CSXx55: DISTRIBUTED SYSTEMS [THREADS & SAFETY]

Threads have you in a bind?

With Objects and Concurrency at play
Are nerves about to fray?

Here’s something to have those worries abate
It’s just about access to shared, mutable state

Shrideep Pallickara
Computer Science
Colorado State University

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

Frequently asked questions from the previous class
survey

Do un-synchronized methods lead to deadlock?
The volatile keyword solves so many problems; can | use it heavily?
How exactly do support atomic operations in software?

Are load- and store- operation guarantees consistent across 32/64-bit
systems?
Can threads read/write common variables even though they are executing

on different cores?

How can we keep the lock scope small for static synchronized methods?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.2

Topics covered in this lecture
N

11 Explicit locking and synchronized blocks
0 wait-notify

o Thread safety

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.3

Advantages of using the Lock interface

Grab and release locks whenever we want

Now possible for two objects to share the same lock

Lock is no longer attached to the object whose method is being called

Can be attached to data, groups of data, etc.

Not objects containing the executing methods

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.4

Advantages of explicit locking

We can move them anywhere to adjust lock scope

Can span from a line of code to a scope that encompasses multiple methods
and objects

Lock at scope specific to problem
Not just the object

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.5

SYNCHRONIZED BLOCKS

COMPUTER SCIENCE DEPARTMENT (®%%) COLORADO STATE UNIVERSITY

Much of what we accomplish with the Lock we can do so with the
synchronized keyword

public class DataOperator {

public void
modifyData (byte[] newValues, int newPosition) {
synchronized(this) {
. Modify values and position

public void utilizeDataAndPerformFunction () {
synchronized (this) {
Use values and position

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.7

Synchronized methods vs. Synchronized Blocks

Possible to use only the synchronized block mechanism to synchronize

whole method

You decide when it’s best to synchronize a block of code or the whole

method

RULE: Establish as small a lock scope as possible

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.8

The Lock interface [java.util.concurrent.locks]

public interface Lock {
public void lock();

public void lockInterruptibly ()
throws InterruptedException;

public boolean tryLock();
public boolean tryLock(long time, TimeUnit unit)

throws InterruptedException;

public void unlock() ;

public Condition newCondition() ;

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.9

Lock Fairness

ReentrantLock allows locks to be granted fairly
Locks are granted as close to arrival order as possible

Prevents lock starvation from happening

Possibilities for granting locks
(1) First-come-first-served
(2) Allows servicing the maximum number of requests

(3) Do what’s best for the platform

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.10

Tell me how you’ve been,
Tell what you've seen,
Tell me that you'd like to see me too.

‘cause my heart is full of no blood,
My cup is full of no love,
Couldn't take another sip even if | wanted.

Not Too Late, Norah Jones.

Obijects and communications
—

-1 Every object has a lock

~ Every object also includes mechanisms that allow it to be a waiting
area

Allows communication between threads

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.12

Conditions

One thread needs a condition to exist

Assumes another thread will create that condition

When another thread creates the condition?

It notifies the first thread that has been waiting for that condition

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.13

wait (), notify () and the Object class
—

public class Object {
public void wait();
public void wait(long timeout) ;

public void notify () ;

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.14

wait (), notify () and the Object class

Wait-and-notify mechanisms are available for every object

Accomplished by method invocations

Synchronized mechanism is handled by using a keyword

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.15

Wait-and-notify relate to synchronization, but ...
=

1 It is more of a communications mechanism

1 Allows one thread to communicate to another that a condition has
occurred

Does not specify what that specific condition is

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.16

Can wait-and-notify replace the synchronized
mechanism?

No

Does not solve the race condition that the synchronized mechanism

solves

Must be used in conjunction with the synchronized lock

Prevents race condition that exists in the wait-notify mechanism itself

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.17

A code snippet that uses wait-notify to control the

execution of the thread

public class Tester implements Runnable {
private boolean done = true;

public synchronized run () {
while (true) {
if (done) wait () :;
else { ... Logic ... wait(100);}

public synchronized void setDone (boolean b)
done = b;

{

if (!done) notify();
}
}
Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY

L6.18

About the wait () method

When wait () executes, the synchronization lock is released
By the JVM

When a notification is received?

The thread needs to reacquire the synchronization lock before returning from
walt ()

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.19

Integration of wait-notify and synchronization

Tightly integrated with the synchronization lock

Feature not directly available to us

Not possible to implement this: native method

This is typical of approach in other libraries

Condition variables for Solaris and POSIX threads require that a mutex lock

be held

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.20

Details of the race condition in the wait-notify
mechanism

The first thread tests the condition and confirms that it must wait

The second thread sets the condition

The second thread calls notify ()

This goes unheard because the first thread is not yet waiting

The first thread calls wait ()

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.21

How does the potential race condition get resolved?

Tocall wait () or notify ()

Obtain lock for the object on which this is being invoked

It seems as if the lock has been held for the entire wait () invocation,
but

@ wait () releases lock prior to waiting

(2) Reacquires the lock just before returning from wait ()

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.22

Is there a race condition during the time wait ()

releases and reacquires the lock?

0 wait () is tightly integrated with the lock mechanism

-1 Object lock is not freed until the waiting thread is in a state in which it
can receive notifications

System prevents race conditions from occurring here

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.23

If a thread receives a notification, is it guaranteed

that condition is set?
—

-1 No

o Prior to calling wait (), test condition while holding lock

1 Upon returning from wait () refest condition to see if you should
walt () again

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.24

What if notify () is called and no thread is
waiting?

Wait-and-notify mechanism has no knowledge about the condition
about which it notifies

If notify () is called when no other thread is waiting?

The notification is lost

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.25

What happens when more than 1 thread is waiting
for a notification?

Language specification does not define which thread gets the
notification

Based on JVM implementation, scheduling and timing issues

No way to determine which thread will get the notification

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.26

notifyAll ()

All threads that are waiting on an object are notified

When threads receive this, they must work out
(1) Which thread should continue

(2) Which thread(s) should call wait () again

All threads wake up, but they still have to reacquire the object lock
Must wait for the lock to be freed

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.27

Threads and locks: Summary

Locks are held by threads

A thread can hold multiple locks

Any thread that tries to obtains these locks?¢ Placed into a wait state

If the thread deadlocks? It results in all locks that it holds becoming unavailable to
other threads

If a lock is held by some other thread?
The thread must wait for it to be free: There is no preemption of locks!

If the lock is unavailable (or held by a deadlocked thread) it blocks all the
waiting threads

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.28

ipn B Attt

P A | A1

THREAD SAFETY

Race conditions

Getting the right answer depends on lucky timing

E.g., check-then-act: When stale observations are used to make a decision
on what to do next

Real world example

Our previous example of 2 friends trying to meet up for coffee on campus
without specifying which of the 2 locations

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.30

Racing and synchronization [1/3]

Purpose of synchronization?

Prevent race conditions that can cause data to be found in either an
inconsistent or intermediate state

Threads are not allowed to race during sections of code protected by
synchronization

But this does not mean outcome or order of execution of threads is
deterministic

Threads may be racing prior to the synchronized section of code

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.31

Racing and synchronization [2/3]

If threads are waiting on the same lock

The order in which the synchronized code is executed is determined by
order in which lock is granted

Which is platform-specific and non-deterministic

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.32

Racing and synchronization [3/3]

Not all races should be avoided

This is a subtle but important point: If you do this ... everything is serialized!

Only race-conditions within thread-unsafe sections of the code are
considered a problem

(1) Synchronize code that prevents race condition

(2) Design code that is thread-safe without the need for synchronization (or requires
minimal synchronization)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.33

CONCURRENT PROGRAMMING

Concurrent programming
—

1 Concurrent programs require the correct use of threads and locks

-1 But these are just mechanisms

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.35

Obiject State

Includes its data
Stored in instance variables or static fields

Fields from dependent objects
HashMap’s state also depends on Map.Entry<K, V> objects

Encompasses any data that can affect its externally visible behavior

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.36

The crux of developing thread safe programs

Managing access to state

In particular shared, mutable state

Shared

Variables could be accessed by multiple threads

Mutable

Variable’s values change over its lifetime

Thread-safety

Protecting data from uncontrolled concurrent access

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.37

When to coordinate accesses

Whenever more than one thread accesses a state variable, and one of
them might write to it?

They must all coordinate their access to it

Avoid temptation to think that there are special situations when you
can disregard this

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.38

When should an object be thread-safe?
=

0 Will it be accessed from multiple threads?

-1 The key here is how the object is used

Not what it does

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.39

How to make an object thread-safe
=

-1 Use synchronization to coordinate access to mutable state

7 Failure to do this?
Data corruptions

Problems that manifest themselves in myriad forms

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.40

Mechanisms for synchronization in Java
=

1 One way to achieve this is via the synchronized keyword

Exclusive locking

1 Other approaches include:
volatile variables
Explicit locks

Atomic variables

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.41

Programs that omit synchronizations

Might work for some time

But it will break at some point

Far easier to design a class to be thread-safe from the start

Retrofitting it to be thread-safe is extremely hard

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.42

Thread-safety: Encapsulate your state
—

-1 Fewer code should have access to a particular variable

Easier to reason about conditions under which it might be accessed

7 DON'T:
é &7 Store state in public fields
-

Publish reference to an internal object

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.43

Fixing access to mutable state variables from
multiple threads

1 Don’t share state variables across threads
-1 Make state variables immutable

1 Use synchronization to coordinate access to the state variable

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.44

Correctness of classes
—

1 Class conforms to specification
o Invariants constrain object’s state

-1 Post conditions describe the effects of operations

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.45

A Thread-safe class

Behaves correctly when accessed from multiple threads

Regardless of scheduling or interleaving of execution of those threads

By the runtime environment

No additional synchronization or coordination by the calling code

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.46

Really?

Thread safe classes encapsulate any needed synchronization

Clients should not have to provide their own

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.47

Stateless objects are always thread-safe

public class StatelessClass implements Servlet {

public void factorizer (ServletRequest req,
ServletResponse resp) {
BigInteger 1 = extractFromReq (req);
BigInteger[] factors = factorize(1i);
encodeIntoResponse (resp, factors);

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY

L 6.48

Stateless objects are always thread-safe

Transient state for a particular computation exists solely in local
variables

Stored on the thread’s stack

Accessible only to the executing thread

One thread cannot influence the result of another

The threads have no shared state

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.49

Atomicity

Let’s look at two operations A and B
From the perspective of thread executing A

When another thread executes B

Either all of B has executed or none of it has

Operations A and B are atomic with respect to each other

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.50

Initializing Objects
—

public class LazyInitialization {

private ExpensiveObject instance = null;
public ExpensiveObject getlInstance () {
1f (instance == null) {
instance = new ExpensiveObject () ;

}

return i1nstance;

as

YL\ |

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.51

Thread-safe initialization

public class Singleton {

// Private constructor prevents instantiation from other
// classes

private Singleton () { }
public static Singleton getInstance () {
return instance; -
} . =
™, o
} = s
Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY

private static final Singleton instance = new Singleton();

L 6.52

The final keyword

You cannot extend a £1nal class

E.g., java.lang.String

You cannot override a final method

You can only initialize a £inal variable once

Either via an initializer or an assignment statement

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.53

Blank £inal instance variable of a class

Must be assigned within every constructor of the class

Attempting to set it outside the constructor will result in a compilation
error

The value of a final variable is not necessarily known at compile
time

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.54

The contents of this slide-set are based on the
following references

Java Threads. Scott Oaks and Henry Wong. . 3rd Edition. O’Reilly Press. ISBN: 0-596-
00782-5/978-0-596-00782-9. [Chapters 3, 4]

Java Concurrency in Practice. Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer,

David Holmes, and Doug Lea. Addison-Wesley Professional. ISBN: 0321349601 /97 8-
0321349606. [Chapters 1, 2, 3 and 4]

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS & THREAD SAFETY L6.55

	Slide 1: CSx55: Distributed Systems [Threads & Safety]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: Advantages of using the Lock interface
	Slide 5: Advantages of explicit locking
	Slide 6: Synchronized Blocks
	Slide 7: Much of what we accomplish with the Lock we can do so with the synchronized keyword
	Slide 8: Synchronized methods vs. Synchronized Blocks
	Slide 9: The Lock interface [java.util.concurrent.locks]
	Slide 10: Lock Fairness
	Slide 11: Thread Notifications
	Slide 12: Objects and communications
	Slide 13: Conditions
	Slide 14: wait(), notify() and the Object class
	Slide 15: wait(), notify() and the Object class
	Slide 16: Wait-and-notify relate to synchronization, but …
	Slide 17: Can wait-and-notify replace the synchronized mechanism?
	Slide 18: A code snippet that uses wait-notify to control the execution of the thread
	Slide 19: About the wait() method
	Slide 20: Integration of wait-notify and synchronization
	Slide 21: Details of the race condition in the wait-notify mechanism
	Slide 22: How does the potential race condition get resolved?
	Slide 23: Is there a race condition during the time wait() releases and reacquires the lock?
	Slide 24: If a thread receives a notification, is it guaranteed that condition is set?
	Slide 25: What if notify() is called and no thread is waiting?
	Slide 26: What happens when more than 1 thread is waiting for a notification?
	Slide 27: notifyAll()
	Slide 28: Threads and locks: Summary
	Slide 29: Thread Safety
	Slide 30: Race conditions
	Slide 31: Racing and synchronization [1/3]
	Slide 32: Racing and synchronization [2/3]
	Slide 33: Racing and synchronization [3/3]
	Slide 34: Concurrent Programming
	Slide 35: Concurrent programming
	Slide 36: Object State
	Slide 37: The crux of developing thread safe programs
	Slide 38: When to coordinate accesses
	Slide 39: When should an object be thread-safe?
	Slide 40: How to make an object thread-safe
	Slide 41: Mechanisms for synchronization in Java
	Slide 42: Programs that omit synchronizations
	Slide 43: Thread-safety: Encapsulate your state
	Slide 44: Fixing access to mutable state variables from multiple threads
	Slide 45: Correctness of classes
	Slide 46: A Thread-safe class
	Slide 47: Really?
	Slide 48: Stateless objects are always thread-safe
	Slide 49: Stateless objects are always thread-safe
	Slide 50: Atomicity
	Slide 51: Initializing Objects
	Slide 52: Thread-safe initialization
	Slide 53: The final keyword
	Slide 54: Blank final instance variable of a class
	Slide 55: The contents of this slide-set are based on the following references

