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Chunks and Memory

A file has many a chunk

    all the same size, of course

Keep track of these chunks

     not just the where, 

     but also the how many.

Keep this all in memory

     at the controller

To then decide

    who goes where 

     or if you need to rebalance.

The data may roam free

     but the controller always keeps score.
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Frequently asked questions from the previous class 

survey

 Does the O(N) routing table pose issues for Dynamo’s scalability?

 What’s the preferred file system for systems such as Dynamo or GFS?

 Does the GFS master node have a disk?
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Topics covered in this lecture

 The Google File System
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Architecture of GFS
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In GFS a file is broken up into fixed-size chunks

 Obvious reason

 The file is too big

 Set the stage for computations that operate on this data

 Parallel I/O

 I/O seek times are 14 x 106 slower than CPU clock cycles

Map-Reduce
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In GFS a file is broken up into fixed-size chunks

 Each chunk has a 64-bit globally unique ID

 Assigned by the Master

 Chunks are stored by chunk servers

 On local disks as LINUX files

 Each chunk is replicated

 Default is 3 



GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.7

Master operations

 Manage system metadata

 Leasing of chunks

 Garbage collection of orphaned chunks

 Chunk migrations
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ALL system metadata is managed by the Master and 

stored in main memory

①  File and chunk namespaces

②  Mapping from files to chunks

③  Location of chunks

Logs mutations 
into a permanent log
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Why have a single Master?

 Vastly simplifies design

 Easy to use global knowledge to reason about

 Chunk placements

 Replication decisions
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Communications with the chunk servers

 Periodic communications using heartbeats

 Instructions to the chunk server

 Collect/retrieve state from the chunk server
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Chunk size

 This is fixed at 64 MB

 Much larger than typical filesystem block sizes (512B up to 4KB)

 Lazy space allocation

 Stored as plain Linux file

 Extended only as needed



GFS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L39.12

But why this big?

 Reduces client interaction with the master

 Can cache info for a multi-TB working set

 Reduce network overhead

 With a large chunk, client performs more operations

 Persistent connections

 Reduce size of metadata stored in the master

 64 bytes of metadata per 64 MB chunk
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Why keep the entire metadata in memory?

 Speed

 Master can scan its state in the background

 Implement chunk garbage collection

 Re-replicate if there are failures

 Chunk migration to balance load and space

 Add extra memory to increase file system size 
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Size of the file system with 1 TB of RAM: Assume file sizes are exact 

multiples of chunk sizes 

 Number of entries = 240/26

 MAXIMUM SIZE of the file system 

             = Number of entries x Chunk size

                 = 240 x  26 x 220

                  26       

                = 260 = 1 EB        
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Tracking the chunk servers

 Master does not keep a persistent copy of the location of chunk 

servers

 List maintained via heart-beats

 Allows list to be in sync with reality despite failures

 Chunk server has final word on chunks it holds
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Caching at the client/chunk servers

 Clients do not cache file data

 At client, the working set may be too large

 Simplify client; eliminate cache-coherence problems

 Chunk servers do not cache file data either

 Chunks are stored as local files

 Linux’s buffer cache already keeps frequently accessed data in memory
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MANAGING MUTATIONS

Handling writes and appends to a file

Mutation: it is the key to our evolution.

Charles Xavier, X-Men.
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Mutations

 Mutation changes the content and/or metadata of a chunk

 Write

 Append

 Each mutation is performed at all chunk replicas
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GFS uses leases to maintain consistent mutation 

order across replicas

 Master grants lease to one of the replicas

 PRIMARY

 Primary picks serial-order

 For all mutations to the chunk

 Other replicas follow this order 

◼ When applying mutations
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Lease mechanism designed to minimize 

communications with the master

 Lease has initial timeout of 60 seconds

 As long as chunk is being mutated

 Primary can request and receive extensions

 Extension requests/grants piggybacked over heart-beat messages
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Revocation and transfer of leases

 Master may revoke a lease before it expires

 If communications lost with primary

 Master can safely give lease to another replica 

◼ ONLY AFTER the lease period for old primary elapses
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How a write is actually performed

Client MASTER

Secondary 

Replica A

Primary

Replica

Secondary

Replica B
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Client orchestrates writing data to the replicas [1/2]

 Each chunk server stores data in an LRU buffer until

 Data is used

 Aged out
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Client orchestrates writing data to the replicas [2/2]

 When chunk servers acknowledge receipt of data

 Client sends a write request to primary

 Primary assigns consecutive serial numbers to mutations

 Forwards to replicas 
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Data flow is decoupled from the control flow to 

utilize network efficiently

 Utilize each machine’s network bandwidth

 Avoid network bottlenecks

 Avoid high-latency links

 Leverage network topology

 Estimate distances from IP addresses
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What if the secondary replicas could not finish the 

write operation?

 Client request is considered failed

 Modified region is inconsistent

 No attempt to delete this from the chunk

 Client must handle this inconsistency

 Client retries the failed mutation
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GFS client code implements the file system API

 Communications with master and chunk servers done transparently

 On behalf of apps that read or write data

 Interact with master for metadata

 Data-bearing communications directly to chunk servers
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Traditional writes

 Client specifies offset at which data needs to be written

 Concurrent writes to same region

 Not serializable

 Region ends up containing data fragments from multiple clients
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Atomic record appends

 Client specifies only the data not the offset

 GFS appends it to the file

 At least once atomically

 At an offset of GFS’ choosing

 No need for a distributed lock manger
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The control flow for record appends is similar to that 

of writes

 Client pushes data to replicas of the last chunk of file

 Primary replica checks if the record fits in this chunk
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Primary replica checks if the record append will breach the size 

(64MB) threshold

 If chunk size would be breached

 Pad the chunk to maximum size

 Tell client,  that operation should be retried on next chunk

 If the record fits, the primary

 Appends data to its replica

 Notifies secondaries to write at the exact offset 
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Record sizes and fragmentation

 Size is restricted to ¼ the chunk size

 Minimizes worst-case fragmentation

 Internal fragmentation in each chunk …
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What if record append fails at one of the replicas

 Client must retry the operation

 Replicas of same chunk may contain

 Different data

 Duplicates of the same record

◼ In whole or in part

 Replicas of chunks are not bit-wise identical!

 In most systems, replicas are identical
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GFS only guarantees that the data will be written 

at least once as an atomic unit

 For an operation to return success

 Data must be written at the same offset on all the replicas

 After the write, all replicas are as long as the end of the record 

 Any future record will be assigned a higher offset or a different chunk
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REPLICATION
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Reasons why chunk replicas are created

 Chunk creation

 Re-replication

 Rebalancing
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Chunk replica creation

 Place replicas on chunk servers with below average disk space 

utilization

 Limit the number of recent creations on a chunk server

 Predictor of imminent heavy traffic

 Spread replicas across racks
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Re-replicate chunks when replication level drops

 How far is it from replication goal?

 Preference for chunks of live files

 Boost priority of chunks blocking client progress
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Rebalancing replicas

 Examine current replica distribution and move replicas

 Better disk space

 Load balancing

 Removal of existing replicas

 Chunk servers with below-average disk space
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Incorporating a new chunk server

 Do not swamp new server with lots of chunks

 Concomitant traffic will bog down the machine

 Gradually fill up new server with chunks
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CREATING SNAPSHOTS

So, so you think you can tell

Heaven from hell?

Blue skies from pain?

Can you tell a green field

From a cold steel rail?

A smile from a veil?

Do you think you can tell?

Wish You Were Here; Gilmour/Waters; Pink Floyd
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Snapshots allow you to make a copy of a file very 

fast

 Master revokes outstanding leases for any chunks of the file (source) 

to be snapshot

 Log the operation to disk

 Update in-memory state

 Duplicate metadata of the source file

 Newly created file points to the same chunks as the source
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When a client wants to write to a chunk C after the 

snapshot operation

 Master sees the reference count to C > 1

 Pick new chunk-handle C’

 Ask chunk-server with current replica of C

 Create new chunk C’

 Data is copied locally, not over the network

 From this point chunk handling of C’ is no different
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GFS does not have a per-directory structure that lists 

files in the directory

 Name spaces represented as a lookup table

 Maps full pathnames to metadata

 File creation does not require a lock on the directory structure

 No inode needs to be protected from modification
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Each master operation acquires a set of locks before 

it runs

 If operation involves /d1/d2/…/dn/leaf

 Acquire read locks on directory names

◼ /d1, /d1/d2, …, /d1/d2/…/dn

 Read or write lock on full pathname

◼ /d1/d2/…/dn/leaf

 Used to prevent operations during snapshots
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Locks are used to prevent operations during 

snapshots

 For e.g., cannot create /home/user/foo

 While /home/user is being snapshotted to /save/user 

 Read locks on /home and /save 

 Read lock prevents a directory from being deleted 

 Write lock on /home/user and /save/user 

 File creation does not require write lock on parent directory … there is no 
“directory”

 Read locks on /home and /home/user

 Write lock on /home/user/foo 
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The contents of this slide-set are based on the 

following references

 Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung: The Google file system. 

Proceedings of SOSP 2003: 29-43.
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