CSXx55: DISTRIBUTED SYSTEMS [THREADS]

The Tangible Lock
Have you a synchronized method?
The acquisition’s implicit
With the lock hiding in plain slight

Care for the lock to be tactile?
Use the Lock instead
But with responsibilities galore

Shrideep Pallickara

A recourse when drowning in bugs? CompU‘I'er Science
Tread carefully with how you lock() and unlock() . .
and ... reckon with them exceptions Colorado State Unive I’Slfy

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

Frequently asked questions from the previous class
survey

Can a thread call another thread’s methods?
Can we use stop/suspend/resume if know how to use them “correctly”?
Pinning threads to cores? N.B.: also known as thread affinity

Can we know if the core utilization by a given application (with a large
number of cores) is high?

When a thread “sleeps” who is awaking the thread when time elapses?
Why is the run() method public, if we should call start()? What’s the point?

What happens when you interrupt a thread, but that thread has no
blocking calls?

Where is the thread (i.e., the object associated with it stored)?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.2

Topics covered in this lecture
N

1 Locks
1 Notifications

0 Wait-notify

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.3

Two friends plan to meet at Starbucks
But there are two Starbucks on College Avenue

@ the First Starbucks Store @ the Second Starbucks Store
12:10 A is looking for friend B B is looking for friend A
12:15 A leaves for the second store B leaves for the first store
12:20 B arrives at store A arrives at store
12:30 B is Looking for friend A A is looking for friend B
12:40 B leaves for the second store A leaves for the first store

Both friends are now frustrated and undercaffeinated!

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.4

DATA SYNCHRONIZATION

COMPUTER SCIENCE DEPARTMENT (®%%) COLORADO STATE UNIVERSITY

Why sharing data between threads is problematic

Race conditions

Correct outcome depends on lucky timing of uncontrollable events

Threads attempt to access data more or less simultaneously

A thread may change the value of data that some other thread is operating
on

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.6

Example code with race condition

public class MyThread extends Thread ({
private byte[] wvalues;
private int position;

public void

Modify wvalues and position

Use values and position

public void run() {
Main logic

}

public void utilizeDataAndPerformFunction ()

modifyData (byte[] newValues, int newPosition) {

{

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

THREADS

L5.7

In the previous shippet a race condition exists

because ...
—

o The thread that calls modifyData () is accessing the same data as
the thread that calls utilizeDataAndPerformFunction ()

0 utilizeDataAndPerformFunction () and modifyData () are not
atomic

It is possible that values and position are changed while they are
being used

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.8

What is atomic?

The code cannot be interrupted during its execution

Accomplished in hardware or simulated in software

Code that cannot be found in an intermediate state

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.9

Eliminating the race condition using the synchronized
keyword

If we declared both modifyDbata () and
utilizeDataAndPerformFunction () as synchronized?

Only one thread gets to call either method at a time

Only one thread accesses data at a time

When one thread calls one of these methods, while another is executing one
of them?

The second thread must wait

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.10

Example code with no race conditions by using the

synchronized keyword

public class MyThread extends Thread {
private byte[] wvalues;
private int position;

public void synchronized

Modify values and position

}

public void synchronized
utilizeDataAndPerformFunction ()
Use values and position

public void run() {
. Main logic

Protessor: SHRIDEEP PALLICKARA

{

modifyData (byte[] newValues, int newPosition) {

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

THREADS

L5.11

Revisiting the mutex lock

Mutually exclusive lock

If two threads try to grab a mutex?

Only one succeeds

In Java, every object has an associated lock

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.12

When a method is declared synchronized ...

The thread that wants to execute the method must acquire a lock

Once the thread has acquired the lock?

It executes method and releases the lock

When a method returns, the lock is released

Even if the return is because of an exception

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.13

Locks and objects

There is only one lock per object

If two threads call synchronized methods of the same object?

Only one can execute immediately

The other has to wait until the lock is released

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.14

Afraid of what the truth might bring
He locks his doors and never leaves
Desperately searching for signs

To terrify, to find a thing

He battens all the hatches down
And wonders why he hears no sound
Frantically searching his dreams

He wonders what it's all about

Telescope, Cage the Elephant

SYNCHRONIZATION PITFALLS

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

Another code snippet to look at ...

public class MyThread extends Thread {
private boolean done = false;

public void run() {
while (!done) {

. Main logic

}

public void setDone (boolean isDone) {

done = isDone;
}
}
Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS

L5.16

Can’t we just synchronize the two methods as we did
previously?

If we synchronized both run () and setDone () ¢

setDone () would never executel

The run () method does not exit until the done flag is set

But the done flag cannot be set because setDone () cannot execute till
run () completes

Uh oh ...

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.17

The problem stems from the scope of the lock

Scope of a lock

Period between grabbing and releasing a lock

Scope of the run () method is too large!

Lock is grabbed and never released

We will look at techniques to shrink the scope of the lock

But let’s look at another solution for now

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.18

Let’s look at operations performed on the data item
(done)

The setDone () method stores a value into the flag

The run () method reads the value

In our previous example:
Threads were accessing multiple pieces of data

No way to update multiple data items atomically without the
synchronized keyword

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.19

But Java specifies that the loading and storing of
variables is atomic
Except for 1long and double variables

The setDone () should be atomic

The run () method has only one read operation of the data item

The race condition should not exist

But why is it there?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.20

Threads are allowed to hold values of variables in
registers

When one thread changes the value of the variable?

Another thread may not see the changed variable

This is particularly true in loops controlled by a variable

Looping thread loads value of variable in register and does not notice
when value is changed by another thread

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.21

Two approaches to solving this

Providing setter and getter methods for variable and using the
synchronized keyword

When lock is acquired, temporary values stored in registers are flushed to
main memory

The volatile keyword

Much cleaner solution

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.22

If a variable is marked as volatile

Every time it is used?

Must be read from main memory

Every time it is written?

Must be written to main memory

Load and store operations are atomic

Even for 1ong and double variables

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.23

Some more about volatile variables

Prior to JDK 1.2 variables were always read from main memory

Using volatile variables was moot

Subsequent versions introduced memory models and optimizations

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.24

Synchronization and the volatile keyword

Can be used only when operations use a single load and store

Operations like ++, ——¢

Load-change-store ...

The volatile keyword forces the JVM to not make temporary
copies of a variable

Declaring an array volatile?
The reference becomes volatile

The individual elements are not volatile

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.25

SYNCHRONIZED METHODS & LOCKS

COMPUTER SCIENCE DEPARTMENT @ COLORADDO STATE UNIVERSITY

Synchronizing methods

Not possible to execute the same method in one thread while ...

Method is running in another thread

If two different synchronized methods in an object are called?

They both require the lock of the same object

Two or more synchronized methods of the same object can never run in
parallel in separate threads

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.27

A lock is based on a specific instance of an object

Not on a particular method or class

Suppose we have 2 objects: objectA and ocbjectB with
synchronized methods modifyData () and utilizeData ()

One thread can execute objectA.modifyData () while another
executes objectB.utilizeData () in parallel

Two different locks are grabbed by two different threads

No need for threads to wait for each other

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.28

How does a synchronized method behave in

conjunction with an unsynchronized one?

Synchronized methods try to grab the object lock

Only 1 synchronized method in an object can run at a time
protection

Unsynchronized methods
Don’t grab the object lock

Can execute at any time ... by any thread

Regardless of whether a synchronized method is running

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS

... provides data

L5.29

For a given object, at any time ...
—

- Any number of unsynchronized methods may be executing

=1 But only 1 synchronized method can execute

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.30

Synchronizing static methods

A lock can be obtained for each class

The class lock

The class lock is the object lock of the Class object that models the
class
There is only 1 Class object per class

Allows us to achieve synchronization for static methods

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.31

Obiject locks and class locks

Are not operationally related

The class lock can be grabbed and released independently of the
object lock

If a non-static synchronized method calls a static synchronized method?

It acquires both locks

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.32

Empty stares, from each corner of a shared prison cell
One just escapes, one’s left inside the well
And he who forgets, will be destined to remember

Nothingman, Eddie Vedder & Jeffrey Ament, Pearl Jam

EXPLICIT LOCKING

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

The synchronized keyword
—

o Serializes accesses to synchronized methods in an object
7 Not suitable for controlling lock scope in certain situations

1 Can be too primitive in some cases

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.34

Many synchronization schemes in J2SE 5.0 onwards
implement the Lock interface

Two important methods
lock () and unlock ()

Similar to using the synchronized keyword
Call 1lock () at the start of the method
Call unlock () at the end of the method

Difference: we have an actual object that represents the lock

Store, pass around, or discard

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.35

Semantics of the using Lock

If another thread owns the lock

Thread that attempts to acquire the lock must wait until the other thread calls
unlock ()

Once the waiting thread acquires the lock, it returns from the 1ock ()
method

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.36

Using the Lock interface

public class DataOpertor {
private Lock datalock = new ReentrantLock() ;
public void

try {
dataLock.lock () ;
Modify values and position
} finally {
dataLock.unlock() ;
}
}

public void utilizeDataAndPerformFunction ()
try {
datalLock.lock() ;
Use values and position
} finally {
dataLock.unlock() ;
}

UTTOSVT .. JITRTUVLLT T ALLICRNARA

modifyData (byte[] newValues, int newPosition)

{

{

COLORADO STATE UNIVERSITY COMPU‘I:ER SCIENCE DEPARTMENT THREADS

L5.37

Advantages of using the Lock interface

Grab and release locks whenever we want

Now possible for two objects to share the same lock

Lock is no longer attached to the object whose method is being called

Can be attached to data, groups of data, etc.

Not objects containing the executing methods

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.38

Advantages of explicit locking

We can move them anywhere to adjust lock scope

Can span from a line of code to a scope that encompasses multiple methods
and objects

Lock at scope specific to problem
Not just the object

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.39

SYNCHRONIZED BLOCKS

COMPUTER SCIENCE DEPARTMENT (®%%) COLORADO STATE UNIVERSITY

Much of what we accomplish with the Lock we can do so with the
synchronized keyword

public class DataOperator {

public void
modifyData (byte[] newValues, int newPosition) {
synchronized(this) {
. Modify values and position
}
}

public void utilizeDataAndPerformFunction () {
synchronized (this) {
Use values and position

}

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.41

Synchronized methods vs. Synchronized Blocks

Possible to use only the synchronized block mechanism to synchronize

whole method

You decide when it’s best to synchronize a block of code or the whole

method

RULE: Establish as small a lock scope as possible

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.42

The Lock interface [java.util.concurrent.locks]

public interface Lock {
public void lock();

public void lockInterruptibly ()
throws InterruptedException;

public boolean tryLock();
public boolean tryLock(long time, TimeUnit unit)

throws InterruptedException;

public void unlock() ;

public Condition newCondition() ;

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.43

Lock Fairness

ReentrantLock allows locks to be granted fairly
Locks are granted as close to arrival order as possible

Prevents lock starvation from happening

Possibilities for granting locks
(1) First-come-first-served
(2) Allows servicing the maximum number of requests

(3) Do what’s best for the platform

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.44

The contents of this slide-set are based on the

following references
——

= Java Threads. Scott Oaks and Henry Wong. . 3rd Edition. O’Reilly Press. ISBN: 0-596-
00782-5/978-0-596-00782-9. [Chapters 3, 4]

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.45

	Slide 1: CSx55: Distributed Systems [Threads]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: Two friends plan to meet at Starbucks But there are two Starbucks on College Avenue
	Slide 5: Data Synchronization
	Slide 6: Why sharing data between threads is problematic
	Slide 7: Example code with race condition
	Slide 8: In the previous snippet a race condition exists because …
	Slide 9: What is atomic?
	Slide 10: Eliminating the race condition using the synchronized keyword
	Slide 11: Example code with no race conditions by using the synchronized keyword
	Slide 12: Revisiting the mutex lock
	Slide 13: When a method is declared synchronized …
	Slide 14: Locks and objects
	Slide 15: Synchronization Pitfalls
	Slide 16: Another code snippet to look at …
	Slide 17: Can’t we just synchronize the two methods as we did previously?
	Slide 18: The problem stems from the scope of the lock
	Slide 19: Let’s look at operations performed on the data item (done)
	Slide 20: But Java specifies that the loading and storing of variables is atomic
	Slide 21: Threads are allowed to hold values of variables in registers
	Slide 22: Two approaches to solving this
	Slide 23: If a variable is marked as volatile
	Slide 24: Some more about volatile variables
	Slide 25: Synchronization and the volatile keyword
	Slide 26: Synchronized methods & Locks
	Slide 27: Synchronizing methods
	Slide 28: A lock is based on a specific instance of an object
	Slide 29: How does a synchronized method behave in conjunction with an unsynchronized one?
	Slide 30: For a given object, at any time …
	Slide 31: Synchronizing static methods
	Slide 32: Object locks and class locks
	Slide 33: Explicit locking
	Slide 34: The synchronized keyword
	Slide 35: Many synchronization schemes in J2SE 5.0 onwards implement the Lock interface
	Slide 36: Semantics of the using Lock
	Slide 37: Using the Lock interface
	Slide 38: Advantages of using the Lock interface
	Slide 39: Advantages of explicit locking
	Slide 40: Synchronized Blocks
	Slide 41: Much of what we accomplish with the Lock we can do so with the synchronized keyword
	Slide 42: Synchronized methods vs. Synchronized Blocks
	Slide 43: The Lock interface [java.util.concurrent.locks]
	Slide 44: Lock Fairness
	Slide 45: The contents of this slide-set are based on the following references

