
COMPUTER SCIENCE DEPARTMENT

CS X55: DISTRIBUTED SYSTEMS

[DYNAMO & GFS]

Shrideep Pallickara

Computer Science

Colorado State University

Go virtual!

Looking to scale

 As things fail?

Go with nodes that are virtual

 And, yes, they are just as real

Allowing nodes to take on load

 That balance without arduous code

Commensurate with ability

 With hotspots a very slim possibility

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.2

Frequently asked questions from the previous class

survey

 Do sloppy quorums need DHTs as its underlying structure?

 Virtual nodes …?

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.3

Topics covered in this lecture

 Amazon’s Dynamo

 Partitioning Algorithm

 Replication & Versioning

 Experiences

 The Google File System

COMPUTER SCIENCE DEPARTMENT

CHORD

My room is round when I lay down, when I wake up it’s square

When I go outside it’s on a spiral set of stairs

The people that surround me are waiting out there

In a round room they can’t find me anywhere

The Round Room; Mike Gordon; Phish

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.5

The Chord System

 Assigns IDs to keys and nodes from the same 1-dimensional ID space

 Nodes are organized into a ring

 Data item with key k is mapped to a node with the smallest id ≥ k

 Also referred to as successor(k)

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.6

Mapping of data items to nodes in Chord

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

Actual Node

{2,3,4}

{5,6,7}

{8,9,10,11,12}

{13,14,15}

Associated data keys

{0,1}
Node does not exist

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.7

An example of inserting a new node

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

Actual Node

{2,3,4}

{5,6,7}

{8,9,10,11,12}

{13,14,15}

Associated data keys

{0,1}

New node 10
will be inserted

Succ(12) = 15
Pred(12) = 7

Succ(7) = 12
Pred(7) = 4

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.8

An example of inserting a new node

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

Actual Node

{2,3,4}

{5,6,7}

{13,14,15}

Associated data keys

{0,1}

Succ(12) = 15
Pred(12) = 10

Succ(7) = 10
Pred(7) = 4

Succ(10) = 12
Pred(10) = 7

{11,12}

{8,9,10}

COMPUTER SCIENCE DEPARTMENT

DYNAMO

PARTITIONING

ALGORITHM

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.10

A key requirement is that Dynamo must scale

incrementally

 Dynamically partition data over a set of storage nodes

 Uses consistent hashing

 DHT

 Data item identified by key

◼ Assigned to node responsible for MD5-hash(key)

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.11

Basic hashing scheme presents some challenges

 Random position assignment may lead to

 Non-uniform data and load distribution

 Algorithm oblivious to heterogeneity of devices

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.12

Dynamo uses a variant of consistent hashing

 Introduces the notion of virtual nodes

 Virtual node looks like a real node

 Each node is responsible for more than 1 virtual nodes

 A node is assigned multiple positions in the ring

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.13

Advantages of virtual nodes

 If a node becomes unavailable

 Load handled by failed node, dispersed across remaining virtual nodes

 When node becomes available again

 Accepts roughly the same amount of work from other nodes

 Number of virtual nodes are decided based on machine’s capacity

COMPUTER SCIENCE DEPARTMENT

DYNAMO REPLICATION

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.15

Dynamo replicates data on multiple hosts

 Each data item is replicated at N hosts

 Coordinator is responsible for nodes that fall in its range

 Additionally, a coordinator replicates key at N-1 clockwise successor

nodes

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.16

What does this mean?

 Each node is responsible for region between

 Itself and its Nth predecessor

 List of nodes responsible for a key

 Preference list

 A node maintains a list of more than N to account for failures

 Account for virtual nodes

◼ Make sure your list contains different physical nodes

COMPUTER SCIENCE DEPARTMENT

DYNAMO VERSIONING

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.18

Data versioning

 A put() may return before it is applied to all replicas

 If there are no failures

 Upper bound on update propagation times

 If there are failures

 Things take much longer

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.19

There are applications at Amazon that tolerate this

 Shopping carts

 Add to Cart can never be forgotten or rejected

 If most recent state of cart unavailable

 Make changes to the older version

 Divergent versions are reconciled later

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.20

Dynamo treats each modification as a new,

immutable version of the data

 Multiple versions of data present at same time

 Often new versions subsume old data

 Syntactic reconciliation

 When an automatic reconciliation is not possible

 Clients have to do it

 Collapse branches into one

 Manage your shopping cart

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.21

Dynamo uses vector clocks to capture causality

 A vector clock for each version of the object

 Two versions of object being compared

 If VC1 <= VC2 for all indices of the vector clock

◼ O1 occurred before O2

 Otherwise, changes are in conflict

◼ Need reconciliation

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.22

A client must specify which version it is updating

 Pass context from an earlier read operation

 Context contains vector clock information

 Requests with branches that cannot be reconciled?

 Returns all objects with versioning info in context

 Update done using this context reconciles and collapses all branches

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.23

Execution of get() and put() operations

 Read and write operations involve the first N healthy nodes

 During failures, nodes lower in priority are accessed

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.24

To maintain consistency, Dynamo uses a quorum

protocol

 Uses configurable settings for replicas that must participate in

 Reads

 Writes

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.25

Quorum-based protocols:

When there are N replicas

 Read quorum NR

 To modify a file write-quorum NW

 NR + NW > N

 Prevent read-write conflict

 NW > N/2

 Prevent write-write conflict

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.26

A B C D

E F G H

I J K L

Quorum-based protocols:

Example

NR=3 NW=10

A B C D

E F G H

I J K L

NR=7 NW=6

☺


Write-write conflict
Concurrent writes to
{A, B, C, E, F, G} and {D, H, I, J, K, L}
 will be accepted

Read Quorum:

Write Quorum:

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.27

Upon receiving a put() request for a key

 Coordinator generates a vector clock for new version

 Sends new version to N highest-ranked reachable nodes

 If at least NW − 1 nodes respond: write is successful!

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.28

External Discovery: During node adds

 When A and B join, it might be a while before they know each other’s

existence

 Logical partitioning

 Use seed nodes that are known to all nodes

 All nodes reconcile membership with seed

COMPUTER SCIENCE DEPARTMENT

DYNAMO: EXPERIENCES

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.30

Popular reconciliation strategies

 Business logic specific

 Timestamp

 Last write wins

 High performance read engine

 High read rates

 Small update rates

◼ NR=1 and NW=N

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.31

A B C D

E F G H

I J K L

Quorum-based protocols:

Example 2

NR=1 NW=12

☺

Read Quorum:

Write Quorum:

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.32

Common configuration of the quorum

 NR=2

 NW=2

 N=3

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.33

Balancing performance and durability

 Some services not happy with 300 ms SLA

 Writes tend to be slower than reads

 To cope with this, nodes maintain object buffer

 Main memory

 Periodically written to storage

COMPUTER SCIENCE DEPARTMENT

THE GOOGLE FILE SYSTEM

SANJAY GHEMAWAT, HOWARD GOBIOFF, SHUN-TAK LEUNG:

The Google file system. Proceedings of SOSP 2003: 29-43

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.35

Broad brushstroke themes in current extreme scale

storage systems

 Voluminous data

 Commodity hardware

 Distributed Data

 Expect failures

 Tune for access by applications

 Optimize for dominant usage

 Tradeoff between consistency and availability

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.36

Demand pulls in GFS: I

 Component failures are the norm

 Files are huge by traditional standards

 File mutations predominantly through appends

 Not overwrites

 Applications and File system API designed in lock-step

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.37

Demand pulls in GFS - II

 Hundreds of producers will concurrently append to a file

 Many-way merging

 High sustained bandwidth is more important than low latency

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.38

The file system interface

 Does not implement standard APIs such as POSIX

 Supports create, delete, open, close, read and write

 snapshot

 Create a fast copy of file and directory tree

 record append

 Multiple writers can concurrently append records to the same file

◼ Without additional locking

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.39

Architecture of GFS

GFS

Master

GFS Chunk

Server

GFS Chunk

Server

GFS Chunk

Server
...

Linux File

System

Linux File

System

Linux File

System

Client

Client

...

Client

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.40

In GFS a file is broken up into fixed-size chunks

 Obvious reason

 The file is too big

 Set the stage for computations that operate on this data

 Parallel I/O

 I/O seek times are 14 x 106 slower than CPU clock cycles

Map-Reduce

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.41

In GFS a file is broken up into fixed-size chunks

 Each chunk has a 64-bit globally unique ID

 Assigned by the Master

 Chunks are stored by chunk servers

 On local disks as LINUX files

 Each chunk is replicated

 Default is 3

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.42

Master operations

 Manage system metadata

 Leasing of chunks

 Garbage collection of orphaned chunks

 Chunk migrations

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.43

ALL system metadata is managed by the Master and

stored in main memory

① File and chunk namespaces

② Mapping from files to chunks

③ Location of chunks

Logs mutations
into a permanent log

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.44

Why have a single Master?

 Vastly simplifies design

 Easy to use global knowledge to reason about

 Chunk placements

 Replication decisions

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.45

Communications with the chunk servers

 Periodic communications using heartbeats

 Instructions to the chunk server

 Collect/retrieve state from the chunk server

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.46

Chunk size

 This is fixed at 64 MB

 Much larger than typical filesystem block sizes (512 bytes)

 Lazy space allocation

 Stored as plain Linux file

 Extended only as needed

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.47

But why this big?

 Reduces client interaction with the master

 Can cache info for a multi-TB working set

 Reduce network overhead

 With a large chunk, client performs more operations

 Persistent connections

 Reduce size of metadata stored in the master

 64 bytes of metadata per 64 MB chunk

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.48

Why keep the entire metadata in memory?

 Speed

 Master can scan its state in the background

 Implement chunk garbage collection

 Re-replicate if there are failures

 Chunk migration to balance load and space

 Add extra memory to increase file system size

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.49

Size of the file system with 1 TB of RAM: Assume file sizes are exact

multiples of chunk sizes

 Number of entries = 240/26

 MAXIMUM SIZE of the file system

 = Number of entries x Chunk size

 = 240 x 26 x 220

 26

 = 260 = 1 EB

DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.50

The contents of this slide-set are based on the

following references

 Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

Werner Vogels: Dynamo: Amazon's Highly Available Key-value Store. SOSP 2007:

205-220

 Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung: The Google file system.

Proceedings of SOSP 2003: 29-43.

	Slide 1: CS x55: Distributed Systems [Dynamo & GFS]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: CHORD
	Slide 5: The Chord System
	Slide 6: Mapping of data items to nodes in Chord
	Slide 7: An example of inserting a new node
	Slide 8: An example of inserting a new node
	Slide 9: Dynamo Partitioning Algorithm
	Slide 10: A key requirement is that Dynamo must scale incrementally
	Slide 11: Basic hashing scheme presents some challenges
	Slide 12: Dynamo uses a variant of consistent hashing
	Slide 13: Advantages of virtual nodes
	Slide 14: Dynamo Replication
	Slide 15: Dynamo replicates data on multiple hosts
	Slide 16: What does this mean?
	Slide 17: Dynamo Versioning
	Slide 18: Data versioning
	Slide 19: There are applications at Amazon that tolerate this
	Slide 20: Dynamo treats each modification as a new, immutable version of the data
	Slide 21: Dynamo uses vector clocks to capture causality
	Slide 22: A client must specify which version it is updating
	Slide 23: Execution of get() and put() operations
	Slide 24: To maintain consistency, Dynamo uses a quorum protocol
	Slide 25: Quorum-based protocols: When there are N replicas
	Slide 26: Quorum-based protocols: Example
	Slide 27: Upon receiving a put() request for a key
	Slide 28: External Discovery: During node adds
	Slide 29: Dynamo: Experiences
	Slide 30: Popular reconciliation strategies
	Slide 31: Quorum-based protocols: Example 2
	Slide 32: Common configuration of the quorum
	Slide 33: Balancing performance and durability
	Slide 34: The Google File System
	Slide 35: Broad brushstroke themes in current extreme scale storage systems
	Slide 36: Demand pulls in GFS: I
	Slide 37: Demand pulls in GFS - II
	Slide 38: The file system interface
	Slide 39: Architecture of GFS
	Slide 40: In GFS a file is broken up into fixed-size chunks
	Slide 41: In GFS a file is broken up into fixed-size chunks
	Slide 42: Master operations
	Slide 43: All system metadata is managed by the Master and stored in main memory
	Slide 44: Why have a single Master?
	Slide 45: Communications with the chunk servers
	Slide 46: Chunk size
	Slide 47: But why this big?
	Slide 48: Why keep the entire metadata in memory?
	Slide 49: Size of the file system with 1 TB of RAM: Assume file sizes are exact multiples of chunk sizes
	Slide 50: The contents of this slide-set are based on the following references

