
COMPUTER SCIENCE DEPARTMENT

CS X55: DISTRIBUTED SYSTEMS

[THE GOOGLE FILE SYSTEM]

Shrideep Pallickara

Computer Science

Colorado State University

Chunks and Memory

A file has many a chunk

 all the same size, of course

Keep track of these chunks

 not just the where,

 but also the how many.

Keep this all in memory

 at the controller

To then decide

 who goes where

 or if you need to rebalance.

The data may roam free

 but the controller always keeps score.

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.2

Frequently asked questions from the previous class

survey

 Does the O(N) routing table pose issues for Dynamo’s scalability?

 What’s the preferred file system for systems such as Dynamo or GFS?

 Does the GFS master node have a disk?

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.3

Topics covered in this lecture

 The Google File System

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.4

Architecture of GFS

GFS

Master

GFS Chunk

Server

GFS Chunk

Server

GFS Chunk

Server
...

Linux File

System

Linux File

System

Linux File

System

Client

Client

...

Client

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.5

In GFS a file is broken up into fixed-size chunks

 Obvious reason

 The file is too big

 Set the stage for computations that operate on this data

 Parallel I/O

 I/O seek times are 14 x 106 slower than CPU clock cycles

Map-Reduce

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.6

In GFS a file is broken up into fixed-size chunks

 Each chunk has a 64-bit globally unique ID

 Assigned by the Master

 Chunks are stored by chunk servers

 On local disks as LINUX files

 Each chunk is replicated

 Default is 3

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.7

Master operations

 Manage system metadata

 Leasing of chunks

 Garbage collection of orphaned chunks

 Chunk migrations

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.8

ALL system metadata is managed by the Master and

stored in main memory

① File and chunk namespaces

② Mapping from files to chunks

③ Location of chunks

Logs mutations
into a permanent log

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.9

Why have a single Master?

 Vastly simplifies design

 Easy to use global knowledge to reason about

 Chunk placements

 Replication decisions

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.10

Communications with the chunk servers

 Periodic communications using heartbeats

 Instructions to the chunk server

 Collect/retrieve state from the chunk server

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.11

Chunk size

 This is fixed at 64 MB

 Much larger than typical filesystem block sizes (512B up to 4KB)

 Lazy space allocation

 Stored as plain Linux file

 Extended only as needed

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.12

But why this big?

 Reduces client interaction with the master

 Can cache info for a multi-TB working set

 Reduce network overhead

 With a large chunk, client performs more operations

 Persistent connections

 Reduce size of metadata stored in the master

 64 bytes of metadata per 64 MB chunk

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.13

Why keep the entire metadata in memory?

 Speed

 Master can scan its state in the background

 Implement chunk garbage collection

 Re-replicate if there are failures

 Chunk migration to balance load and space

 Add extra memory to increase file system size

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.14

Size of the file system with 1 TB of RAM: Assume file sizes are exact

multiples of chunk sizes

 Number of entries = 240/26

 MAXIMUM SIZE of the file system

 = Number of entries x Chunk size

 = 240 x 26 x 220

 26

 = 260 = 1 EB

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.15

Tracking the chunk servers

 Master does not keep a persistent copy of the location of chunk

servers

 List maintained via heart-beats

 Allows list to be in sync with reality despite failures

 Chunk server has final word on chunks it holds

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.16

Caching at the client/chunk servers

 Clients do not cache file data

 At client, the working set may be too large

 Simplify client; eliminate cache-coherence problems

 Chunk servers do not cache file data either

 Chunks are stored as local files

 Linux’s buffer cache already keeps frequently accessed data in memory

COMPUTER SCIENCE DEPARTMENT

MANAGING MUTATIONS

Handling writes and appends to a file

Mutation: it is the key to our evolution.

Charles Xavier, X-Men.

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.18

Mutations

 Mutation changes the content and/or metadata of a chunk

 Write

 Append

 Each mutation is performed at all chunk replicas

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.19

GFS uses leases to maintain consistent mutation

order across replicas

 Master grants lease to one of the replicas

 PRIMARY

 Primary picks serial-order

 For all mutations to the chunk

 Other replicas follow this order

◼ When applying mutations

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.20

Lease mechanism designed to minimize

communications with the master

 Lease has initial timeout of 60 seconds

 As long as chunk is being mutated

 Primary can request and receive extensions

 Extension requests/grants piggybacked over heart-beat messages

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.21

Revocation and transfer of leases

 Master may revoke a lease before it expires

 If communications lost with primary

 Master can safely give lease to another replica

◼ ONLY AFTER the lease period for old primary elapses

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.22

How a write is actually performed

Client MASTER

Secondary

Replica A

Primary

Replica

Secondary

Replica B

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.23

Client orchestrates writing data to the replicas [1/2]

 Each chunk server stores data in an LRU buffer until

 Data is used

 Aged out

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.24

Client orchestrates writing data to the replicas [2/2]

 When chunk servers acknowledge receipt of data

 Client sends a write request to primary

 Primary assigns consecutive serial numbers to mutations

 Forwards to replicas

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.25

Data flow is decoupled from the control flow to

utilize network efficiently

 Utilize each machine’s network bandwidth

 Avoid network bottlenecks

 Avoid high-latency links

 Leverage network topology

 Estimate distances from IP addresses

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.26

What if the secondary replicas could not finish the

write operation?

 Client request is considered failed

 Modified region is inconsistent

 No attempt to delete this from the chunk

 Client must handle this inconsistency

 Client retries the failed mutation

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.27

GFS client code implements the file system API

 Communications with master and chunk servers done transparently

 On behalf of apps that read or write data

 Interact with master for metadata

 Data-bearing communications directly to chunk servers

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.28

Traditional writes

 Client specifies offset at which data needs to be written

 Concurrent writes to same region

 Not serializable

 Region ends up containing data fragments from multiple clients

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.29

Atomic record appends

 Client specifies only the data not the offset

 GFS appends it to the file

 At least once atomically

 At an offset of GFS’ choosing

 No need for a distributed lock manger

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.30

The control flow for record appends is similar to that

of writes

 Client pushes data to replicas of the last chunk of file

 Primary replica checks if the record fits in this chunk

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.31

Primary replica checks if the record append will breach the size

(64MB) threshold

 If chunk size would be breached

 Pad the chunk to maximum size

 Tell client, that operation should be retried on next chunk

 If the record fits, the primary

 Appends data to its replica

 Notifies secondaries to write at the exact offset

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.32

Record sizes and fragmentation

 Size is restricted to ¼ the chunk size

 Minimizes worst-case fragmentation

 Internal fragmentation in each chunk …

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.33

What if record append fails at one of the replicas

 Client must retry the operation

 Replicas of same chunk may contain

 Different data

 Duplicates of the same record

◼ In whole or in part

 Replicas of chunks are not bit-wise identical!

 In most systems, replicas are identical

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.34

GFS only guarantees that the data will be written

at least once as an atomic unit

 For an operation to return success

 Data must be written at the same offset on all the replicas

 After the write, all replicas are as long as the end of the record

 Any future record will be assigned a higher offset or a different chunk

COMPUTER SCIENCE DEPARTMENT

REPLICATION

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.36

Reasons why chunk replicas are created

 Chunk creation

 Re-replication

 Rebalancing

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.37

Chunk replica creation

 Place replicas on chunk servers with below average disk space

utilization

 Limit the number of recent creations on a chunk server

 Predictor of imminent heavy traffic

 Spread replicas across racks

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.38

Re-replicate chunks when replication level drops

 How far is it from replication goal?

 Preference for chunks of live files

 Boost priority of chunks blocking client progress

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.39

Rebalancing replicas

 Examine current replica distribution and move replicas

 Better disk space

 Load balancing

 Removal of existing replicas

 Chunk servers with below-average disk space

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.40

Incorporating a new chunk server

 Do not swamp new server with lots of chunks

 Concomitant traffic will bog down the machine

 Gradually fill up new server with chunks

COMPUTER SCIENCE DEPARTMENT

CREATING SNAPSHOTS

So, so you think you can tell

Heaven from hell?

Blue skies from pain?

Can you tell a green field

From a cold steel rail?

A smile from a veil?

Do you think you can tell?

Wish You Were Here; Gilmour/Waters; Pink Floyd

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.42

Snapshots allow you to make a copy of a file very

fast

 Master revokes outstanding leases for any chunks of the file (source)

to be snapshot

 Log the operation to disk

 Update in-memory state

 Duplicate metadata of the source file

 Newly created file points to the same chunks as the source

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.43

When a client wants to write to a chunk C after the

snapshot operation

 Master sees the reference count to C > 1

 Pick new chunk-handle C’

 Ask chunk-server with current replica of C

 Create new chunk C’

 Data is copied locally, not over the network

 From this point chunk handling of C’ is no different

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.44

GFS does not have a per-directory structure that lists

files in the directory

 Name spaces represented as a lookup table

 Maps full pathnames to metadata

 File creation does not require a lock on the directory structure

 No inode needs to be protected from modification

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.45

Each master operation acquires a set of locks before

it runs

 If operation involves /d1/d2/…/dn/leaf

 Acquire read locks on directory names

◼ /d1, /d1/d2, …, /d1/d2/…/dn

 Read or write lock on full pathname

◼ /d1/d2/…/dn/leaf

 Used to prevent operations during snapshots

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.46

Locks are used to prevent operations during

snapshots

 For e.g., cannot create /home/user/foo

 While /home/user is being snapshotted to /save/user

 Read locks on /home and /save

 Read lock prevents a directory from being deleted

 Write lock on /home/user and /save/user

 File creation does not require write lock on parent directory … there is no
“directory”

 Read locks on /home and /home/user

 Write lock on /home/user/foo

GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.47

The contents of this slide-set are based on the

following references

 Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung: The Google file system.

Proceedings of SOSP 2003: 29-43.

	Slide 1: CS x55: Distributed Systems [The Google File System]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: Architecture of GFS
	Slide 5: In GFS a file is broken up into fixed-size chunks
	Slide 6: In GFS a file is broken up into fixed-size chunks
	Slide 7: Master operations
	Slide 8: All system metadata is managed by the Master and stored in main memory
	Slide 9: Why have a single Master?
	Slide 10: Communications with the chunk servers
	Slide 11: Chunk size
	Slide 12: But why this big?
	Slide 13: Why keep the entire metadata in memory?
	Slide 14: Size of the file system with 1 TB of RAM: Assume file sizes are exact multiples of chunk sizes
	Slide 15: Tracking the chunk servers
	Slide 16: Caching at the client/chunk servers
	Slide 17: Managing Mutations
	Slide 18: Mutations
	Slide 19: GFS uses leases to maintain consistent mutation order across replicas
	Slide 20: Lease mechanism designed to minimize communications with the master
	Slide 21: Revocation and transfer of leases
	Slide 22: How a write is actually performed
	Slide 23: Client orchestrates writing data to the replicas [1/2]
	Slide 24: Client orchestrates writing data to the replicas [2/2]
	Slide 25: Data flow is decoupled from the control flow to utilize network efficiently
	Slide 26: What if the secondary replicas could not finish the write operation?
	Slide 27: GFS client code implements the file system API
	Slide 28: Traditional writes
	Slide 29: Atomic record appends
	Slide 30: The control flow for record appends is similar to that of writes
	Slide 31: Primary replica checks if the record append will breach the size (64MB) threshold
	Slide 32: Record sizes and fragmentation
	Slide 33: What if record append fails at one of the replicas
	Slide 34: GFS only guarantees that the data will be written at least once as an atomic unit
	Slide 35: Replication
	Slide 36: Reasons why chunk replicas are created
	Slide 37: Chunk replica creation
	Slide 38: Re-replicate chunks when replication level drops
	Slide 39: Rebalancing replicas
	Slide 40: Incorporating a new chunk server
	Slide 41: Creating snapshots
	Slide 42: Snapshots allow you to make a copy of a file very fast
	Slide 43: When a client wants to write to a chunk C after the snapshot operation
	Slide 44: GFS does not have a per-directory structure that lists files in the directory
	Slide 45: Each master operation acquires a set of locks before it runs
	Slide 46: Locks are used to prevent operations during snapshots
	Slide 47: The contents of this slide-set are based on the following references

