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The Tangible Lock

Have you a synchronized method?

 The acquisition’s implicit

  With the lock hiding in plain slight 

Care for the lock to be tactile?

 Use the Lock instead

  But with responsibilities galore

A recourse when drowning in bugs?

Tread carefully with how you lock() and unlock()

  and … reckon with them exceptions
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Frequently asked questions from the previous class 

survey

 Can a thread call another thread’s methods?

 Can we use stop/suspend/resume if know how to use them “correctly”?

 Pinning threads to cores?    N.B.: also known as thread affinity

 Can we know if the core utilization by a given application (with a large 
number of cores) is high?

 When a thread “sleeps” who is awaking the thread when time elapses?

 Why is the run() method public, if we should call start()? What’s the point?

 What happens when you interrupt a thread, but that thread has no 
blocking calls?

 Where is the thread (i.e., the object associated with it stored)?
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Topics covered in this lecture

 Locks

 Notifications 

 Wait-notify
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Two friends plan to meet at Starbucks

But there are two Starbucks on College Avenue 

@ the First Starbucks Store @ the Second Starbucks Store

12:10 A is looking for friend B

12:15 A leaves for the second store

12:20 B arrives at store

12:30

12:40

A arrives at store

B leaves for the first store

B is looking for friend A

B is Looking for friend A A is looking for friend B

A leaves for the first storeB leaves for the second store

Both friends are now frustrated and undercaffeinated!
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Why sharing data between threads is problematic

 Race conditions

 Correct outcome depends on lucky timing of uncontrollable events 

 Threads attempt to access data more or less simultaneously

 A thread may change the value of data that some other thread is operating 

on 
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Example code with race condition

public class MyThread extends Thread { 

   private byte[] values;

   private int position;

   public void 

      modifyData(byte[] newValues, int newPosition) {

      ... Modify values and position

   }

   public void utilizeDataAndPerformFunction() {

      ... Use values and position

   }

      

   public void run() { 

     ... Main logic

   }

}
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In the previous snippet a race condition exists 

because …

 The thread that calls modifyData() is accessing the same data as 

the thread that calls utilizeDataAndPerformFunction()

 utilizeDataAndPerformFunction() and modifyData() are not 

atomic

 It is possible that values and position are changed while they are 

being used
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What is atomic?

 The code cannot be interrupted during its execution

 Accomplished in hardware or simulated in software

 Code that cannot be found in an intermediate state
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Eliminating the race condition using the synchronized 

keyword

 If we declared both modifyData() and  

utilizeDataAndPerformFunction() as synchronized?

  Only one thread gets to call either method at a time

◼ Only one thread accesses data at a time

 When one thread calls one of these methods, while another is executing one 

of them?

◼ The second thread must wait
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Example code with no race conditions by using the 

synchronized keyword
public class MyThread extends Thread { 

   private byte[] values;

   private int position;

   public void synchronized

      modifyData(byte[] newValues, int newPosition) {

      ... Modify values and position

   }

   public void synchronized 

      utilizeDataAndPerformFunction() {

      ... Use values and position

   }

      

   public void run() { 

     ... Main logic

   }

}
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Revisiting the mutex lock

 Mutually exclusive lock

 If two threads try to grab a mutex?

 Only one succeeds

 In Java, every object has an associated lock
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When a method is declared synchronized …

 The thread that wants to execute the method must acquire a lock

 Once the thread has acquired the lock?

 It executes method and releases the lock

 When a method returns, the lock is released

 Even if the return is because of an exception
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Locks and objects

 There is only one lock per object

 If two threads call synchronized methods of the same object?

 Only one can execute immediately

◼ The other has to wait until the lock is released
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SYNCHRONIZATION PITFALLS

Afraid of what the truth might bring

He locks his doors and never leaves

Desperately searching for signs

To terrify, to find a thing

He battens all the hatches down

And wonders why he hears no sound

Frantically searching his dreams

He wonders what it's all about

Telescope, Cage the Elephant
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Another code snippet to look at … 

public class MyThread extends Thread { 

   private boolean done = false;

   public void run() { 

     while (!done) {

        ... Main logic

     }

   }

   public void setDone(boolean isDone) {

     done = isDone;

   }

}
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Can’t we just synchronize the two methods as we did 

previously?

 If we synchronized both run() and setDone() ?

 setDone() would never execute!

 The run() method does not exit until the done flag is set

 But the done flag cannot be set because setDone() cannot execute till 

run() completes

 Uh oh …
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The problem stems from the scope of the lock

 Scope of a lock

 Period between grabbing and releasing a lock

 Scope of the run() method is too large!

 Lock is grabbed and never released

 We will look at techniques to shrink the scope of the lock

 But let’s look at another solution for now
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Let’s look at operations performed on the data item 

(done)

 The setDone() method stores a value into the flag

 The run() method reads the value

 In our previous example:

 Threads were accessing multiple pieces of data

 No way to update multiple data items atomically without the 

synchronized keyword
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But Java specifies that the loading and storing of 

variables is atomic

 Except for long and double variables

 The setDone() should be atomic

 The run() method has only one read operation of the data item

 The race condition should not exist

 But why is it there?
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Threads are allowed to hold values of variables in 

registers

 When one thread changes the value of the variable?

 Another thread may not see the changed variable

 This is particularly true in loops controlled by a variable

 Looping thread loads value of variable in register and does not notice 

when value is changed by another thread
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Two approaches to solving this

 Providing setter and getter methods for variable and using the 

synchronized keyword

 When lock is acquired, temporary values stored in registers are flushed to 

main memory

 The volatile keyword

 Much cleaner solution
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If a variable is marked as volatile

 Every time it is used?

 Must be read from main memory

 Every time it is written?

 Must be written to main memory

 Load and store operations are atomic

 Even for long and double variables
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Some more about volatile variables

 Prior to JDK 1.2 variables were always read from main memory

 Using volatile variables was moot

 Subsequent versions introduced memory models and optimizations



THREADS
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L5.25

Synchronization and the volatile keyword

 Can be used only when operations use a single load and store

 Operations like ++, --?

◼ Load-change-store …

 The volatile keyword forces the JVM to not make temporary 

copies of a variable

 Declaring an array volatile?

 The reference becomes volatile

 The individual elements are not volatile
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Synchronizing methods

 Not possible to execute the same method in one thread while …

 Method is running in another thread

 If two different synchronized methods in an object are called?

 They both require the lock of the same object

 Two or more synchronized methods of the same object can never run in 

parallel in separate threads 
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A lock is based on a specific instance of an object

 Not on a particular method or class

 Suppose we have 2 objects: objectA and objectB with 

synchronized methods modifyData() and utilizeData()

 One thread can execute objectA.modifyData() while another 

executes objectB.utilizeData() in parallel 

 Two different locks are grabbed by two different threads

 No need for threads to wait for each other
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How does a synchronized method behave in 

conjunction with an unsynchronized one?

 Synchronized methods try to grab the object lock

 Only 1 synchronized method in an object can run at a time … provides data 

protection

 Unsynchronized methods

 Don’t grab the object lock

 Can execute at any time … by any thread

◼ Regardless of whether a synchronized method is running
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For a given object, at any time …

 Any number of unsynchronized methods may be executing

 But only 1 synchronized method can execute
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Synchronizing static methods

 A lock can be obtained for each class

 The class lock

 The class lock is the object lock of the Class object that models the 

class

 There is only 1 Class object per class

 Allows us to achieve synchronization for static methods
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Object locks and class locks

 Are not operationally related

 The class lock can be grabbed and released independently of the 

object lock

 If a non-static synchronized method calls a static synchronized method?

 It acquires both locks
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EXPLICIT LOCKING

Empty stares, from each corner of a shared prison cell

One just escapes, one’s left inside the well

And he who forgets, will be destined to remember

Nothingman, Eddie Vedder & Jeffrey Ament, Pearl Jam 
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The synchronized keyword

 Serializes accesses to synchronized methods in an object

 Not suitable for controlling lock scope in certain situations

 Can be too primitive in some cases
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Many synchronization schemes in J2SE 5.0 onwards 

implement the Lock interface

 Two important methods

 lock() and unlock()

 Similar to using the synchronized keyword

 Call lock() at the start of the method

 Call unlock() at the end of the method

 Difference: we have an actual object that represents the lock

 Store, pass around, or discard
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Semantics of the using Lock

 If another thread owns the lock

 Thread that attempts to acquire the lock must wait until the other thread calls 
unlock()

 Once the waiting thread acquires the lock, it returns from the lock() 

method
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Using the Lock interface
public class DataOpertor { 

   private Lock dataLock = new ReentrantLock();

   public void 

      modifyData(byte[] newValues, int newPosition) {

     try {

 dataLock.lock();

 ... Modify values and position

     } finally {

         dataLock.unlock();

     } 

   }

   public void utilizeDataAndPerformFunction() {

      try {

 dataLock.lock();

 ... Use values and position

     } finally {

         dataLock.unlock();

     } 

}
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Advantages of using the Lock interface

 Grab and release locks whenever we want

 Now possible for two objects to share the same lock

 Lock is no longer attached to the object whose method is being called

 Can be attached to data, groups of data, etc.

 Not objects containing the executing methods
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Advantages of explicit locking

 We can move them anywhere to adjust lock scope

 Can span from a line of code to a scope that encompasses multiple methods 

and objects

 Lock at scope specific to problem

 Not just the object
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Much of what we accomplish with the Lock we can do so with the 

synchronized keyword

public class DataOperator { 

   

   public void 

      modifyData(byte[] newValues, int newPosition) {

     synchronized(this) {

        ... Modify values and position

     } 

   }

   public void utilizeDataAndPerformFunction() {

      synchronized(this) {

         ... Use values and position

      }

   } 

}
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Synchronized methods vs. Synchronized Blocks

 Possible to use only the synchronized block mechanism to synchronize 

whole method

 You decide when it’s best to synchronize a block of code or the whole 

method

 RULE: Establish as small a lock scope as possible
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The Lock interface [java.util.concurrent.locks]

public interface Lock { 

   

   public void lock();

   public void lockInterruptibly() 

                      throws InterruptedException;

   public boolean tryLock();

   public boolean tryLock(long time, TimeUnit unit)

                      throws InterruptedException;

 

   public void unlock();

 

   public Condition newCondition();
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Lock Fairness

 ReentrantLock allows locks to be granted fairly

 Locks are granted as close to arrival order as possible

 Prevents lock starvation from happening

 Possibilities for granting locks

① First-come-first-served

② Allows servicing the maximum number of requests

③ Do what’s best for the platform 
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The contents of this slide-set are based on the 

following references

 Java Threads. Scott Oaks and Henry Wong. . 3rd Edition. O’Reilly Press. ISBN: 0-596-

00782-5/978-0-596-00782-9. [Chapters 3, 4]
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