CS X55: DISTRIBUTED SYSTEMS
[THE GOOGLE FILE SYSTEM]

Chunks and Memory
A file has many a chunk
all the same size, of course
Keep track of these chunks
not just the where,
but also the how many.

Keep this all in memory
at the controller

To then decide Shrideep PCI”iCkCII"CI

h h i
who goes where Computer Science

or if you need to rebalance.

Colorado State University

The data may roam free
but the controller always keeps score.

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

Frequently asked questions from the previous class
survey

Does the O(N) routing table pose issues for Dynamo’s scalability?
What’s the preferred file system for systems such as Dynamo or GFS?
Does the GFS master node have a disk?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.2

Topics covered in this lecture

S 1 —
1 The Google File System

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.3

Architecture of GFS

| Client
_ Client

(c.| i.e.ni)

GFS Chunk GFS Chunk
Server Server
Linux File Linux File
System System

Professor: SHRIDEEP PALLICKARA

COLORADD STATE UNIVERSITY coypyrER SCIENCE DEPARTMENT

GFS

GFS Chunk
Server

Linux File
System

L39.4

In GFS a file is broken up into fixed-size chunks
=

1 Obvious reason

The file is too big
Map-Reduce

|

- Set the stage for computations that operate on this data
Parallel 1/0O

1/O seek times are 14 x 10° slower than CPU clock cycles

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.5

In GFS a file is broken up into fixed-size chunks

= Each chunk has a 64-bit globally unique ID
Assigned by the Master

1 Chunks are stored by chunk servers
On local disks as LINUX files

= Each chunk is replicated
Default is 3

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.6

Master operations
=

7 Manage system metadata
7 Leasing of chunks
7 Garbage collection of orphaned chunks

1 Chunk migrations

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.7

ALL system metadata is managed by the Master and

stored in main memory
——

(1) File and chunk namespaces
(2) Mapping from files to chunks Logs mutations

into a permanent log

(3) Location of chunks

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.8

Why have a single Master?
=

o Vastly simplifies design

- Easy to use global knowledge to reason about

Chunk placements

Replication decisions

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.9

Communications with the chunk servers
—

71 Periodic communications using heartbeats

Instructions to the chunk server

Collect /retrieve state from the chunk server

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.10

Chunk size

This is fixed at 64 MB
Much larger than typical filesystem block sizes (512B up to 4KB)

Lazy space allocation

Stored as plain Linux file

Extended only as needed

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.11

But why this big?

Reduces client interaction with the master

Can cache info for a multi-TB working set

Reduce network overhead
With a large chunk, client performs more operations

Persistent connections

Reduce size of metadata stored in the master
64 bytes of metadata per 64 MB chunk

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.12

Why keep the entire metadata in memory?

Speed

Master can scan its state in the background
Implement chunk garbage collection
Re-replicate if there are failures

Chunk migration to balance load and space

Add extra memory to increase file system size

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.13

Size of the file system with 1 TB of RAM: Assume file sizes are exact

multiples of chunk sizes
I

- Number of entries = 240/2¢

1 MAXIMUM SIZE of the file system
= Number of entries x Chunk size

= 240 x 26 x 220
26
= 2%0 =1 EB

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.14

Tracking the chunk servers

Master does not keep a persistent copy of the location of chunk
servers

List maintained via heart-beats
Allows list to be in sync with reality despite failures

Chunk server has final word on chunks it holds

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.15

Caching at the client/chunk servers

Clients do not cache file data
At client, the working set may be foo large

Simplify client; eliminate cache-coherence problems

Chunk servers do not cache file data either
Chunks are stored as local files

Linux’s buffer cache already keeps frequently accessed data in memory

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.16

Mutation: it is the key to our evolution.
Charles Xavier, X-Men.

MANAGING MUTATIONS

COMPUTER SCIENCE DEPARTMENT {¥j) COLORADO STATE UNIVERSITY

Mutations

Mutation changes the content and /or metadata of a chunk
Write
Append

Each mutation is performed at all chunk replicas

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.18

GFS uses leases to maintain consistent mutation

order across replicas
—

- Master grants lease to one of the replicas
PRIMARY

o Primary picks serial-order
For all mutations to the chunk

Other replicas follow this order

® When applying mutations

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.19

Lease mechanism designed to minimize
communications with the master
Lease has initial timeout of 60 seconds

As long as chunk is being mutated

Primary can request and receive extensions

Extension requests/grants piggybacked over heart-beat messages

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.20

Revocation and transfer of leases

Master may revoke a lease before it expires

If communications lost with primary

Master can safely give lease to another replica

ONLY AFTER the lease period for old primary elapses

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.21

How a write is actually performed
—

—>

Client _ . MASTER

l

Secondary
Replica A ——

|

Primary
Replica

|

-

\ 4

Secondary
ReplicaB ™ |

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.22

Client orchestrates writing data to the replicas [1 /2]
7

1 Each chunk server stores data in an LRU buffer until
2 Data is used

o1 Aged out

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.23

Client orchestrates writing data to the replicas [2 /2]
——

7 When chunk servers acknowledge receipt of data

Client sends a write request to primary

o Primary assigns consecutive serial numbers to mutations

Forwards to replicas

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.24

Data flow is decoupled from the control flow to
utilize network efficiently

Utilize each machine’s network bandwidth
Avoid network bottlenecks
Avoid high-latency links

Leverage network topology

Estimate distances from IP addresses

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.25

What if the secondary replicas could not finish the

write operation?
——

o Client request is considered failed

7 Modified region is inconsistent

No attempt to delete this from the chunk

Client must handle this inconsistency

-1 Client retries the failed mutation

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS

1.39.26

GFS client code implements the file system API

Communications with master and chunk servers done transparently

On behalf of apps that read or write data

Interact with master for metadata

Data-bearing communications directly to chunk servers

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.27

Traditional writes

Client specifies offset at which data needs to be written

Concurrent writes to same region
Not serializable

Region ends up containing data fragments from multiple clients

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.28

Atomic record appends

Client specifies only the data not the offset

GFS appends it to the file
At least once atomically
At an offset of GFS’ choosing

No need for a distributed lock manger

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.29

The control flow for record appends is similar to that

of writes
—

- Client pushes data to replicas of the last chunk of file

o Primary replica checks if the record fits in this chunk

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.30

Primary replica checks if the record append will breach the size
(64MB) threshold

If chunk size would be breached
Pad the chunk to maximum size

Tell client, that operation should be retried on next chunk

If the record fits, the primary
Appends data to its replica

Notifies secondaries to write at the exact offset

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.31

Record sizes and fragmentation
—

1 Size is restricted to Va4 the chunk size

1 Minimizes worst-case fragmentation

Internal fragmentation in each chunk ...

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.32

What if record append fails at one of the replicas

Client must retry the operation

Replicas of same chunk may contain
Different data

Duplicates of the same record

In whole or in part

Replicas of chunks are not bit-wise identical!

In most systems, replicas are identical

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS

1.39.33

GFS only guarantees that the data will be written
at least once as an atomic unit

For an operation to return success

Data must be written at the same offset on all the replicas

After the write, all replicas are as long as the end of the record

Any future record will be assigned a higher offset or a different chunk

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.34

REPLICATION

:i’a"‘.ﬁ_ .

COLORADO STATE UNIVERSITY

COMPUTER SCIENCE DEPARTMENT

Reasons why chunk replicas are created
N

1 Chunk creation
71 Re-replication

-1 Rebalancing

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.36

Chunk replica creation

Place replicas on chunk servers with below average disk space
utilization

Limit the number of recent creations on a chunk server

Predictor of imminent heavy traffic

Spread replicas across racks

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.37

Re-replicate chunks when replication level drops
—

1 How far is it from replication goal?
1 Preference for chunks of live files

- Boost priority of chunks blocking client progress

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.38

Rebalancing replicas

Examine current replica distribution and move replicas
Better disk space

Load balancing

Removal of existing replicas

Chunk servers with below-average disk space

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.39

Incorporating a new chunk server
—

7 Do not swamp new server with lots of chunks

Concomitant traffic will bog down the machine

- Gradually fill up new server with chunks

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.40

So, so you think you can tell
Heaven from hell?
Blue skies from pain?
Can you tell a green field
From a cold steel rail?
A smile from a veil?
Do you think you can tell?
Wish You Were Here; Gilmour/Waters; Pink Floyd

CREATING SNAPSHOTS

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

Snapshots allow you to make a copy of a file very
fast

Master revokes outstanding leases for any chunks of the file (source)
to be snapshot

Log the operation to disk

Update in-memory state

Duplicate metadata of the source file

Newly created file points to the same chunks as the source

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.42

When a client wants to write to a chunk C after the
snapshot operation

1 Master sees the reference count to C > 1
7 Pick new chunk-handle C’

-1 Ask chunk-server with current replica of C
Create new chunk C’

Data is copied locally, not over the network

= From this point chunk handling of C’ is no different

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.43

GFS does not have a per-directory structure that lists
files in the directory

Name spaces represented as a lookup table

Maps full pathnames to metadata

File creation does not require a lock on the directory structure

No inode needs to be protected from modification

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.44

Each master operation acquires a set of locks before
it runs

If operation involves /d1/d2/../dn/leaf

Acquire read locks on directory names
/d1, /d1/d4d2, ..., /dl1/d2/../dn

Read or write lock on full pathname
/dl1/d2/../dn/leaf

Used to prevent operations during snapshots

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.45

Locks are used to prevent operations during
snapshots

For e.g., cannot create /home/user/foo

While /home/user is being snapshotted to /save/user

Read locks on /home and /save

Read lock prevents a directory from being deleted

Write lock on /home/user and /save/user

File creation does not require write lock on parent directory ... there is no
“directory”

Read locks on /home and /home/user

Write lock on /home/user/foo

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.46

The contents of this slide-set are based on the

following references
——

7 Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung: The Google file system.
Proceedings of SOSP 2003: 29-43.

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT GFS L39.47

	Slide 1: CS x55: Distributed Systems [The Google File System]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: Architecture of GFS
	Slide 5: In GFS a file is broken up into fixed-size chunks
	Slide 6: In GFS a file is broken up into fixed-size chunks
	Slide 7: Master operations
	Slide 8: All system metadata is managed by the Master and stored in main memory
	Slide 9: Why have a single Master?
	Slide 10: Communications with the chunk servers
	Slide 11: Chunk size
	Slide 12: But why this big?
	Slide 13: Why keep the entire metadata in memory?
	Slide 14: Size of the file system with 1 TB of RAM: Assume file sizes are exact multiples of chunk sizes
	Slide 15: Tracking the chunk servers
	Slide 16: Caching at the client/chunk servers
	Slide 17: Managing Mutations
	Slide 18: Mutations
	Slide 19: GFS uses leases to maintain consistent mutation order across replicas
	Slide 20: Lease mechanism designed to minimize communications with the master
	Slide 21: Revocation and transfer of leases
	Slide 22: How a write is actually performed
	Slide 23: Client orchestrates writing data to the replicas [1/2]
	Slide 24: Client orchestrates writing data to the replicas [2/2]
	Slide 25: Data flow is decoupled from the control flow to utilize network efficiently
	Slide 26: What if the secondary replicas could not finish the write operation?
	Slide 27: GFS client code implements the file system API
	Slide 28: Traditional writes
	Slide 29: Atomic record appends
	Slide 30: The control flow for record appends is similar to that of writes
	Slide 31: Primary replica checks if the record append will breach the size (64MB) threshold
	Slide 32: Record sizes and fragmentation
	Slide 33: What if record append fails at one of the replicas
	Slide 34: GFS only guarantees that the data will be written at least once as an atomic unit
	Slide 35: Replication
	Slide 36: Reasons why chunk replicas are created
	Slide 37: Chunk replica creation
	Slide 38: Re-replicate chunks when replication level drops
	Slide 39: Rebalancing replicas
	Slide 40: Incorporating a new chunk server
	Slide 41: Creating snapshots
	Slide 42: Snapshots allow you to make a copy of a file very fast
	Slide 43: When a client wants to write to a chunk C after the snapshot operation
	Slide 44: GFS does not have a per-directory structure that lists files in the directory
	Slide 45: Each master operation acquires a set of locks before it runs
	Slide 46: Locks are used to prevent operations during snapshots
	Slide 47: The contents of this slide-set are based on the following references

