CSXx55: DISTRIBUTED SYSTEMS [THREADS]

The Tangible Lock
Have you a synchronized method?
The acquisition’s implicit
With the lock hiding in plain slight

Care for the lock to be tactile?
Use the Lock instead
But with responsibilities galore

Shrideep Pallickara

A recourse when drowning in bugs? CompU‘I'er Science
Tread carefully with how you lock() and unlock() . .
and ... reckon with them exceptions Colorado State Unive I’Slfy
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Frequently asked questions from the previous class
survey

Can a thread call another thread’s methods?
Can we use stop/suspend/resume if know how to use them “correctly”?
Pinning threads to cores? N.B.: also known as thread affinity

Can we know if the core utilization by a given application (with a large
number of cores) is high?

When a thread “sleeps” who is awaking the thread when time elapses?
Why is the run() method public, if we should call start()? What’s the point?

What happens when you interrupt a thread, but that thread has no
blocking calls?

Where is the thread (i.e., the object associated with it stored)?
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Topics covered in this lecture
N

1 Locks
1 Notifications

0 Wait-notify
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Two friends plan to meet at Starbucks
But there are two Starbucks on College Avenue

@ the First Starbucks Store @ the Second Starbucks Store
12:10 A is looking for friend B B is looking for friend A
12:15 A leaves for the second store B leaves for the first store
12:20 B arrives at store A arrives at store
12:30 B is Looking for friend A A is looking for friend B
12:40 B leaves for the second store A leaves for the first store

Both friends are now frustrated and undercaffeinated!
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DATA SYNCHRONIZATION
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Why sharing data between threads is problematic

Race conditions

Correct outcome depends on lucky timing of uncontrollable events

Threads attempt to access data more or less simultaneously

A thread may change the value of data that some other thread is operating
on
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Example code with race condition

public class MyThread extends Thread ({
private byte[] wvalues;
private int position;

public void

Modify wvalues and position

Use values and position

public void run() {
Main logic

}

public void utilizeDataAndPerformFunction ()

modifyData (byte[] newValues, int newPosition) {

{
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In the previous shippet a race condition exists

because ...
—

o The thread that calls modifyData () is accessing the same data as
the thread that calls utilizeDataAndPerformFunction ()

0 utilizeDataAndPerformFunction () and modifyData () are not
atomic

It is possible that values and position are changed while they are
being used
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What is atomic?

The code cannot be interrupted during its execution

Accomplished in hardware or simulated in software

Code that cannot be found in an intermediate state
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Eliminating the race condition using the synchronized
keyword

If we declared both modifyDbata () and
utilizeDataAndPerformFunction () as synchronized?

Only one thread gets to call either method at a time

Only one thread accesses data at a time

When one thread calls one of these methods, while another is executing one
of them?

The second thread must wait
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Example code with no race conditions by using the

synchronized keyword

public class MyThread extends Thread {
private byte[] wvalues;
private int position;

public void synchronized

Modify values and position

}

public void synchronized
utilizeDataAndPerformFunction ()
Use values and position

public void run() {
. Main logic

Protessor: SHRIDEEP PALLICKARA
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modifyData (byte[] newValues, int newPosition) {
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Revisiting the mutex lock

Mutually exclusive lock

If two threads try to grab a mutex?

Only one succeeds

In Java, every object has an associated lock
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When a method is declared synchronized ...

The thread that wants to execute the method must acquire a lock

Once the thread has acquired the lock?

It executes method and releases the lock

When a method returns, the lock is released

Even if the return is because of an exception
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Locks and objects

There is only one lock per object

If two threads call synchronized methods of the same object?

Only one can execute immediately

The other has to wait until the lock is released
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Afraid of what the truth might bring
He locks his doors and never leaves
Desperately searching for signs

To terrify, to find a thing

He battens all the hatches down
And wonders why he hears no sound
Frantically searching his dreams

He wonders what it's all about

Telescope, Cage the Elephant

SYNCHRONIZATION PITFALLS
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Another code snippet to look at ...

public class MyThread extends Thread {
private boolean done = false;

public void run() {
while (!done) {

. Main logic

}

public void setDone (boolean isDone) {

done = isDone;
}
}
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Can’t we just synchronize the two methods as we did
previously?

If we synchronized both run () and setDone () ¢

setDone () would never executel

The run () method does not exit until the done flag is set

But the done flag cannot be set because setDone () cannot execute till
run () completes

Uh oh ...
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The problem stems from the scope of the lock

Scope of a lock

Period between grabbing and releasing a lock

Scope of the run () method is too large!

Lock is grabbed and never released

We will look at techniques to shrink the scope of the lock

But let’s look at another solution for now
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Let’s look at operations performed on the data item
(done)

The setDone () method stores a value into the flag

The run () method reads the value

In our previous example:
Threads were accessing multiple pieces of data

No way to update multiple data items atomically without the
synchronized keyword
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But Java specifies that the loading and storing of
variables is atomic
Except for 1long and double variables

The setDone () should be atomic

The run () method has only one read operation of the data item

The race condition should not exist

But why is it there?
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Threads are allowed to hold values of variables in
registers

When one thread changes the value of the variable?

Another thread may not see the changed variable

This is particularly true in loops controlled by a variable

Looping thread loads value of variable in register and does not notice
when value is changed by another thread

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.21



Two approaches to solving this

Providing setter and getter methods for variable and using the
synchronized keyword

When lock is acquired, temporary values stored in registers are flushed to
main memory

The volatile keyword

Much cleaner solution
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If a variable is marked as volatile

Every time it is used?

Must be read from main memory

Every time it is written?

Must be written to main memory

Load and store operations are atomic

Even for 1ong and double variables
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Some more about volatile variables

Prior to JDK 1.2 variables were always read from main memory

Using volatile variables was moot

Subsequent versions introduced memory models and optimizations
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Synchronization and the volatile keyword

Can be used only when operations use a single load and store

Operations like ++, ——¢

Load-change-store ...

The volatile keyword forces the JVM to not make temporary
copies of a variable

Declaring an array volatile?
The reference becomes volatile

The individual elements are not volatile
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SYNCHRONIZED METHODS & LOCKS
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Synchronizing methods

Not possible to execute the same method in one thread while ...

Method is running in another thread

If two different synchronized methods in an object are called?

They both require the lock of the same object

Two or more synchronized methods of the same object can never run in
parallel in separate threads
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A lock is based on a specific instance of an object

Not on a particular method or class

Suppose we have 2 objects: objectA and ocbjectB with
synchronized methods modifyData () and utilizeData ()

One thread can execute objectA.modifyData () while another
executes objectB.utilizeData () in parallel

Two different locks are grabbed by two different threads

No need for threads to wait for each other
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How does a synchronized method behave in

conjunction with an unsynchronized one?

Synchronized methods try to grab the object lock

Only 1 synchronized method in an object can run at a time
protection

Unsynchronized methods
Don’t grab the object lock

Can execute at any time ... by any thread

Regardless of whether a synchronized method is running
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For a given object, at any time ...
—

- Any number of unsynchronized methods may be executing

=1 But only 1 synchronized method can execute
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Synchronizing static methods

A lock can be obtained for each class

The class lock

The class lock is the object lock of the Class object that models the
class
There is only 1 Class object per class

Allows us to achieve synchronization for static methods
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Obiject locks and class locks

Are not operationally related

The class lock can be grabbed and released independently of the
object lock

If a non-static synchronized method calls a static synchronized method?

It acquires both locks
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Empty stares, from each corner of a shared prison cell
One just escapes, one’s left inside the well
And he who forgets, will be destined to remember

Nothingman, Eddie Vedder & Jeffrey Ament, Pearl Jam

EXPLICIT LOCKING
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The synchronized keyword
—

o Serializes accesses to synchronized methods in an object
7 Not suitable for controlling lock scope in certain situations

1 Can be too primitive in some cases
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Many synchronization schemes in J2SE 5.0 onwards
implement the Lock interface

Two important methods
lock () and unlock ()

Similar to using the synchronized keyword
Call 1lock () at the start of the method
Call unlock () at the end of the method

Difference: we have an actual object that represents the lock

Store, pass around, or discard
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Semantics of the using Lock

If another thread owns the lock

Thread that attempts to acquire the lock must wait until the other thread calls
unlock ()

Once the waiting thread acquires the lock, it returns from the 1ock ()
method
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Using the Lock interface

public class DataOpertor {
private Lock datalock = new ReentrantLock() ;
public void

try {
dataLock.lock () ;
Modify values and position
} finally {
dataLock.unlock() ;
}
}

public void utilizeDataAndPerformFunction ()
try {
datalLock.lock() ;
Use values and position
} finally {
dataLock.unlock() ;
}

UTTOSVT .. JITRTUVLLT T ALLICRNARA

modifyData (byte[] newValues, int newPosition)

{

{
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Advantages of using the Lock interface

Grab and release locks whenever we want

Now possible for two objects to share the same lock

Lock is no longer attached to the object whose method is being called

Can be attached to data, groups of data, etc.

Not objects containing the executing methods
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Advantages of explicit locking

We can move them anywhere to adjust lock scope

Can span from a line of code to a scope that encompasses multiple methods
and objects

Lock at scope specific to problem
Not just the object

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.39



SYNCHRONIZED BLOCKS
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Much of what we accomplish with the Lock we can do so with the
synchronized keyword

public class DataOperator {

public void
modifyData (byte[] newValues, int newPosition) {
synchronized(this) {
. Modify values and position
}
}

public void utilizeDataAndPerformFunction () {
synchronized (this) {
Use values and position

}
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Synchronized methods vs. Synchronized Blocks

Possible to use only the synchronized block mechanism to synchronize

whole method

You decide when it’s best to synchronize a block of code or the whole

method

RULE: Establish as small a lock scope as possible

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.42



The Lock interface [java.util.concurrent.locks]

public interface Lock {
public void lock();

public void lockInterruptibly ()
throws InterruptedException;

public boolean tryLock();
public boolean tryLock(long time, TimeUnit unit)

throws InterruptedException;

public void unlock() ;

public Condition newCondition() ;
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Lock Fairness

ReentrantLock allows locks to be granted fairly
Locks are granted as close to arrival order as possible

Prevents lock starvation from happening

Possibilities for granting locks
(1) First-come-first-served
(2) Allows servicing the maximum number of requests

(3) Do what’s best for the platform
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The contents of this slide-set are based on the

following references
——

= Java Threads. Scott Oaks and Henry Wong. . 3rd Edition. O’Reilly Press. ISBN: 0-596-
00782-5/978-0-596-00782-9. [Chapters 3, 4]
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