 Random position assignment may lead to

Non-uniform data and load distribution

- Algorithm oblivious to heterogeneity of devices
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Dynamo uses a variant of consistent hashing

Introduces the notion of virtual nodes
Virtual node looks like a real node

Each node is responsible for more than 1 virtual nodes

A node is assigned multiple positions in the ring
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Advantages of virtual nodes

If a node becomes unavailable

Load handled by failed node, dispersed across remaining virtual nodes

When node becomes available again

Accepts roughly the same amount of work from other nodes

Number of virtual nodes are decided based on machine’s capacity
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DYNAMO REPLICATION
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Dynamo replicates data on multiple hosts

Each data item is replicated at N hosts
Coordinator is responsible for nodes that fall in its range

Additionally, a coordinator replicates key at N-1 clockwise successor

nodes
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What does this mean?

Each node is responsible for region between

Itself and its N™ predecessor

List of nodes responsible for a key

Preference list

A node maintains a list of more than N to account for failures

Account for virtual nodes

Make sure your list contains different physical nodes
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DYNAMO VERSIONING
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Data versioning

A put() may return before it is applied to all replicas

If there are no failures

Upper bound on update propagation times

If there are failures

Things take much longer
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There are applications at Amazon that tolerate this

Shopping carts

Add to Cart can never be forgotten or rejected

If most recent state of cart unavailable

Make changes to the older version

Divergent versions are reconciled later
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Dynamo treats each modification as a new,

immutable version of the data

Multiple versions of data present at same time

Often new versions subsume old data

Syntactic reconciliation

When an automatic reconciliation is not possible
Clients have to do it
Collapse branches into one

Manage your shopping cart
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Dynamo uses vector clocks to capture causality

A vector clock for each version of the object

Two versions of object being compared
If VC, <= VC, for all indices of the vector clock

O, occurred before O,

Otherwise, changes are in conflict

Need reconciliation
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A client must specify which version it is updating

Pass context from an earlier read operation

Context contains vector clock information

Requests with branches that cannot be reconciled?
Returns all objects with versioning info in context

Update done using this context reconciles and collapses all branches
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Execution of get() and put() operations
=

1 Read and write operations involve the first N healthy nodes

7 During failures, nodes lower in priority are accessed
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To maintain consistency, Dynamo uses a quorum

protocol
E—

- Uses configurable settings for replicas that must participate in
Reads
Writes
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Quorum-based protocols:
When there are N replicas

- Read quorum Ny

- To modify a file write-quorum Ny

-+ Ng + Ny >N

Prevent read-write conflict

7 Ny > N/2

Prevent write-write conflict
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Quorum-based protocols:
Example

Ne=3 Ny,=10

Write-write conflict @

Concurrent writes to

. | (A.B, C.E F, G}and {D, H, I, J, K, L}
Write QUOrUM: will be accepted
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Upon receiving a put() request for a key

Coordinator generates a vector clock for new version
Sends new version to N highest-ranked reachable nodes

If at least Nyy — 1 nodes respond: write is successfull
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External Discovery: During node adds

When A and B join, it might be a while before they know each other’s
existence

Logical partitioning

Use seed nodes that are known to all nodes

All nodes reconcile membership with seed
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DYNAMO: EXPERIENCES
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Popular reconciliation strategies

Business logic specific

Timestamp

Last write wins

High performance read engine
High read rates

Small update rates
N.=1 and N,,=N
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Quorum-based protocols:

Example 2
=

Read QuUorum:
Write QUOrum:
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Common configuration of the quorum
N
1 Np=2
0 Nw=2
0 N=3
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Balancing performance and durability

Some services not happy with 300 ms SLA

Writes tend to be slower than reads

To cope with this, nodes maintain object buffer
Main memory

Periodically written to storage
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SANJAY GHEMAWAT, HOWARD GOBIOFF, SHUN-TAK LEUNG:
The Google file system. Proceedings of SOSP 2003: 29-43

THE GOOGLE FILE SYSTEM

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY



Broad brushstroke themes in current extreme scale
stforage systems

Voluminous data

Commodity hardware
Distributed Data

Expect failures

Tune for access by applications
Optimize for dominant usage

Tradeoff between consistency and availability
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Demand pulls in GFS: |

Component failures are the norm
Files are huge by traditional standards

File mutations predominantly through appends

Not overwrites

Applications and File system APl designed in lock-step
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Demand pulls in GFS - |l

Hundreds of producers will concurrently append to a file

Many-way merging

High sustained bandwidth is more important than low latency
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The file system interface

Does not implement standard APIs such as POSIX

Supports create, delete, open, close, read and write

snapshot

Create a fast copy of file and directory tree

record append
Multiple writers can concurrently append records to the same file

Without additional locking
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| Client
_ Client

( c.| i.e.ni )

Architecture of GFS

GFS Chunk GFS Chunk
Server Server
Linux File Linux File
System System

GFS Chunk
Server
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In GFS a file is broken up into fixed-size chunks
=

1 Obvious reason

The file is too big
Map-Reduce

|

- Set the stage for computations that operate on this data
Parallel 1/0O

1/O seek times are 14 x 10° slower than CPU clock cycles
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In GFS a file is broken up into fixed-size chunks

= Each chunk has a 64-bit globally unique ID
Assigned by the Master

1 Chunks are stored by chunk servers
On local disks as LINUX files

= Each chunk is replicated
Default is 3
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Master operations
=

7 Manage system metadata
7 Leasing of chunks
7 Garbage collection of orphaned chunks

1 Chunk migrations
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ALL system metadata is managed by the Master and

stored in main memory
——

(1) File and chunk namespaces
(2) Mapping from files to chunks Logs mutations

into a permanent log

(3) Location of chunks
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Why have a single Master?
=

o Vastly simplifies design

- Easy to use global knowledge to reason about

Chunk placements

Replication decisions
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Communications with the chunk servers
—

71 Periodic communications using heartbeats

Instructions to the chunk server

Collect /retrieve state from the chunk server
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Chunk size

This is fixed at 64 MB
Much larger than typical filesystem block sizes (512 bytes)

Lazy space allocation

Stored as plain Linux file

Extended only as needed
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But why this big?

Reduces client interaction with the master

Can cache info for a multi-TB working set

Reduce network overhead
With a large chunk, client performs more operations

Persistent connections

Reduce size of metadata stored in the master
64 bytes of metadata per 64 MB chunk
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Why keep the entire metadata in memory?

Speed

Master can scan its state in the background
Implement chunk garbage collection
Re-replicate if there are failures

Chunk migration to balance load and space

Add extra memory to increase file system size
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Size of the file system with 1 TB of RAM: Assume file sizes are exact

multiples of chunk sizes
I

- Number of entries = 240/2¢

1 MAXIMUM SIZE of the file system
= Number of entries x Chunk size

= 240 x 26 x 220
26
= 2%0 =1 EB
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The contents of this slide-set are based on the
following references

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

Werner Vogels: Dynamo: Amazon's Highly Available Key-value Store. SOSP 2007:
205-220

Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung: The Google file system.
Proceedings of SOSP 2003: 29-43.
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