CSXx55: DISTRIBUTED SYSTEMS [THREAD SAFETY]

On impending code breaks, putting the brakes, you are ...

Let a reference escape, have you?
Misbehave, your code will, out of the blue

Get out, you will, of this bind
If, your objects, you have confined

Shrideep Pallickara

Computer Science
Colorado State University

COMPUTER SCIENCE DEPARTMENT @ COLORADDO STATE UNIVERSITY

Frequently asked questions from the previous class
survey

How does the runtime for wait/notify contrast with that of the Lock interface?

s the wait/notify construct applicable beyond producer-consumer with shared
buffer?

Why can’t we override the wait/notify methods?

Use of private static fields

Not allowed in interfaces, but allowed in classes; most common use case is for constants and
singleton instances where you also add final i.e., private static final; alsoin
ThreadLocal which is a specific use-case.

Errors if | use Lock inside a synchronized method? Which lock is acquired
when that synchronized method is invoked?

Why synchronized blocks? Doesn’t the synchronized method do it all?
Is waiting to acquire a Lock a blocking call?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.2

Topics covered in this lecture

N
- Atomicity

1 Locks& Reentrancy
1 Guarding state with locks
7 Sharing Objects

1 Thread confinement

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.3

When should an object be thread-safe?
=

0 Will it be accessed from multiple threads?

-1 The key here is how the object is used

Not what it does

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.4

How to make an object thread-safe
=

-1 Use synchronization to coordinate access to mutable state

7 Failure to do this?
Data corruptions

Problems that manifest themselves in myriad forms

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.5

Mechanisms for synchronization in Java
=

1 One way to achieve this is via the synchronized keyword

Exclusive locking

1 Other approaches include:
volatile variables
Explicit locks

Atomic variables

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.6

Programs that omit synchronizations

Might work for some time

But it will break at some point

Far easier to design a class to be thread-safe from the start

Retrofitting it to be thread-safe is extremely hard

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.7

Thread-safety: Encapsulate your state
—

-1 Fewer code should have access to a particular variable

Easier to reason about conditions under which it might be accessed

7 DON'T:
é &7 Store state in public fields
-

Publish reference to an internal object

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.8

Fixing access to mutable state variables from
multiple threads

1 Don’t share state variables across threads
-1 Make state variables immutable

1 Use synchronization to coordinate access to the state variable

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.9

Correctness of classes
—

1 Class conforms to specification
o Invariants constrain object’s state

-1 Post conditions describe the effects of operations

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.10

A Thread-safe class

Behaves correctly when accessed from multiple threads

Regardless of scheduling or interleaving of execution of those threads

By the runtime environment

No additional synchronization or coordination by the calling code

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.11

Really?

Thread safe classes encapsulate any needed synchronization

Clients should not have to provide their own

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.12

Stateless objects are always thread-safe

public class StatelessClass implements Servlet {

public void factorizer (ServletRequest req,
ServletResponse resp)
BigInteger 1 = extractFromReq (req);
BigInteger[] factors = factorize(1i);
encodeIntoResponse (resp, factors);

{

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY 5uPUTER SCIENCE DEPARTMENT THREAD SAFETY

L7.13

Stateless objects are always thread-safe

Transient state for a particular computation exists solely in local
variables

Stored on the thread’s stack

Accessible only to the executing thread

One thread cannot influence the result of another

The threads have no shared state

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.14

Atomicity

Let’s look at two operations A and B
From the perspective of thread executing A

When another thread executes B

Either all of B has executed or none of it has

Operations A and B are atomic with respect to each other

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.15

Initializing Objects
—

public class LazyInitialization {

private ExpensiveObject instance = null;
public ExpensiveObject getlInstance () {
1f (instance == null) {
instance = new ExpensiveObject () ;

}

return i1nstance;

as

YL\ |

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.16

Thread-safe initialization

public class Singleton {
private static final Singleton instance = new Singleton();

// Private constructor prevents instantiation from other
// classes

private Singleton () { }
public static Singleton getlInstance() {
return instance; -
) o N =
e 7))

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.17

The final keyword

You cannot extend a £1nal class

E.g., java.lang.String

You cannot override a final method

You can only initialize a £inal variable once

Either via an initializer or an assignment statement

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.18

Blank £inal instance variable of a class

Must be assigned within every constructor of the class

Attempting to set it outside the constructor will result in a compilation
error

The value of a final variable is not necessarily known at compile
time

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.19

Atomicity with compound operations
—

public class CountingFactorizer ({
private long count = 0;

public long getCount () {return count;}
public void factorizer (int i) {

int[] factors = factor(i);
count++;

{

e

s

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.20

Atomicity with compound operations

public class CountingFactorizer {

public void factorizer (int 1) {
int[] factors = factor(i);
count.incrementAndGet () ;

}

private final AtomicLong count = new AtomicLong(O0) ;

public long getCount () {return count;}

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

THREAD SAFETY

L7.21

Compound actions & thread-safety

Compound actions
Check-then-act

Read-modify-write

Must be executed atomically for thread-safety

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.22

%KS

REENTRANCY

Reentrancy

When thread requests lock held by another thread?
Requesting thread blocks

If a thread attempts to acquire a lock it already holds?

Succeeds

Locks are acquired on a per-thread rather than on a per-invocation
basis

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.24

How reentrancy works [1/2]

For each lock two items are maintained
Acquisition count

Owning thread

When the count is zero?

Lock is free

If a thread acquires lock for the first time?

Count is one

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.25

How reentrancy works [2/2]

If owning thread acquires lock again, count is incremented

When owning thread exits synchronized block, count is decremented

If it is zero Lock is released

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.26

Does this result in a deadlock?

public class Widget {
public synchronized doSomething () {

}

public class LoggingWidget extends Widget {

public synchronized void doSomething () {
System.out.println(toString () +“"Calling doSomething()) ;
super .doSomething () ; r~
=\ A

=
) o

No! Intrinsic locks are reentrant J

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.27

GUARDING STATE WITH LOCKS

COMPUTER SCIENCE DEPARTMENT @ COLORADDO STATE UNIVERSITY

Guarding state with locks

A mutable, shared variable that may be accessed by multiple threads
must be guarded by the same lock

For every invariant that involves more than one variable?

All variables must be guarded by the same lock

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.29

Woatch for indiscriminate use of synchronization

Every method in Vector is synchronized

But this does not render compound actions on Vector atomic

if (!vector.contains(element)) {
vector.add (element) ;

}

* Snippet has race condition even though add and contains are
atomic

* Additional locking needed for compound actions

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.30

Pitfalls of over synchronization
—

1 Number of simultaneous invocations?

Not limited by processor resources, but is limited by the application structure

Poor concurrency

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.31

Antidote for poor concurrency

Control the scope of the lock
Too large: Invocations become sequential

Don’t make it too small either

Operations that are atomic should not be in synchronized block

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.32

SHARING OBJECTS

COMPUTER SCIENCE DEPARTMENT

‘) COLORADO STATE UNIVERSITY

What we will be looking at

Techniques for sharing and publishing objects

Safe access from multiple threads

Together with synchronization, sharing objects lays foundation for
thread-safe classes

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.34

Synchronization

What we have seen so far:

Atomicity and demarcating critical sections

But it is also about memory visibility
We prevent one thread from modifying object state while another is using it

When state of an object is modified, other thread can see the changes that
were made

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.35

Publication and Escape

Publishing an object

Makes it available outside current scope

Storing a reference to it, returning from a non-private method, passing it as an
argument to another method

Escape

An object that is published when it should not have been

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.36

Pitfalls in publication

Publishing internal state variables

Makes it difficult to preserve invariants

Publishing objects before they are constructed

Compromises thread-safety

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.37

Most blatant form of publication

Storing a reference in a public static field

public static Set<Secret> knownSecrets;

public void 1nitialize () {
knownSecrets = new HashSet<Secret>(); f E
) :ﬁ

If you add a Secret to knownSecrets?

You also end up publishing that Secret

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.38

Allowing internal mutable state to escape

45
public class PublishingState { K\fi?ﬁ’
[1 o

private String[] states = new String
\\AK// , \\AL// , "

b g

public String[] getStates () {return states;}

* states has escaped its intended scope
" What should have been private is now public

* Any caller can modify its contents

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.39

Another way to publish internal state

public class ThisEscape { {é;\§27
public ThisEscape (EventSource source) { . 6
source.registerlListener (
new EventListener () {

public void onEvent (Event e) {
doSomething (e) ;

}

}

* When EventListener is published, it publishes the
enclosing ThisEscape instance

* Inner class instances contain hidden reference to
enclosing instance

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.40

Abbreviated view of the classes generated by the

‘ovqc
public class ThisEscape { class ThisEscape$1 implements EventListener {

final ThisEscape thisSO;
public ThisEscape(EventSource source) {

source.registerlListener(new ThisEscapeS1(this)); ThisEscape$1(ThisEscape thisescape) {
} thisSO = thisescape; super(); }
private void doSomething(Event e) { public void onEvent(Event e) {

ThisEscape.accessS000(thisSO, e); }
} }

static void accessS000(ThisEscape _this, Event event) {
_this.doSomething(event);

}
}

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.41

Safe construction practices

An object is in a predictable, consistent state only after its constructor
returns

Publishing an object within its constructor?
You are publishing an incompletely constructed object

Even if you are doing so in the last line of the constructor

RULE: Don’t allow this to escape during construction

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.42

A common mistake is to start a thread from a
constructor

When an object creates a thread in its constructor

Almost always shares its this reference with the new thread

Explicitly: Passing it to the constructor

Implicitly: The Thread or Runnable is an inner class of the owning object

Nothing wrong with creating a thread in a constructor
Just don'’t start the Thread

Expose an 1nitialize () method

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.43

THREAD CONFINEMENT

S — e S

Thread confinement

Accessing shared, mutable data requires synchronization

Avoid this by not sharing

If data is only accessed from a single thread?

No synchronization is needed

When an obiject is confined to a thread?

Usage is thread-safe even if the object is not

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.45

Thread confinement

Language has no means of confining an object to a thread

Thread confinement is an element of a program’s design

Enforced by implementation

Language and core libraries provide mechanisms to help with this

Local variables and the ThreadlLocal class

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.46

Stack confinement

Obiject can only be reached through local variables

Local variables are intrinsically confined to the executing thread

Exist on executing thread’s stack

Not accessible to other threads

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.47

Thread confinement of reference variables

public int loadTheArk () {
SortedSet<Animal> animals;

// animals confined to method don’t let
// them escape

return numPairs;

If you were to publish a reference to animals,
stack confinement would be violated

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.48

ThreadLocal

Allows you to associate a per-thread value with a value-holding object

Provides set and get accessor methods

Maintains a separate copy of value for each thread that uses it

get returns the most recent value passed to set

From the currently executing thread

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.49

Using ThreadLocal for thread confinement

private static ThreadLocal<Connection> connectionHolder
= new ThreadLocal<Connection> () {
public Connection initialValue() {
return DriverManager.getConnection (DB URL) ;
}
I

public static Connection getConnection () {
return connectionHolder.get () ;

}

Each thread will have its own connection

When thread calls ThreadlLocal.get for the first time?
initialValue() provides the initial value

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.50

Common use of ThreadlLocal

Used when a frequently used operation requires a temporary object

Wish to avoid reallocating temporary object on each invocation

Integer.toString ()

Before 5.0 used ThreadLocal to store a 12-byte buffer for formatting
result

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.51

Things are falling down on me
Heavy things | could not see
When | finally came around
Something small would pin me down
When | tried to step aside
| moved to where they hoped I'd be
Heavy Things, Scott Herman;Tom Marshall;Trey Anastasio. Phish

— IMMUTABLE OBJECTS

— e

Immutable objects

State cannot be modified after construction
All its fields are final

Properly constructed

The this reference does not escape during construction

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.53

Immutable objects

public final class ThreeStooges {

public ThreeStooges () {
stooges.add (“Moe”) ;
stooges.add (“Larry”) ;
stooges.add (“"Curly”) ;

public boolean isStooge (String name) {
return stooges.contains (name) ;

private final Set<String> stooges = new HashSet<String> () ;

Design makes it impossible to modify after construction

The stooges reference is final
All object state reached through a final field

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY

L7.54

Safe publication of objects

Storing reference to an object into a public field is not enough to
publish that object safely

s
—

public Holder holder;

public void initialize() {
holder = new Holder (42);

}

Holder could appear to be in an inconsistent state

Even though invariants may have been established by constructor

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.55

Class at risk of failure if not published properly

A
W e

public class Holder {
private int n;

public Holder (int n) {this.n = n}

public void assertSanity () {
if (n !'= n) {
throw new AssertionError (“Statement is false”);

}

Thread may see a stale value first time it reads the field and
an up-to-date value the next time

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.56

Pearls and swine bereft of me

Long and weary my road has been

| was lost in the cities .
Alone in the hills

No sorrow or pity for leaving, #feel, yeah

| am not your rolling wheels
| am the highway
| am not your carpet ride

I the sk
am the sky

| Am the Highway, Audioslave

% N

Composing Objects

We don’t want to have to analyze each memory access to ensure
program is thread-safe

We wish to take thread-safe components and compose them into
larger components or programs

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.58

Basic elements of designing a thread-safe class
—

o Identify variables that form the object’s state
0 Identify invariants that constrain the state variables

o Establish a policy for managing concurrent access to the object’s state

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.59

Synchronization policy

Defines how object coordinates access to its state

Without violating its invariants or post-conditions

Specifies a combination of:

Immutability

To maintain

Thread confinement Thread Safety

Locking

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.60

Looking at a counter

public final class Counter {
private long value=0;

public synchronized long getValue ()
return value;

}

public synchronized long increment ()
if (value == Long.MAX VALUE) {

}

value++;
return value;

{

{

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

THREAD SAFETY

P

=

throw new IllegalStateException (“Counter Overflow”);

2

L7.61

Making a class thread-safe

Ensure that invariants hold under concurrent access

We need to reason about state

Object and variables have state space
Range of possible states

Keep this small so that it is easier to reason about

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.62

Classes have invariants that tag certain states as

valid or invalid

Looking back at our Counter example

The value field is a 1long

The state space ranges from Long.MIN VALUE to Long.MAX VALUE

The class places constraints on value

Negative values are not allowed

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.63

Operations may have post conditions that tag state
transitions as invalid

Looking back at our Counter example

If the current state of Counteris 17
The only valid next state is 18

When the next state is derived from the current state?

Compound action

Not all operations impose state transition constraints

For e.g., if a variable tracks current temperature? Previous state doesn’t
impact current state

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.64

Constraints and synchronization requirements

If certain states are invalid?

Underlying state variables should be encapsulated

If not, client code can put it in an inconsistent state

If an operation has invalid state transitions?

It must be made atomic

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.65

The contents of this slide-set are based on the
following references

Java Concurrency in Practice. Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer,

David Holmes, and Doug Lea. Addison-Wesley Professional. ISBN: 0321349601 /97 8-
0321349606. [Chapters 1, 2, 3 and 4]

https: / /www.javaspecialists.eu/archive /Issue 192b.html

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.66

	Slide 1: CSx55: Distributed Systems [Thread Safety]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: When should an object be thread-safe?
	Slide 5: How to make an object thread-safe
	Slide 6: Mechanisms for synchronization in Java
	Slide 7: Programs that omit synchronizations
	Slide 8: Thread-safety: Encapsulate your state
	Slide 9: Fixing access to mutable state variables from multiple threads
	Slide 10: Correctness of classes
	Slide 11: A Thread-safe class
	Slide 12: Really?
	Slide 13: Stateless objects are always thread-safe
	Slide 14: Stateless objects are always thread-safe
	Slide 15: Atomicity
	Slide 16: Initializing Objects
	Slide 17: Thread-safe initialization
	Slide 18: The final keyword
	Slide 19: Blank final instance variable of a class
	Slide 20: Atomicity with compound operations
	Slide 21: Atomicity with compound operations
	Slide 22: Compound actions & thread-safety
	Slide 23: Locks & Reentrancy
	Slide 24: Reentrancy
	Slide 25: How reentrancy works [1/2]
	Slide 26: How reentrancy works [2/2]
	Slide 27: Does this result in a deadlock?
	Slide 28: Guarding state with locks
	Slide 29: Guarding state with locks
	Slide 30: Watch for indiscriminate use of synchronization
	Slide 31: Pitfalls of over synchronization
	Slide 32: Antidote for poor concurrency
	Slide 33: Sharing Objects
	Slide 34: What we will be looking at
	Slide 35: Synchronization
	Slide 36: Publication and Escape
	Slide 37: Pitfalls in publication
	Slide 38: Most blatant form of publication
	Slide 39: Allowing internal mutable state to escape
	Slide 40: Another way to publish internal state
	Slide 41: Abbreviated view of the classes generated by the javac
	Slide 42: Safe construction practices
	Slide 43: A common mistake is to start a thread from a constructor
	Slide 44: Thread Confinement
	Slide 45: Thread confinement
	Slide 46: Thread confinement
	Slide 47: Stack confinement
	Slide 48: Thread confinement of reference variables
	Slide 49: ThreadLocal
	Slide 50: Using ThreadLocal for thread confinement
	Slide 51: Common use of ThreadLocal
	Slide 52: Immutable Objects
	Slide 53: Immutable objects
	Slide 54: Immutable objects
	Slide 55: Safe publication of objects
	Slide 56: Class at risk of failure if not published properly
	Slide 57: Composing Objects
	Slide 58: Composing Objects
	Slide 59: Basic elements of designing a thread-safe class
	Slide 60: Synchronization policy
	Slide 61: Looking at a counter
	Slide 62: Making a class thread-safe
	Slide 63: Classes have invariants that tag certain states as valid or invalid
	Slide 64: Operations may have post conditions that tag state transitions as invalid
	Slide 65: Constraints and synchronization requirements
	Slide 66: The contents of this slide-set are based on the following references

