
COMPUTER SCIENCE DEPARTMENT

CSX55: DISTRIBUTED SYSTEMS [THREADS & SAFETY]

Shrideep Pallickara

Computer Science

Colorado State University

Threads have you in a bind?
With Objects and Concurrency at play

 Are nerves about to fray?

Here’s something to have those worries abate

 It’s just about access to shared, mutable state

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.2

Frequently asked questions from the previous class

survey

 Do un-synchronized methods lead to deadlock?

 The volatile keyword solves so many problems; can I use it heavily?

 How exactly do support atomic operations in software?

 Are load- and store- operation guarantees consistent across 32/64-bit

systems?

 Can threads read/write common variables even though they are executing

on different cores?

 How can we keep the lock scope small for static synchronized methods?

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.3

Topics covered in this lecture

 Explicit locking and synchronized blocks

 wait-notify

 Thread safety

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.4

Advantages of using the Lock interface

 Grab and release locks whenever we want

 Now possible for two objects to share the same lock

 Lock is no longer attached to the object whose method is being called

 Can be attached to data, groups of data, etc.

 Not objects containing the executing methods

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.5

Advantages of explicit locking

 We can move them anywhere to adjust lock scope

 Can span from a line of code to a scope that encompasses multiple methods

and objects

 Lock at scope specific to problem

 Not just the object

COMPUTER SCIENCE DEPARTMENT

SYNCHRONIZED BLOCKS

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.7

Much of what we accomplish with the Lock we can do so with the

synchronized keyword

public class DataOperator {

 public void

 modifyData(byte[] newValues, int newPosition) {

 synchronized(this) {

 ... Modify values and position

 }

 }

 public void utilizeDataAndPerformFunction() {

 synchronized(this) {

 ... Use values and position

 }

 }

}

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.8

Synchronized methods vs. Synchronized Blocks

 Possible to use only the synchronized block mechanism to synchronize

whole method

 You decide when it’s best to synchronize a block of code or the whole

method

 RULE: Establish as small a lock scope as possible

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.9

The Lock interface [java.util.concurrent.locks]

public interface Lock {

 public void lock();

 public void lockInterruptibly()

 throws InterruptedException;

 public boolean tryLock();

 public boolean tryLock(long time, TimeUnit unit)

 throws InterruptedException;

 public void unlock();

 public Condition newCondition();

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.10

Lock Fairness

 ReentrantLock allows locks to be granted fairly

 Locks are granted as close to arrival order as possible

 Prevents lock starvation from happening

 Possibilities for granting locks

① First-come-first-served

② Allows servicing the maximum number of requests

③ Do what’s best for the platform

COMPUTER SCIENCE DEPARTMENT

THREAD NOTIFICATIONS

Tell me how you’ve been,

Tell what you’ve seen,

Tell me that you’d like to see me too.

‘cause my heart is full of no blood,

My cup is full of no love,

Couldn't take another sip even if I wanted.

Not Too Late, Norah Jones.

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.12

Objects and communications

 Every object has a lock

 Every object also includes mechanisms that allow it to be a waiting

area

 Allows communication between threads

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.13

Conditions

 One thread needs a condition to exist

 Assumes another thread will create that condition

 When another thread creates the condition?

 It notifies the first thread that has been waiting for that condition

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.14

wait(), notify() and the Object class

public class Object {

 public void wait();

 public void wait(long timeout);

 public void notify();

}

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.15

wait(), notify() and the Object class

 Wait-and-notify mechanisms are available for every object

 Accomplished by method invocations

 Synchronized mechanism is handled by using a keyword

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.16

Wait-and-notify relate to synchronization, but …

 It is more of a communications mechanism

 Allows one thread to communicate to another that a condition has

occurred

 Does not specify what that specific condition is

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.17

Can wait-and-notify replace the synchronized

mechanism?

 No

 Does not solve the race condition that the synchronized mechanism

solves

 Must be used in conjunction with the synchronized lock

 Prevents race condition that exists in the wait-notify mechanism itself

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.18

A code snippet that uses wait-notify to control the

execution of the thread
public class Tester implements Runnable {

 private boolean done = true;

 public synchronized run() {

 while (true) {

 if (done) wait();

 else { ... Logic ... wait(100);}

 }

 }

 public synchronized void setDone(boolean b) {

 done = b;

 if (!done) notify();

 }

}

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.19

About the wait() method

 When wait() executes, the synchronization lock is released

 By the JVM

 When a notification is received?

 The thread needs to reacquire the synchronization lock before returning from
wait()

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.20

Integration of wait-notify and synchronization

 Tightly integrated with the synchronization lock

 Feature not directly available to us

 Not possible to implement this: native method

 This is typical of approach in other libraries

 Condition variables for Solaris and POSIX threads require that a mutex lock

be held

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.21

Details of the race condition in the wait-notify

mechanism

 The first thread tests the condition and confirms that it must wait

 The second thread sets the condition

 The second thread calls notify()

 This goes unheard because the first thread is not yet waiting

 The first thread calls wait()

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.22

How does the potential race condition get resolved?

 To call wait() or notify()

 Obtain lock for the object on which this is being invoked

 It seems as if the lock has been held for the entire wait() invocation,

but …

① wait() releases lock prior to waiting

② Reacquires the lock just before returning from wait()

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.23

Is there a race condition during the time wait()

releases and reacquires the lock?

 wait() is tightly integrated with the lock mechanism

 Object lock is not freed until the waiting thread is in a state in which it

can receive notifications

 System prevents race conditions from occurring here

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.24

If a thread receives a notification, is it guaranteed

that condition is set?

 No

 Prior to calling wait(), test condition while holding lock

 Upon returning from wait() retest condition to see if you should

wait() again

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.25

What if notify() is called and no thread is

waiting?

 Wait-and-notify mechanism has no knowledge about the condition

about which it notifies

 If notify() is called when no other thread is waiting?

 The notification is lost

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.26

What happens when more than 1 thread is waiting

for a notification?

 Language specification does not define which thread gets the

notification

 Based on JVM implementation, scheduling and timing issues

 No way to determine which thread will get the notification

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.27

notifyAll()

 All threads that are waiting on an object are notified

 When threads receive this, they must work out

① Which thread should continue

② Which thread(s) should call wait() again

◼ All threads wake up, but they still have to reacquire the object lock

◼ Must wait for the lock to be freed

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.28

Threads and locks: Summary

 Locks are held by threads

 A thread can hold multiple locks

◼ Any thread that tries to obtains these locks? Placed into a wait state

◼ If the thread deadlocks? It results in all locks that it holds becoming unavailable to

other threads

 If a lock is held by some other thread?

 The thread must wait for it to be free: There is no preemption of locks!

 If the lock is unavailable (or held by a deadlocked thread) it blocks all the

waiting threads

COMPUTER SCIENCE DEPARTMENTTHREAD SAFETY

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.30

Race conditions

 Getting the right answer depends on lucky timing

 E.g., check-then-act: When stale observations are used to make a decision

on what to do next

 Real world example

 Our previous example of 2 friends trying to meet up for coffee on campus

without specifying which of the 2 locations

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.31

Racing and synchronization [1/3]

 Purpose of synchronization?

 Prevent race conditions that can cause data to be found in either an

inconsistent or intermediate state

 Threads are not allowed to race during sections of code protected by

synchronization

 But this does not mean outcome or order of execution of threads is

deterministic

◼ Threads may be racing prior to the synchronized section of code

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.32

Racing and synchronization [2/3]

 If threads are waiting on the same lock

 The order in which the synchronized code is executed is determined by

order in which lock is granted

◼ Which is platform-specific and non-deterministic

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.33

Racing and synchronization [3/3]

 Not all races should be avoided

 This is a subtle but important point: If you do this … everything is serialized!

 Only race-conditions within thread-unsafe sections of the code are

considered a problem

① Synchronize code that prevents race condition

② Design code that is thread-safe without the need for synchronization (or requires

minimal synchronization)

COMPUTER SCIENCE DEPARTMENT

CONCURRENT PROGRAMMING

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.35

Concurrent programming

 Concurrent programs require the correct use of threads and locks

 But these are just mechanisms

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.36

Object State

 Includes its data

 Stored in instance variables or static fields

 Fields from dependent objects

◼ HashMap’s state also depends on Map.Entry<K, V> objects

 Encompasses any data that can affect its externally visible behavior

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.37

The crux of developing thread safe programs

 Managing access to state

 In particular shared, mutable state

 Shared

 Variables could be accessed by multiple threads

 Mutable

 Variable’s values change over its lifetime

 Thread-safety

 Protecting data from uncontrolled concurrent access

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.38

When to coordinate accesses

 Whenever more than one thread accesses a state variable, and one of

them might write to it?

 They must all coordinate their access to it

 Avoid temptation to think that there are special situations when you

can disregard this

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.39

When should an object be thread-safe?

 Will it be accessed from multiple threads?

 The key here is how the object is used

 Not what it does

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.40

How to make an object thread-safe

 Use synchronization to coordinate access to mutable state

 Failure to do this?

 Data corruptions

 Problems that manifest themselves in myriad forms

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.41

Mechanisms for synchronization in Java

 One way to achieve this is via the synchronized keyword

 Exclusive locking

 Other approaches include:

 volatile variables

 Explicit locks

 Atomic variables

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.42

Programs that omit synchronizations

 Might work for some time

 But it will break at some point

 Far easier to design a class to be thread-safe from the start

 Retrofitting it to be thread-safe is extremely hard

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.43

Thread-safety: Encapsulate your state

 Fewer code should have access to a particular variable

 Easier to reason about conditions under which it might be accessed

 DON’T:

 Store state in public fields

 Publish reference to an internal object

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.44

Fixing access to mutable state variables from

multiple threads

 Don’t share state variables across threads

 Make state variables immutable

 Use synchronization to coordinate access to the state variable

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.45

Correctness of classes

 Class conforms to specification

 Invariants constrain object’s state

 Post conditions describe the effects of operations

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.46

A Thread-safe class

 Behaves correctly when accessed from multiple threads

 Regardless of scheduling or interleaving of execution of those threads

 By the runtime environment

 No additional synchronization or coordination by the calling code

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.47

Really?

 Thread safe classes encapsulate any needed synchronization

 Clients should not have to provide their own

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.48

Stateless objects are always thread-safe

public class StatelessClass implements Servlet {

 public void factorizer(ServletRequest req,

 ServletResponse resp) {

 BigInteger i = extractFromReq(req);

 BigInteger[] factors = factorize(i);

 encodeIntoResponse(resp, factors);

 }

}

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.49

Stateless objects are always thread-safe

 Transient state for a particular computation exists solely in local

variables

 Stored on the thread’s stack

 Accessible only to the executing thread

 One thread cannot influence the result of another

 The threads have no shared state

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.50

Atomicity

 Let’s look at two operations A and B

 From the perspective of thread executing A

 When another thread executes B

 Either all of B has executed or none of it has

 Operations A and B are atomic with respect to each other

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.51

Initializing Objects

public class LazyInitialization {

 private ExpensiveObject instance = null;

 public ExpensiveObject getInstance() {

 if (instance == null) {

 instance = new ExpensiveObject();

 }

 return instance;

 }

}

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.52

Thread-safe initialization

public class Singleton {

 private static final Singleton instance = new Singleton();

 // Private constructor prevents instantiation from other

 // classes

 private Singleton() { }

 public static Singleton getInstance() {

 return instance;

 }

}

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.53

The final keyword

 You cannot extend a final class

 E.g., java.lang.String

 You cannot override a final method

 You can only initialize a final variable once

 Either via an initializer or an assignment statement

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.54

Blank final instance variable of a class

 Must be assigned within every constructor of the class

 Attempting to set it outside the constructor will result in a compilation

error

 The value of a final variable is not necessarily known at compile

time

THREADS & THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L6.55

The contents of this slide-set are based on the

following references

 Java Threads. Scott Oaks and Henry Wong. . 3rd Edition. O’Reilly Press. ISBN: 0-596-

00782-5/978-0-596-00782-9. [Chapters 3, 4]

 Java Concurrency in Practice. Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer,

David Holmes, and Doug Lea. Addison-Wesley Professional. ISBN: 0321349601/978-

0321349606. [Chapters 1, 2, 3 and 4]

	Slide 1: CSx55: Distributed Systems [Threads & Safety]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: Advantages of using the Lock interface
	Slide 5: Advantages of explicit locking
	Slide 6: Synchronized Blocks
	Slide 7: Much of what we accomplish with the Lock we can do so with the synchronized keyword
	Slide 8: Synchronized methods vs. Synchronized Blocks
	Slide 9: The Lock interface [java.util.concurrent.locks]
	Slide 10: Lock Fairness
	Slide 11: Thread Notifications
	Slide 12: Objects and communications
	Slide 13: Conditions
	Slide 14: wait(), notify() and the Object class
	Slide 15: wait(), notify() and the Object class
	Slide 16: Wait-and-notify relate to synchronization, but …
	Slide 17: Can wait-and-notify replace the synchronized mechanism?
	Slide 18: A code snippet that uses wait-notify to control the execution of the thread
	Slide 19: About the wait() method
	Slide 20: Integration of wait-notify and synchronization
	Slide 21: Details of the race condition in the wait-notify mechanism
	Slide 22: How does the potential race condition get resolved?
	Slide 23: Is there a race condition during the time wait() releases and reacquires the lock?
	Slide 24: If a thread receives a notification, is it guaranteed that condition is set?
	Slide 25: What if notify() is called and no thread is waiting?
	Slide 26: What happens when more than 1 thread is waiting for a notification?
	Slide 27: notifyAll()
	Slide 28: Threads and locks: Summary
	Slide 29: Thread Safety
	Slide 30: Race conditions
	Slide 31: Racing and synchronization [1/3]
	Slide 32: Racing and synchronization [2/3]
	Slide 33: Racing and synchronization [3/3]
	Slide 34: Concurrent Programming
	Slide 35: Concurrent programming
	Slide 36: Object State
	Slide 37: The crux of developing thread safe programs
	Slide 38: When to coordinate accesses
	Slide 39: When should an object be thread-safe?
	Slide 40: How to make an object thread-safe
	Slide 41: Mechanisms for synchronization in Java
	Slide 42: Programs that omit synchronizations
	Slide 43: Thread-safety: Encapsulate your state
	Slide 44: Fixing access to mutable state variables from multiple threads
	Slide 45: Correctness of classes
	Slide 46: A Thread-safe class
	Slide 47: Really?
	Slide 48: Stateless objects are always thread-safe
	Slide 49: Stateless objects are always thread-safe
	Slide 50: Atomicity
	Slide 51: Initializing Objects
	Slide 52: Thread-safe initialization
	Slide 53: The final keyword
	Slide 54: Blank final instance variable of a class
	Slide 55: The contents of this slide-set are based on the following references

