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Go virtual!

Looking to scale

    As things fail?

Go with nodes that are virtual

    And, yes, they are just as real

Allowing nodes to take on load

     That balance     without arduous code

Commensurate with ability

     With hotspots    a very slim possibility
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Frequently asked questions from the previous class 

survey

 Do sloppy quorums need DHTs as its underlying structure?

 Virtual nodes …?
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Topics covered in this lecture

 Amazon’s Dynamo

 Partitioning Algorithm

 Replication & Versioning

 Experiences

 The Google File System
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CHORD

My room is round when I lay down, when I wake up it’s square

When I go outside it’s on a spiral set of stairs

The people that surround me are waiting out there

In a round room they can’t find me anywhere

The Round Room; Mike Gordon; Phish 
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The Chord System

 Assigns IDs to keys and nodes from the same 1-dimensional ID space

 Nodes are organized into a ring

 Data item with key k is mapped to a node with the smallest id ≥ k 

 Also referred to as successor(k)
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Mapping of data items to nodes in Chord
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Actual Node

{2,3,4}

{5,6,7}

{8,9,10,11,12}

{13,14,15}

Associated data keys

{0,1}
Node does not exist
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An example of inserting a new node
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{2,3,4}

{5,6,7}

{8,9,10,11,12}

{13,14,15}

Associated data keys

{0,1}

New node 10
will be inserted

Succ(12) = 15
Pred(12) = 7

Succ(7) = 12
Pred(7) = 4
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An example of inserting a new node
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Actual Node

{2,3,4}

{5,6,7}

{13,14,15}

Associated data keys

{0,1}

Succ(12) = 15
Pred(12) = 10

Succ(7) = 10
Pred(7) = 4

Succ(10) = 12
Pred(10) =  7

{11,12}

{8,9,10}
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DYNAMO 

PARTITIONING 

ALGORITHM 
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A key requirement is that Dynamo must scale 

incrementally

 Dynamically partition data over a set of storage nodes

 Uses consistent hashing

 DHT

 Data item identified by key

◼ Assigned to node responsible for MD5-hash(key)



DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.11

Basic hashing scheme presents some challenges

 Random position assignment may lead to

 Non-uniform data and load distribution

 Algorithm oblivious to heterogeneity of devices
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Dynamo uses a variant of consistent hashing

 Introduces the notion of virtual nodes

 Virtual node looks like a real node

 Each node is responsible for more than 1 virtual nodes

 A node is assigned multiple positions in the ring
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Advantages of virtual nodes

 If a node becomes unavailable

 Load handled by failed node, dispersed across remaining virtual nodes

 When node becomes available again

 Accepts roughly the same amount of work from other nodes

 Number of virtual nodes are decided based on machine’s capacity
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Dynamo replicates data on multiple hosts

 Each data item is replicated at N hosts

 Coordinator is responsible for nodes that fall in its range

 Additionally, a coordinator replicates key at N-1 clockwise successor 

nodes
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What does this mean?

 Each node is responsible for region between 

 Itself and its Nth predecessor

 List of nodes responsible for a key

 Preference list

 A node maintains a list of more than N to account for failures

 Account for virtual nodes

◼ Make sure your list contains different physical nodes
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DYNAMO VERSIONING
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Data versioning

 A put() may return before it is applied to all replicas

 If there are no failures

 Upper bound on update propagation times

 If there are failures

 Things take much longer
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There are applications at Amazon that tolerate this

 Shopping carts

 Add to Cart can never be forgotten or rejected

 If most recent state of cart unavailable

 Make changes to the older version

 Divergent versions are reconciled later
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Dynamo treats each modification as a new, 

immutable version of the data

 Multiple versions of data present at same time

 Often new versions subsume old data

 Syntactic reconciliation

 When an automatic reconciliation is not possible

 Clients have to do it

 Collapse branches into one

 Manage your shopping cart
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Dynamo uses vector clocks to capture causality

 A vector clock for each version of the object

 Two versions of object being compared

 If VC1 <= VC2 for all indices of the vector clock

◼ O1 occurred before O2

 Otherwise, changes are in conflict

◼ Need reconciliation



DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.22

A client must specify which version it is updating

 Pass context from an earlier read operation

 Context contains vector clock information

 Requests with branches that cannot be reconciled?

 Returns all objects with versioning info in context

 Update done using this context reconciles and collapses all branches
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Execution of get() and put() operations

 Read and write operations involve the first N healthy nodes

 During failures, nodes lower in priority are accessed
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To maintain consistency, Dynamo uses a quorum 

protocol

 Uses configurable settings for replicas that must participate in

 Reads

 Writes
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Quorum-based protocols:

When there are N replicas

 Read quorum NR

 To modify a file write-quorum NW

 NR + NW > N

 Prevent read-write conflict

 NW > N/2

 Prevent write-write conflict
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A B C D

E F G H

I J K L

Quorum-based protocols:

Example

NR=3 NW=10

A B C D

E F G H

I J K L

NR=7 NW=6

☺


Write-write conflict
Concurrent writes to 
{A, B, C, E, F, G} and  {D, H, I, J, K, L}   
              will be accepted

Read Quorum:  

Write Quorum:  
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Upon receiving a put() request for a key

 Coordinator generates a vector clock for new version

 Sends new version to N highest-ranked reachable nodes

 If at least NW − 1 nodes respond: write is successful!
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External Discovery: During node adds

 When A and B join, it might be a while before they know each other’s 

existence

 Logical partitioning

 Use seed nodes that are known to all nodes

 All nodes reconcile membership with seed
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Popular reconciliation strategies

 Business logic specific

 Timestamp

 Last write wins

 High performance read engine

 High read rates 

 Small update rates

◼ NR=1 and NW=N
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A B C D

E F G H

I J K L

Quorum-based protocols:

Example 2

NR=1 NW=12

☺

Read Quorum:  

Write Quorum:  
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Common configuration of the quorum

 NR=2

 NW=2

 N=3
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Balancing performance and durability

 Some services not happy with 300 ms SLA

 Writes tend to be slower than reads

 To cope with this, nodes maintain object buffer

 Main memory

 Periodically written to storage 
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THE GOOGLE FILE SYSTEM

SANJAY GHEMAWAT, HOWARD GOBIOFF, SHUN-TAK LEUNG: 

The Google file system.  Proceedings of SOSP 2003: 29-43
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Broad brushstroke themes in current extreme scale 

storage systems

 Voluminous data

 Commodity hardware

 Distributed Data

 Expect failures

 Tune for access by applications

 Optimize for dominant usage

 Tradeoff between consistency and availability
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Demand pulls in GFS: I

 Component failures are the norm

 Files are huge by traditional standards

 File mutations predominantly through appends

 Not overwrites

 Applications and File system API designed in lock-step
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Demand pulls in GFS - II

 Hundreds of producers will concurrently append to a file

 Many-way merging

 High sustained bandwidth is more important than low latency
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The file system interface

 Does not implement standard APIs such as POSIX

 Supports create, delete, open, close, read and write

 snapshot

 Create a fast copy of file and directory tree

 record append

 Multiple writers can concurrently append records to the same file

◼ Without additional locking
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Architecture of GFS

GFS 

Master

GFS Chunk 

Server

GFS Chunk 

Server

GFS Chunk 

Server
...

Linux File 

System

Linux File 

System

Linux File 

System

Client

Client

...

Client
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In GFS a file is broken up into fixed-size chunks

 Obvious reason

 The file is too big

 Set the stage for computations that operate on this data

 Parallel I/O

 I/O seek times are 14 x 106 slower than CPU clock cycles

Map-Reduce
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In GFS a file is broken up into fixed-size chunks

 Each chunk has a 64-bit globally unique ID

 Assigned by the Master

 Chunks are stored by chunk servers

 On local disks as LINUX files

 Each chunk is replicated

 Default is 3 
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Master operations

 Manage system metadata

 Leasing of chunks

 Garbage collection of orphaned chunks

 Chunk migrations
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ALL system metadata is managed by the Master and 

stored in main memory

①  File and chunk namespaces

②  Mapping from files to chunks

③  Location of chunks

Logs mutations 
into a permanent log
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Why have a single Master?

 Vastly simplifies design

 Easy to use global knowledge to reason about

 Chunk placements

 Replication decisions



DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.45

Communications with the chunk servers

 Periodic communications using heartbeats

 Instructions to the chunk server

 Collect/retrieve state from the chunk server
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Chunk size

 This is fixed at 64 MB

 Much larger than typical filesystem block sizes (512 bytes)

 Lazy space allocation

 Stored as plain Linux file

 Extended only as needed
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But why this big?

 Reduces client interaction with the master

 Can cache info for a multi-TB working set

 Reduce network overhead

 With a large chunk, client performs more operations

 Persistent connections

 Reduce size of metadata stored in the master

 64 bytes of metadata per 64 MB chunk



DYNAMO & GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L38.48

Why keep the entire metadata in memory?

 Speed

 Master can scan its state in the background

 Implement chunk garbage collection

 Re-replicate if there are failures

 Chunk migration to balance load and space

 Add extra memory to increase file system size 
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Size of the file system with 1 TB of RAM: Assume file sizes are exact 

multiples of chunk sizes 

 Number of entries = 240/26

 MAXIMUM SIZE of the file system 

             = Number of entries x Chunk size

                 = 240 x  26 x 220

                  26       

                = 260 = 1 EB        
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The contents of this slide-set are based on the 

following references

 Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, 

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, 

Werner Vogels: Dynamo: Amazon's Highly Available Key-value Store. SOSP 2007: 

205-220

 Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung: The Google file system. 

Proceedings of SOSP 2003: 29-43.
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