CS X55: DISTRIBUTED SYSTEMS
[DYNAMO & GFS$S]

Go virtual!

Looking to scale
As things fail?

Go with nodes that are virtual
And, yes, they are just as real

Allowing nodes to take on load

That balance without arduous code Shrideep qulicquq

Commensurate with ability

With hotspots a very slim possibility Compu’rer Science

Colorado State University

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

Frequently asked questions from the previous class

survey
N

1 Do sloppy quorums need DHTs as its underlying structure?

1 Virtual nodes ...2

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.2

Topics covered in this lecture
—

7 Amazon’s Dynamo
Partitioning Algorithm
Replication & Versioning

Experiences

1 The Google File System

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.3

My room is round when | lay down, when | wake up it’s square
When | go outside it’s on a spiral set of stairs
The people that surround me are waiting out there

In a round room they can’t find me anywhere
The Round Room; Mike Gordon; Phish

LARRTRRANY

1'“

CHORD

The Chord System

Assigns IDs to keys and nodes from the same 1-dimensional ID space

Nodes are organized into a ring

Data item with key k is mapped to a node with the smallest id 2 k

Also referred to as successor (k)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.5

Mapping of data items to nodes in Chord

I
Actual Node
OR 0%
e S o1 | 2
14) {13,14,15} .+ Node does not exist

Associated data keys
{8,9,10,11,12}

e ~,

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.6

An example of inserting a new node

P ~

{0,1} { 2 |

Succ(12) = 15 Associated data keys

Pred(12) = 7 {8,9,10,11,12} {2,3,4}
11 (5
YT (5,6,7)
New node 10 .\ '° L —. 8
will be inserted : \1) oo - 12
N’ Pred(7) = 4

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.7

An example of inserting a new node

- ~

SN

Associated data keys

Succ(12) = 15 {2,3,4}
(11,12} =y
Pred(12) = 10
oy 5)
S 8,9,10} . _ _ . oy
{ booos,6,71 o
o o
Suce(10) = 12 AW /@M
Pred(10) = 7 /1 8] Succ(7) = 10
COLORADO STATE UNIVERSITY rofessor: SHRIDEEP ProTn Prg a7 ngs
COMPUTER SCIENCE DEPARTMENT YNAMO

L.38.8

DYNAMO
PARTITIONING
ALGORITHM

@ COLORADO STATE UNIVERSITY

A key requirement is that Dynamo must scale

incrementally
=

o1 Dynamically partition data over a set of storage nodes

7 Uses consistent hashing
DHT

Data item identified by key
u Assigned to node responsible for MD5-hash(key)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.10

Basic hashing scheme presents some challenges
—

1 Random position assignment may lead to

Non-uniform data and load distribution

- Algorithm oblivious to heterogeneity of devices

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.11

Dynamo uses a variant of consistent hashing

Introduces the notion of virtual nodes
Virtual node looks like a real node

Each node is responsible for more than 1 virtual nodes

A node is assigned multiple positions in the ring

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.12

Advantages of virtual nodes

If a node becomes unavailable

Load handled by failed node, dispersed across remaining virtual nodes

When node becomes available again

Accepts roughly the same amount of work from other nodes

Number of virtual nodes are decided based on machine’s capacity

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.13

DYNAMO REPLICATION

COMPUTER SCIENCE DEPARTMENT (®%%) COLORADO STATE UNIVERSITY

Dynamo replicates data on multiple hosts

Each data item is replicated at N hosts
Coordinator is responsible for nodes that fall in its range

Additionally, a coordinator replicates key at N-1 clockwise successor

nodes

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.15

What does this mean?

Each node is responsible for region between

Itself and its N™ predecessor

List of nodes responsible for a key

Preference list

A node maintains a list of more than N to account for failures

Account for virtual nodes

Make sure your list contains different physical nodes

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.16

DYNAMO VERSIONING

COMPUTER SCIENCE DEPARTMENT (®%%) COLORADO STATE UNIVERSITY

Data versioning

A put() may return before it is applied to all replicas

If there are no failures

Upper bound on update propagation times

If there are failures

Things take much longer

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.18

There are applications at Amazon that tolerate this

Shopping carts

Add to Cart can never be forgotten or rejected

If most recent state of cart unavailable

Make changes to the older version

Divergent versions are reconciled later

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.19

Dynamo treats each modification as a new,

immutable version of the data

Multiple versions of data present at same time

Often new versions subsume old data

Syntactic reconciliation

When an automatic reconciliation is not possible
Clients have to do it
Collapse branches into one

Manage your shopping cart

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DyNAMO & GFS

1.38.20

Dynamo uses vector clocks to capture causality

A vector clock for each version of the object

Two versions of object being compared
If VC, <= VC, for all indices of the vector clock

O, occurred before O,

Otherwise, changes are in conflict

Need reconciliation

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.21

A client must specify which version it is updating

Pass context from an earlier read operation

Context contains vector clock information

Requests with branches that cannot be reconciled?
Returns all objects with versioning info in context

Update done using this context reconciles and collapses all branches

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.22

Execution of get() and put() operations
=

1 Read and write operations involve the first N healthy nodes

7 During failures, nodes lower in priority are accessed

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.23

To maintain consistency, Dynamo uses a quorum

protocol
E—

- Uses configurable settings for replicas that must participate in
Reads
Writes

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.24

Quorum-based protocols:
When there are N replicas

- Read quorum Ny

- To modify a file write-quorum Ny

-+ Ng + Ny >N

Prevent read-write conflict

7 Ny > N/2

Prevent write-write conflict

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.25

Quorum-based protocols:
Example

Ne=3 Ny,=10

Write-write conflict @

Concurrent writes to

. | (A.B, C.E F, G}and {D, H, I, J, K, L}
Write QUOrUM: will be accepted

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.26

Read QuUorum:

Upon receiving a put() request for a key

Coordinator generates a vector clock for new version
Sends new version to N highest-ranked reachable nodes

If at least Nyy — 1 nodes respond: write is successfull

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.27

External Discovery: During node adds

When A and B join, it might be a while before they know each other’s
existence

Logical partitioning

Use seed nodes that are known to all nodes

All nodes reconcile membership with seed

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.28

DYNAMO: EXPERIENCES

COMPUTER SCIENCE DEPARTMENT (®%%) COLORADO STATE UNIVERSITY

Popular reconciliation strategies

Business logic specific

Timestamp

Last write wins

High performance read engine
High read rates

Small update rates
N.=1 and N,,=N

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.30

Quorum-based protocols:

Example 2
=

Read QuUorum:
Write QUOrum:

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.31

Common configuration of the quorum
N
1 Np=2
0 Nw=2
0 N=3

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DyYNAMO & GFS L38.32

Balancing performance and durability

Some services not happy with 300 ms SLA

Writes tend to be slower than reads

To cope with this, nodes maintain object buffer
Main memory

Periodically written to storage

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.33

SANJAY GHEMAWAT, HOWARD GOBIOFF, SHUN-TAK LEUNG:
The Google file system. Proceedings of SOSP 2003: 29-43

THE GOOGLE FILE SYSTEM

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

Broad brushstroke themes in current extreme scale
stforage systems

Voluminous data

Commodity hardware
Distributed Data

Expect failures

Tune for access by applications
Optimize for dominant usage

Tradeoff between consistency and availability

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.35

Demand pulls in GFS: |

Component failures are the norm
Files are huge by traditional standards

File mutations predominantly through appends

Not overwrites

Applications and File system APl designed in lock-step

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L.38.36

Demand pulls in GFS - |l

Hundreds of producers will concurrently append to a file

Many-way merging

High sustained bandwidth is more important than low latency

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.37

The file system interface

Does not implement standard APIs such as POSIX

Supports create, delete, open, close, read and write

snapshot

Create a fast copy of file and directory tree

record append
Multiple writers can concurrently append records to the same file

Without additional locking

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.38

| Client
_ Client

(c.| i.e.ni)

Architecture of GFS

GFS Chunk GFS Chunk
Server Server
Linux File Linux File
System System

GFS Chunk
Server

Professor: SHRIDEEP PALLICKARA

COLORADD STATE UNIVERSITY coypyrER SCIENCE DEPARTMENT

Linux File
System

DyNnAMO & GFS

L38.39

In GFS a file is broken up into fixed-size chunks
=

1 Obvious reason

The file is too big
Map-Reduce

|

- Set the stage for computations that operate on this data
Parallel 1/0O

1/O seek times are 14 x 10° slower than CPU clock cycles

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.40

In GFS a file is broken up into fixed-size chunks

= Each chunk has a 64-bit globally unique ID
Assigned by the Master

1 Chunks are stored by chunk servers
On local disks as LINUX files

= Each chunk is replicated
Default is 3

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.41

Master operations
=

7 Manage system metadata
7 Leasing of chunks
7 Garbage collection of orphaned chunks

1 Chunk migrations

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.42

ALL system metadata is managed by the Master and

stored in main memory
——

(1) File and chunk namespaces
(2) Mapping from files to chunks Logs mutations

into a permanent log

(3) Location of chunks

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.43

Why have a single Master?
=

o Vastly simplifies design

- Easy to use global knowledge to reason about

Chunk placements

Replication decisions

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.44

Communications with the chunk servers
—

71 Periodic communications using heartbeats

Instructions to the chunk server

Collect /retrieve state from the chunk server

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.45

Chunk size

This is fixed at 64 MB
Much larger than typical filesystem block sizes (512 bytes)

Lazy space allocation

Stored as plain Linux file

Extended only as needed

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L.38.46

But why this big?

Reduces client interaction with the master

Can cache info for a multi-TB working set

Reduce network overhead
With a large chunk, client performs more operations

Persistent connections

Reduce size of metadata stored in the master
64 bytes of metadata per 64 MB chunk

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.47

Why keep the entire metadata in memory?

Speed

Master can scan its state in the background
Implement chunk garbage collection
Re-replicate if there are failures

Chunk migration to balance load and space

Add extra memory to increase file system size

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.48

Size of the file system with 1 TB of RAM: Assume file sizes are exact

multiples of chunk sizes
I

- Number of entries = 240/2¢

1 MAXIMUM SIZE of the file system
= Number of entries x Chunk size

= 240 x 26 x 220
26
= 2%0 =1 EB

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.49

The contents of this slide-set are based on the
following references

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

Werner Vogels: Dynamo: Amazon's Highly Available Key-value Store. SOSP 2007:
205-220

Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung: The Google file system.
Proceedings of SOSP 2003: 29-43.

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT DYNAMO & GFS L38.50

	Slide 1: CS x55: Distributed Systems [Dynamo & GFS]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: CHORD
	Slide 5: The Chord System
	Slide 6: Mapping of data items to nodes in Chord
	Slide 7: An example of inserting a new node
	Slide 8: An example of inserting a new node
	Slide 9: Dynamo Partitioning Algorithm
	Slide 10: A key requirement is that Dynamo must scale incrementally
	Slide 11: Basic hashing scheme presents some challenges
	Slide 12: Dynamo uses a variant of consistent hashing
	Slide 13: Advantages of virtual nodes
	Slide 14: Dynamo Replication
	Slide 15: Dynamo replicates data on multiple hosts
	Slide 16: What does this mean?
	Slide 17: Dynamo Versioning
	Slide 18: Data versioning
	Slide 19: There are applications at Amazon that tolerate this
	Slide 20: Dynamo treats each modification as a new, immutable version of the data
	Slide 21: Dynamo uses vector clocks to capture causality
	Slide 22: A client must specify which version it is updating
	Slide 23: Execution of get() and put() operations
	Slide 24: To maintain consistency, Dynamo uses a quorum protocol
	Slide 25: Quorum-based protocols: When there are N replicas
	Slide 26: Quorum-based protocols: Example
	Slide 27: Upon receiving a put() request for a key
	Slide 28: External Discovery: During node adds
	Slide 29: Dynamo: Experiences
	Slide 30: Popular reconciliation strategies
	Slide 31: Quorum-based protocols: Example 2
	Slide 32: Common configuration of the quorum
	Slide 33: Balancing performance and durability
	Slide 34: The Google File System
	Slide 35: Broad brushstroke themes in current extreme scale storage systems
	Slide 36: Demand pulls in GFS: I
	Slide 37: Demand pulls in GFS - II
	Slide 38: The file system interface
	Slide 39: Architecture of GFS
	Slide 40: In GFS a file is broken up into fixed-size chunks
	Slide 41: In GFS a file is broken up into fixed-size chunks
	Slide 42: Master operations
	Slide 43: All system metadata is managed by the Master and stored in main memory
	Slide 44: Why have a single Master?
	Slide 45: Communications with the chunk servers
	Slide 46: Chunk size
	Slide 47: But why this big?
	Slide 48: Why keep the entire metadata in memory?
	Slide 49: Size of the file system with 1 TB of RAM: Assume file sizes are exact multiples of chunk sizes
	Slide 50: The contents of this slide-set are based on the following references

