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On impending code breaks, putting the brakes, you are …
Let a reference escape, have you? 
    Misbehave, your code will, out of the blue

Get out, you will, of this bind
     If, your objects, you have confined
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Frequently asked questions from the previous class 

survey

 How does the runtime for wait/notify contrast with that of the Lock interface?

 Is the wait/notify construct applicable beyond producer-consumer with shared 
buffer?

 Why can’t we override the wait/notify methods?

 Use of private static fields

 Not allowed in interfaces, but allowed in classes; most common use case is for constants and 
singleton instances where you also add final i.e., private static final; also in 
ThreadLocal which is a specific use-case.

 Errors if I use Lock inside a synchronized method?   Which lock is acquired 
when that synchronized method is invoked?

 Why synchronized blocks?   Doesn’t the synchronized method do it all?

 Is waiting to acquire a Lock a blocking call?
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Topics covered in this lecture

 Atomicity

 Locks& Reentrancy

 Guarding state with locks

 Sharing Objects

 Thread confinement
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When should an object be thread-safe?

 Will it be accessed from multiple threads?

 The key here is how the object is used

 Not what it does
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How to make an object thread-safe

 Use synchronization to coordinate access to mutable state

 Failure to do this?

 Data corruptions

 Problems that manifest themselves in myriad forms
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Mechanisms for synchronization in Java

 One way to achieve this is via the synchronized keyword

 Exclusive locking

 Other approaches include: 

 volatile variables

 Explicit locks

 Atomic variables
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Programs that omit synchronizations

 Might work for some time

 But it will break at some point

 Far easier to design a class to be thread-safe from the start

 Retrofitting it to be thread-safe is extremely hard
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Thread-safety: Encapsulate your state

 Fewer code should have access to a particular variable

 Easier to reason about conditions under which it might be accessed

 DON’T: 

 Store state in public fields

 Publish reference to an internal object
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Fixing access to mutable state variables from 

multiple threads

 Don’t share state variables across threads

 Make state variables immutable

 Use synchronization to coordinate access to the state variable
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Correctness of classes

 Class conforms to specification

 Invariants constrain object’s state

 Post conditions describe the effects of operations
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A Thread-safe class

 Behaves correctly when accessed from multiple threads

 Regardless of scheduling or interleaving of execution of those threads

 By the runtime environment

 No additional synchronization or coordination by the calling code
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Really?

 Thread safe classes encapsulate any needed synchronization

 Clients should not have to provide their own
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Stateless objects are always thread-safe

public class StatelessClass implements Servlet {

     public void factorizer(ServletRequest req,

                            ServletResponse resp) {

         BigInteger i = extractFromReq(req); 

         BigInteger[] factors  = factorize(i);

         encodeIntoResponse(resp, factors);        

     } 

}
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Stateless objects are always thread-safe

 Transient state for a particular computation exists solely in local 

variables

 Stored on the thread’s stack

 Accessible only to the executing thread

 One thread cannot influence the result of another

 The threads have no shared state 
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Atomicity

 Let’s look at two operations A and B

 From the perspective of thread executing A

 When another thread executes B

 Either all of B has executed or none of it has

 Operations A and B are atomic with respect to each other



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.16

Initializing Objects

public class LazyInitialization {

    private ExpensiveObject instance = null;

    public ExpensiveObject getInstance() {

       if (instance == null) {

         instance = new ExpensiveObject();

       }

       return instance;

    }

}
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Thread-safe initialization

public class Singleton {

   private static final Singleton instance = new Singleton();

 

   // Private constructor prevents instantiation from other

   // classes

   private Singleton() { }

 

   public static Singleton getInstance() {

      return instance;

   }

}
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The final keyword

 You cannot extend a final class 

 E.g., java.lang.String

 You cannot override a final method

 You can only initialize a final variable once

 Either via an initializer or an assignment statement
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Blank final instance variable of a class 

 Must be assigned within every constructor of the class

 Attempting to set it outside the constructor will result in a compilation 

error

 The value of a final variable is not necessarily known at compile 

time
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Atomicity with compound operations

public class CountingFactorizer {

   private long count = 0;

   public long getCount() {return count;}

   public void factorizer(int i) {

     int[] factors = factor(i);

     count++; 

   }

}
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Atomicity with compound operations

public class CountingFactorizer {

   private final AtomicLong count = new AtomicLong(0);

   public long getCount() {return count;}

   public void factorizer(int i) {

     int[] factors = factor(i);

     count.incrementAndGet(); 

   }

}
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Compound actions & thread-safety

 Compound actions

▪ Check-then-act

▪ Read-modify-write

 Must be executed atomically for thread-safety
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Reentrancy

 When thread requests lock held by another thread?

 Requesting thread blocks

 If a thread attempts to acquire a lock it already holds?

 Succeeds

 Locks are acquired on a per-thread rather than on a per-invocation 

basis
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How reentrancy works                            [1/2]

 For each lock two items are maintained

 Acquisition count

 Owning thread

 When the count is zero?

 Lock is free

 If a thread acquires lock for the first time?

 Count is one
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How reentrancy works                             [2/2]

 If owning thread acquires lock again, count is incremented

 When owning thread exits synchronized block, count is decremented

 If it is zero …. Lock is released
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Does this result in a deadlock?

public class Widget {

  public synchronized doSomething() {

    ...

  }

  

}

   

public class LoggingWidget extends Widget {

  public synchronized void doSomething() {

    System.out.println(toString()+“Calling doSomething());

    super.doSomething();

  }

}

No! Intrinsic locks are reentrant
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Guarding state with locks

 A mutable, shared variable that may be accessed by multiple threads 

must be guarded by the same lock

 For every invariant that involves more than one variable?

 All variables must be guarded by the same lock
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Watch for indiscriminate use of synchronization

 Every method in Vector is synchronized

 But this does not render compound actions on Vector atomic

if (!vector.contains(element)) {

   vector.add(element);

}

• Snippet has race condition even though add and contains are 

atomic

• Additional locking needed for compound actions
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Pitfalls of over synchronization

 Number of simultaneous invocations? 

 Not limited by processor resources, but is limited by the application structure

 Poor concurrency
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Antidote for poor concurrency

 Control the scope of the lock

 Too large: Invocations become sequential

 Don’t make it too small either

◼ Operations that are atomic should not be in synchronized block
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What we will be looking at

 Techniques for sharing and publishing objects

 Safe access from multiple threads

 Together with synchronization, sharing objects lays foundation for 

thread-safe classes
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Synchronization

 What we have seen so far:

 Atomicity and demarcating critical sections

 But it is also about memory visibility

 We prevent one thread from modifying object state while another is using it

 When state of an object is modified, other thread can see the changes that 

were made
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Publication and Escape

 Publishing an object

 Makes it available outside current scope

◼ Storing a reference to it, returning from a non-private method, passing it as an  

argument to another method

 Escape

 An object that is published when it should not have been
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Pitfalls in publication

 Publishing internal state variables

 Makes it difficult to preserve invariants

 Publishing objects before they are constructed

 Compromises thread-safety
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Most blatant form of publication

 Storing a reference in a public static field

public static Set<Secret> knownSecrets;

public void initialize() {

   knownSecrets = new HashSet<Secret>();

}

▪ If you add a Secret to knownSecrets?

▪ You also end up publishing that Secret
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Allowing internal mutable state to escape

public class PublishingState {

   private String[] states = new String[] {

       “AK”, “AL”, …

   };

   public String[] getStates() {return states;}

}

• states has escaped its intended scope

▪ What should have been private is now public

• Any caller can modify its contents
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Another way to publish internal state

public class ThisEscape {

   public ThisEscape(EventSource source) {

      source.registerListener(

         new EventListener() {

                public void onEvent(Event e) {

                   doSomething(e);

                }

          });

   }

}

• When EventListener is published, it publishes the 
enclosing ThisEscape instance

• Inner class instances contain hidden reference to 
enclosing instance
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Abbreviated view of the classes generated by the 

javac

class ThisEscape$1 implements EventListener {  
       final ThisEscape this$0;  

        ThisEscape$1(ThisEscape thisescape) {   
              this$0 = thisescape;    super();  }  

         public void onEvent(Event e) {    
                ThisEscape.access$000(this$0, e);  }
}

public class ThisEscape {  
      
      public ThisEscape(EventSource source) {    
             source.registerListener(new ThisEscape$1(this));   
       }  

       private void doSomething(Event e) {
            …..
        }  

       static void access$000(ThisEscape _this, Event event) {   
            _this.doSomething(event);  
       }
   }
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Safe construction practices

 An object is in a predictable, consistent state only after its constructor 

returns

 Publishing an object within its constructor?

 You are publishing an incompletely constructed object

 Even if you are doing so in the last line of the constructor

 RULE: Don’t allow this to escape during construction
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A common mistake is to start a thread from a 

constructor

 When an object creates a thread in its constructor

 Almost always shares its this reference with the new thread

◼ Explicitly: Passing it to the constructor

◼ Implicitly: The Thread or Runnable is an inner class of the owning object

 Nothing wrong with creating a thread in a constructor

 Just don’t start the Thread

 Expose an  initialize() method
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Thread confinement

 Accessing shared, mutable data requires synchronization

 Avoid this by not sharing

 If data is only accessed from a single thread?

 No synchronization is needed

 When an object is confined to a thread?

 Usage is thread-safe even if the object is not
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Thread confinement

 Language has no means of confining an object to a thread

 Thread confinement is an element of a program’s design

 Enforced by implementation

 Language and core libraries provide mechanisms to help with this

 Local variables and the ThreadLocal class
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Stack confinement

 Object can only be reached through local variables

 Local variables are intrinsically confined to the executing thread

 Exist on executing thread’s stack

 Not accessible to other threads
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Thread confinement of reference variables

public int loadTheArk() {

   SortedSet<Animal> animals;

   // animals confined to method don’t let 

   // them escape

  

   return numPairs;

}

If you were to publish a reference to animals, 
stack confinement would be violated
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ThreadLocal

 Allows you to associate a per-thread value with a value-holding object

 Provides set and get accessor methods

 Maintains a separate copy of value for each thread that uses it

 get returns the most recent value passed to set

◼ From the currently executing thread
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Using ThreadLocal for thread confinement

private static ThreadLocal<Connection> connectionHolder

   = new ThreadLocal<Connection>() {       

        public Connection initialValue() {

          return DriverManager.getConnection(DB_URL);

        }

      };

public static Connection getConnection() {

    return connectionHolder.get();

}

Each thread will have its own connection

When thread calls ThreadLocal.get for the first time? 
    initialValue() provides the initial value 
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Common use of ThreadLocal 

 Used when a frequently used operation requires a temporary object

 Wish to avoid reallocating temporary object on each invocation

 Integer.toString()

 Before 5.0 used ThreadLocal to store a 12-byte buffer for formatting 

result



COMPUTER SCIENCE DEPARTMENT

IMMUTABLE OBJECTS

Things are falling down on me

Heavy things I could not see

When I finally came around

Something small would pin me down

When I tried to step aside

I moved to where they hoped I'd be

Heavy Things, Scott Herman;Tom Marshall;Trey Anastasio. Phish
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Immutable objects

 State cannot be modified after construction

 All its fields are final

 Properly constructed

 The this reference does not escape during construction
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Immutable objects

public final class ThreeStooges {

   private final Set<String> stooges = new HashSet<String>();

   

   public ThreeStooges() {

     stooges.add(“Moe”);

     stooges.add(“Larry”);

     stooges.add(“Curly”);

   }

  

   public boolean isStooge(String name) {

        return stooges.contains(name);

   }

}

Design makes it impossible to modify after construction

The stooges reference is final
   All object state reached through a final field
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Safe publication of objects

 Storing reference to an object into a public field is not enough to 

publish that object safely

public Holder holder;

public void initialize() {

   holder = new Holder(42);

}

Holder could appear to be in an inconsistent state

   Even though invariants may have been established by constructor
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Class at risk of failure if not published properly

public class Holder {

   private int n;

   public Holder(int n) {this.n = n}

   public void assertSanity() {

      if (n != n) {

         throw new AssertionError(“Statement is false”);

      }

   }

}

Thread may see a stale value first time it reads the field and 
    an up-to-date value the next time
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Pearls and swine bereft of me

Long and weary my road has been

I was lost in the cities

Alone in the hills

No sorrow or pity for leaving, I feel, yeah

I am not your rolling wheels

I am the highway

I am not your carpet ride

I am the sky

I Am the Highway, Audioslave
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Composing Objects

 We don’t want to have to analyze each memory access to ensure 

program is thread-safe

 We wish to take thread-safe components and compose them into 

larger components or programs
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Basic elements of designing a thread-safe class

 Identify variables that form the object’s state

 Identify invariants that constrain the state variables

 Establish a policy for managing concurrent access to the object’s state
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Synchronization policy

 Defines how object coordinates access to its state

 Without violating its invariants or post-conditions

 Specifies a combination of:

 Immutability

 Thread confinement

 Locking

To maintain 
Thread Safety
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Looking at a counter

public final class Counter {

   private long value=0;

   public synchronized long getValue() {

        return value;

   }

   public synchronized long increment() {

     if (value == Long.MAX_VALUE) {

        throw new IllegalStateException(“Counter Overflow”);

     }

     value++;     

     return value;

   }

}
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Making a class thread-safe

 Ensure that invariants hold under concurrent access

 We need to reason about state

 Object and variables have state space

 Range of possible states 

 Keep this small so that it is easier to reason about
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Classes have invariants that tag certain states as 

valid or invalid

 Looking back at our Counter example

 The value field is a long

 The state space ranges from Long.MIN_VALUE to Long.MAX_VALUE

 The class places constraints on value

 Negative values are not allowed
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Operations may have post conditions that tag state 

transitions as invalid

 Looking back at our Counter example

 If the current state of Counter is 17

 The only valid next state is 18

 When the next state is derived from the current state?

◼ Compound action

 Not all operations impose state transition constraints

 For e.g., if a variable tracks current temperature? Previous state doesn’t 

impact current state
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Constraints and synchronization requirements

 If certain states are invalid?

 Underlying state variables should be encapsulated

◼ If not, client code can put it in an inconsistent state

 If an operation has invalid state transitions?

  It must be made atomic
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The contents of this slide-set are based on the 

following references

 Java Concurrency in Practice. Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, 

David Holmes, and Doug Lea. Addison-Wesley Professional. ISBN: 0321349601/978-

0321349606. [Chapters 1, 2, 3 and 4]

 https://www.javaspecialists.eu/archive/Issue192b.html
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