
COMPUTER SCIENCE DEPARTMENT

CSX55: DISTRIBUTED SYSTEMS [THREADS]

Shrideep Pallickara

Computer Science

Colorado State University

The Tangible Lock

Have you a synchronized method?

 The acquisition’s implicit

 With the lock hiding in plain slight

Care for the lock to be tactile?

 Use the Lock instead

 But with responsibilities galore

A recourse when drowning in bugs?

Tread carefully with how you lock() and unlock()

 and … reckon with them exceptions

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.2

Frequently asked questions from the previous class

survey

 Can a thread call another thread’s methods?

 Can we use stop/suspend/resume if know how to use them “correctly”?

 Pinning threads to cores? N.B.: also known as thread affinity

 Can we know if the core utilization by a given application (with a large
number of cores) is high?

 When a thread “sleeps” who is awaking the thread when time elapses?

 Why is the run() method public, if we should call start()? What’s the point?

 What happens when you interrupt a thread, but that thread has no
blocking calls?

 Where is the thread (i.e., the object associated with it stored)?

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.3

Topics covered in this lecture

 Locks

 Notifications

 Wait-notify

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.4

Two friends plan to meet at Starbucks

But there are two Starbucks on College Avenue

@ the First Starbucks Store @ the Second Starbucks Store

12:10 A is looking for friend B

12:15 A leaves for the second store

12:20 B arrives at store

12:30

12:40

A arrives at store

B leaves for the first store

B is looking for friend A

B is Looking for friend A A is looking for friend B

A leaves for the first storeB leaves for the second store

Both friends are now frustrated and undercaffeinated!

COMPUTER SCIENCE DEPARTMENT

DATA SYNCHRONIZATION

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.6

Why sharing data between threads is problematic

 Race conditions

 Correct outcome depends on lucky timing of uncontrollable events

 Threads attempt to access data more or less simultaneously

 A thread may change the value of data that some other thread is operating

on

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.7

Example code with race condition

public class MyThread extends Thread {

 private byte[] values;

 private int position;

 public void

 modifyData(byte[] newValues, int newPosition) {

 ... Modify values and position

 }

 public void utilizeDataAndPerformFunction() {

 ... Use values and position

 }

 public void run() {

 ... Main logic

 }

}

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.8

In the previous snippet a race condition exists

because …

 The thread that calls modifyData() is accessing the same data as

the thread that calls utilizeDataAndPerformFunction()

 utilizeDataAndPerformFunction() and modifyData() are not

atomic

 It is possible that values and position are changed while they are

being used

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.9

What is atomic?

 The code cannot be interrupted during its execution

 Accomplished in hardware or simulated in software

 Code that cannot be found in an intermediate state

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.10

Eliminating the race condition using the synchronized

keyword

 If we declared both modifyData() and

utilizeDataAndPerformFunction() as synchronized?

 Only one thread gets to call either method at a time

◼ Only one thread accesses data at a time

 When one thread calls one of these methods, while another is executing one

of them?

◼ The second thread must wait

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.11

Example code with no race conditions by using the

synchronized keyword
public class MyThread extends Thread {

 private byte[] values;

 private int position;

 public void synchronized

 modifyData(byte[] newValues, int newPosition) {

 ... Modify values and position

 }

 public void synchronized

 utilizeDataAndPerformFunction() {

 ... Use values and position

 }

 public void run() {

 ... Main logic

 }

}

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.12

Revisiting the mutex lock

 Mutually exclusive lock

 If two threads try to grab a mutex?

 Only one succeeds

 In Java, every object has an associated lock

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.13

When a method is declared synchronized …

 The thread that wants to execute the method must acquire a lock

 Once the thread has acquired the lock?

 It executes method and releases the lock

 When a method returns, the lock is released

 Even if the return is because of an exception

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.14

Locks and objects

 There is only one lock per object

 If two threads call synchronized methods of the same object?

 Only one can execute immediately

◼ The other has to wait until the lock is released

COMPUTER SCIENCE DEPARTMENT

SYNCHRONIZATION PITFALLS

Afraid of what the truth might bring

He locks his doors and never leaves

Desperately searching for signs

To terrify, to find a thing

He battens all the hatches down

And wonders why he hears no sound

Frantically searching his dreams

He wonders what it's all about

Telescope, Cage the Elephant

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.16

Another code snippet to look at …

public class MyThread extends Thread {

 private boolean done = false;

 public void run() {

 while (!done) {

 ... Main logic

 }

 }

 public void setDone(boolean isDone) {

 done = isDone;

 }

}

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.17

Can’t we just synchronize the two methods as we did

previously?

 If we synchronized both run() and setDone() ?

 setDone() would never execute!

 The run() method does not exit until the done flag is set

 But the done flag cannot be set because setDone() cannot execute till

run() completes

 Uh oh …

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.18

The problem stems from the scope of the lock

 Scope of a lock

 Period between grabbing and releasing a lock

 Scope of the run() method is too large!

 Lock is grabbed and never released

 We will look at techniques to shrink the scope of the lock

 But let’s look at another solution for now

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.19

Let’s look at operations performed on the data item

(done)

 The setDone() method stores a value into the flag

 The run() method reads the value

 In our previous example:

 Threads were accessing multiple pieces of data

 No way to update multiple data items atomically without the

synchronized keyword

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.20

But Java specifies that the loading and storing of

variables is atomic

 Except for long and double variables

 The setDone() should be atomic

 The run() method has only one read operation of the data item

 The race condition should not exist

 But why is it there?

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.21

Threads are allowed to hold values of variables in

registers

 When one thread changes the value of the variable?

 Another thread may not see the changed variable

 This is particularly true in loops controlled by a variable

 Looping thread loads value of variable in register and does not notice

when value is changed by another thread

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.22

Two approaches to solving this

 Providing setter and getter methods for variable and using the

synchronized keyword

 When lock is acquired, temporary values stored in registers are flushed to

main memory

 The volatile keyword

 Much cleaner solution

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.23

If a variable is marked as volatile

 Every time it is used?

 Must be read from main memory

 Every time it is written?

 Must be written to main memory

 Load and store operations are atomic

 Even for long and double variables

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.24

Some more about volatile variables

 Prior to JDK 1.2 variables were always read from main memory

 Using volatile variables was moot

 Subsequent versions introduced memory models and optimizations

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.25

Synchronization and the volatile keyword

 Can be used only when operations use a single load and store

 Operations like ++, --?

◼ Load-change-store …

 The volatile keyword forces the JVM to not make temporary

copies of a variable

 Declaring an array volatile?

 The reference becomes volatile

 The individual elements are not volatile

COMPUTER SCIENCE DEPARTMENT

SYNCHRONIZED METHODS & LOCKS

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.27

Synchronizing methods

 Not possible to execute the same method in one thread while …

 Method is running in another thread

 If two different synchronized methods in an object are called?

 They both require the lock of the same object

 Two or more synchronized methods of the same object can never run in

parallel in separate threads

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.28

A lock is based on a specific instance of an object

 Not on a particular method or class

 Suppose we have 2 objects: objectA and objectB with

synchronized methods modifyData() and utilizeData()

 One thread can execute objectA.modifyData() while another

executes objectB.utilizeData() in parallel

 Two different locks are grabbed by two different threads

 No need for threads to wait for each other

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.29

How does a synchronized method behave in

conjunction with an unsynchronized one?

 Synchronized methods try to grab the object lock

 Only 1 synchronized method in an object can run at a time … provides data

protection

 Unsynchronized methods

 Don’t grab the object lock

 Can execute at any time … by any thread

◼ Regardless of whether a synchronized method is running

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.30

For a given object, at any time …

 Any number of unsynchronized methods may be executing

 But only 1 synchronized method can execute

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.31

Synchronizing static methods

 A lock can be obtained for each class

 The class lock

 The class lock is the object lock of the Class object that models the

class

 There is only 1 Class object per class

 Allows us to achieve synchronization for static methods

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.32

Object locks and class locks

 Are not operationally related

 The class lock can be grabbed and released independently of the

object lock

 If a non-static synchronized method calls a static synchronized method?

 It acquires both locks

COMPUTER SCIENCE DEPARTMENT

EXPLICIT LOCKING

Empty stares, from each corner of a shared prison cell

One just escapes, one’s left inside the well

And he who forgets, will be destined to remember

Nothingman, Eddie Vedder & Jeffrey Ament, Pearl Jam

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.34

The synchronized keyword

 Serializes accesses to synchronized methods in an object

 Not suitable for controlling lock scope in certain situations

 Can be too primitive in some cases

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.35

Many synchronization schemes in J2SE 5.0 onwards

implement the Lock interface

 Two important methods

 lock() and unlock()

 Similar to using the synchronized keyword

 Call lock() at the start of the method

 Call unlock() at the end of the method

 Difference: we have an actual object that represents the lock

 Store, pass around, or discard

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.36

Semantics of the using Lock

 If another thread owns the lock

 Thread that attempts to acquire the lock must wait until the other thread calls
unlock()

 Once the waiting thread acquires the lock, it returns from the lock()

method

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.37

Using the Lock interface
public class DataOpertor {

 private Lock dataLock = new ReentrantLock();

 public void

 modifyData(byte[] newValues, int newPosition) {

 try {

 dataLock.lock();

 ... Modify values and position

 } finally {

 dataLock.unlock();

 }

 }

 public void utilizeDataAndPerformFunction() {

 try {

 dataLock.lock();

 ... Use values and position

 } finally {

 dataLock.unlock();

 }

}

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.38

Advantages of using the Lock interface

 Grab and release locks whenever we want

 Now possible for two objects to share the same lock

 Lock is no longer attached to the object whose method is being called

 Can be attached to data, groups of data, etc.

 Not objects containing the executing methods

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.39

Advantages of explicit locking

 We can move them anywhere to adjust lock scope

 Can span from a line of code to a scope that encompasses multiple methods

and objects

 Lock at scope specific to problem

 Not just the object

COMPUTER SCIENCE DEPARTMENT

SYNCHRONIZED BLOCKS

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.41

Much of what we accomplish with the Lock we can do so with the

synchronized keyword

public class DataOperator {

 public void

 modifyData(byte[] newValues, int newPosition) {

 synchronized(this) {

 ... Modify values and position

 }

 }

 public void utilizeDataAndPerformFunction() {

 synchronized(this) {

 ... Use values and position

 }

 }

}

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.42

Synchronized methods vs. Synchronized Blocks

 Possible to use only the synchronized block mechanism to synchronize

whole method

 You decide when it’s best to synchronize a block of code or the whole

method

 RULE: Establish as small a lock scope as possible

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.43

The Lock interface [java.util.concurrent.locks]

public interface Lock {

 public void lock();

 public void lockInterruptibly()

 throws InterruptedException;

 public boolean tryLock();

 public boolean tryLock(long time, TimeUnit unit)

 throws InterruptedException;

 public void unlock();

 public Condition newCondition();

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.44

Lock Fairness

 ReentrantLock allows locks to be granted fairly

 Locks are granted as close to arrival order as possible

 Prevents lock starvation from happening

 Possibilities for granting locks

① First-come-first-served

② Allows servicing the maximum number of requests

③ Do what’s best for the platform

THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.45

The contents of this slide-set are based on the

following references

 Java Threads. Scott Oaks and Henry Wong. . 3rd Edition. O’Reilly Press. ISBN: 0-596-

00782-5/978-0-596-00782-9. [Chapters 3, 4]

	Slide 1: CSx55: Distributed Systems [Threads]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: Two friends plan to meet at Starbucks But there are two Starbucks on College Avenue
	Slide 5: Data Synchronization
	Slide 6: Why sharing data between threads is problematic
	Slide 7: Example code with race condition
	Slide 8: In the previous snippet a race condition exists because …
	Slide 9: What is atomic?
	Slide 10: Eliminating the race condition using the synchronized keyword
	Slide 11: Example code with no race conditions by using the synchronized keyword
	Slide 12: Revisiting the mutex lock
	Slide 13: When a method is declared synchronized …
	Slide 14: Locks and objects
	Slide 15: Synchronization Pitfalls
	Slide 16: Another code snippet to look at …
	Slide 17: Can’t we just synchronize the two methods as we did previously?
	Slide 18: The problem stems from the scope of the lock
	Slide 19: Let’s look at operations performed on the data item (done)
	Slide 20: But Java specifies that the loading and storing of variables is atomic
	Slide 21: Threads are allowed to hold values of variables in registers
	Slide 22: Two approaches to solving this
	Slide 23: If a variable is marked as volatile
	Slide 24: Some more about volatile variables
	Slide 25: Synchronization and the volatile keyword
	Slide 26: Synchronized methods & Locks
	Slide 27: Synchronizing methods
	Slide 28: A lock is based on a specific instance of an object
	Slide 29: How does a synchronized method behave in conjunction with an unsynchronized one?
	Slide 30: For a given object, at any time …
	Slide 31: Synchronizing static methods
	Slide 32: Object locks and class locks
	Slide 33: Explicit locking
	Slide 34: The synchronized keyword
	Slide 35: Many synchronization schemes in J2SE 5.0 onwards implement the Lock interface
	Slide 36: Semantics of the using Lock
	Slide 37: Using the Lock interface
	Slide 38: Advantages of using the Lock interface
	Slide 39: Advantages of explicit locking
	Slide 40: Synchronized Blocks
	Slide 41: Much of what we accomplish with the Lock we can do so with the synchronized keyword
	Slide 42: Synchronized methods vs. Synchronized Blocks
	Slide 43: The Lock interface [java.util.concurrent.locks]
	Slide 44: Lock Fairness
	Slide 45: The contents of this slide-set are based on the following references

