
COMPUTER SCIENCE DEPARTMENT

CSX55: DISTRIBUTED SYSTEMS [THREAD SAFETY]

Shrideep Pallickara

Computer Science

Colorado State University

On impending code breaks, putting the brakes, you are …
Let a reference escape, have you? 
    Misbehave, your code will, out of the blue

Get out, you will, of this bind
     If, your objects, you have confined



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.2

Frequently asked questions from the previous class 

survey

 How does the runtime for wait/notify contrast with that of the Lock interface?

 Is the wait/notify construct applicable beyond producer-consumer with shared 
buffer?

 Why can’t we override the wait/notify methods?

 Use of private static fields

 Not allowed in interfaces, but allowed in classes; most common use case is for constants and 
singleton instances where you also add final i.e., private static final; also in 
ThreadLocal which is a specific use-case.

 Errors if I use Lock inside a synchronized method?   Which lock is acquired 
when that synchronized method is invoked?

 Why synchronized blocks?   Doesn’t the synchronized method do it all?

 Is waiting to acquire a Lock a blocking call?



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.3

Topics covered in this lecture

 Atomicity

 Locks& Reentrancy

 Guarding state with locks

 Sharing Objects

 Thread confinement



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.4

When should an object be thread-safe?

 Will it be accessed from multiple threads?

 The key here is how the object is used

 Not what it does



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.5

How to make an object thread-safe

 Use synchronization to coordinate access to mutable state

 Failure to do this?

 Data corruptions

 Problems that manifest themselves in myriad forms



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.6

Mechanisms for synchronization in Java

 One way to achieve this is via the synchronized keyword

 Exclusive locking

 Other approaches include: 

 volatile variables

 Explicit locks

 Atomic variables



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.7

Programs that omit synchronizations

 Might work for some time

 But it will break at some point

 Far easier to design a class to be thread-safe from the start

 Retrofitting it to be thread-safe is extremely hard



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.8

Thread-safety: Encapsulate your state

 Fewer code should have access to a particular variable

 Easier to reason about conditions under which it might be accessed

 DON’T: 

 Store state in public fields

 Publish reference to an internal object



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.9

Fixing access to mutable state variables from 

multiple threads

 Don’t share state variables across threads

 Make state variables immutable

 Use synchronization to coordinate access to the state variable



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.10

Correctness of classes

 Class conforms to specification

 Invariants constrain object’s state

 Post conditions describe the effects of operations



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.11

A Thread-safe class

 Behaves correctly when accessed from multiple threads

 Regardless of scheduling or interleaving of execution of those threads

 By the runtime environment

 No additional synchronization or coordination by the calling code



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.12

Really?

 Thread safe classes encapsulate any needed synchronization

 Clients should not have to provide their own



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.13

Stateless objects are always thread-safe

public class StatelessClass implements Servlet {

     public void factorizer(ServletRequest req,

                            ServletResponse resp) {

         BigInteger i = extractFromReq(req); 

         BigInteger[] factors  = factorize(i);

         encodeIntoResponse(resp, factors);        

     } 

}



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.14

Stateless objects are always thread-safe

 Transient state for a particular computation exists solely in local 

variables

 Stored on the thread’s stack

 Accessible only to the executing thread

 One thread cannot influence the result of another

 The threads have no shared state 



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.15

Atomicity

 Let’s look at two operations A and B

 From the perspective of thread executing A

 When another thread executes B

 Either all of B has executed or none of it has

 Operations A and B are atomic with respect to each other



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.16

Initializing Objects

public class LazyInitialization {

    private ExpensiveObject instance = null;

    public ExpensiveObject getInstance() {

       if (instance == null) {

         instance = new ExpensiveObject();

       }

       return instance;

    }

}



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.17

Thread-safe initialization

public class Singleton {

   private static final Singleton instance = new Singleton();

 

   // Private constructor prevents instantiation from other

   // classes

   private Singleton() { }

 

   public static Singleton getInstance() {

      return instance;

   }

}



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.18

The final keyword

 You cannot extend a final class 

 E.g., java.lang.String

 You cannot override a final method

 You can only initialize a final variable once

 Either via an initializer or an assignment statement



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.19

Blank final instance variable of a class 

 Must be assigned within every constructor of the class

 Attempting to set it outside the constructor will result in a compilation 

error

 The value of a final variable is not necessarily known at compile 

time



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.20

Atomicity with compound operations

public class CountingFactorizer {

   private long count = 0;

   public long getCount() {return count;}

   public void factorizer(int i) {

     int[] factors = factor(i);

     count++; 

   }

}



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.21

Atomicity with compound operations

public class CountingFactorizer {

   private final AtomicLong count = new AtomicLong(0);

   public long getCount() {return count;}

   public void factorizer(int i) {

     int[] factors = factor(i);

     count.incrementAndGet(); 

   }

}



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.22

Compound actions & thread-safety

 Compound actions

▪ Check-then-act

▪ Read-modify-write

 Must be executed atomically for thread-safety



COMPUTER SCIENCE DEPARTMENT

LOCKS & REENTRANCY



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.24

Reentrancy

 When thread requests lock held by another thread?

 Requesting thread blocks

 If a thread attempts to acquire a lock it already holds?

 Succeeds

 Locks are acquired on a per-thread rather than on a per-invocation 

basis



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.25

How reentrancy works                            [1/2]

 For each lock two items are maintained

 Acquisition count

 Owning thread

 When the count is zero?

 Lock is free

 If a thread acquires lock for the first time?

 Count is one



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.26

How reentrancy works                             [2/2]

 If owning thread acquires lock again, count is incremented

 When owning thread exits synchronized block, count is decremented

 If it is zero …. Lock is released



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.27

Does this result in a deadlock?

public class Widget {

  public synchronized doSomething() {

    ...

  }

  

}

   

public class LoggingWidget extends Widget {

  public synchronized void doSomething() {

    System.out.println(toString()+“Calling doSomething());

    super.doSomething();

  }

}

No! Intrinsic locks are reentrant



COMPUTER SCIENCE DEPARTMENT

GUARDING STATE WITH LOCKS



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.29

Guarding state with locks

 A mutable, shared variable that may be accessed by multiple threads 

must be guarded by the same lock

 For every invariant that involves more than one variable?

 All variables must be guarded by the same lock



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.30

Watch for indiscriminate use of synchronization

 Every method in Vector is synchronized

 But this does not render compound actions on Vector atomic

if (!vector.contains(element)) {

   vector.add(element);

}

• Snippet has race condition even though add and contains are 

atomic

• Additional locking needed for compound actions



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.31

Pitfalls of over synchronization

 Number of simultaneous invocations? 

 Not limited by processor resources, but is limited by the application structure

 Poor concurrency



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.32

Antidote for poor concurrency

 Control the scope of the lock

 Too large: Invocations become sequential

 Don’t make it too small either

◼ Operations that are atomic should not be in synchronized block



COMPUTER SCIENCE DEPARTMENT

SHARING OBJECTS



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.34

What we will be looking at

 Techniques for sharing and publishing objects

 Safe access from multiple threads

 Together with synchronization, sharing objects lays foundation for 

thread-safe classes



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.35

Synchronization

 What we have seen so far:

 Atomicity and demarcating critical sections

 But it is also about memory visibility

 We prevent one thread from modifying object state while another is using it

 When state of an object is modified, other thread can see the changes that 

were made



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.36

Publication and Escape

 Publishing an object

 Makes it available outside current scope

◼ Storing a reference to it, returning from a non-private method, passing it as an  

argument to another method

 Escape

 An object that is published when it should not have been



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.37

Pitfalls in publication

 Publishing internal state variables

 Makes it difficult to preserve invariants

 Publishing objects before they are constructed

 Compromises thread-safety



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.38

Most blatant form of publication

 Storing a reference in a public static field

public static Set<Secret> knownSecrets;

public void initialize() {

   knownSecrets = new HashSet<Secret>();

}

▪ If you add a Secret to knownSecrets?

▪ You also end up publishing that Secret



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.39

Allowing internal mutable state to escape

public class PublishingState {

   private String[] states = new String[] {

       “AK”, “AL”, …

   };

   public String[] getStates() {return states;}

}

• states has escaped its intended scope

▪ What should have been private is now public

• Any caller can modify its contents



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.40

Another way to publish internal state

public class ThisEscape {

   public ThisEscape(EventSource source) {

      source.registerListener(

         new EventListener() {

                public void onEvent(Event e) {

                   doSomething(e);

                }

          });

   }

}

• When EventListener is published, it publishes the 
enclosing ThisEscape instance

• Inner class instances contain hidden reference to 
enclosing instance



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.41

Abbreviated view of the classes generated by the 

javac

class ThisEscape$1 implements EventListener {  
       final ThisEscape this$0;  

        ThisEscape$1(ThisEscape thisescape) {   
              this$0 = thisescape;    super();  }  

         public void onEvent(Event e) {    
                ThisEscape.access$000(this$0, e);  }
}

public class ThisEscape {  
      
      public ThisEscape(EventSource source) {    
             source.registerListener(new ThisEscape$1(this));   
       }  

       private void doSomething(Event e) {
            …..
        }  

       static void access$000(ThisEscape _this, Event event) {   
            _this.doSomething(event);  
       }
   }



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.42

Safe construction practices

 An object is in a predictable, consistent state only after its constructor 

returns

 Publishing an object within its constructor?

 You are publishing an incompletely constructed object

 Even if you are doing so in the last line of the constructor

 RULE: Don’t allow this to escape during construction



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.43

A common mistake is to start a thread from a 

constructor

 When an object creates a thread in its constructor

 Almost always shares its this reference with the new thread

◼ Explicitly: Passing it to the constructor

◼ Implicitly: The Thread or Runnable is an inner class of the owning object

 Nothing wrong with creating a thread in a constructor

 Just don’t start the Thread

 Expose an  initialize() method



COMPUTER SCIENCE DEPARTMENT

THREAD CONFINEMENT



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.45

Thread confinement

 Accessing shared, mutable data requires synchronization

 Avoid this by not sharing

 If data is only accessed from a single thread?

 No synchronization is needed

 When an object is confined to a thread?

 Usage is thread-safe even if the object is not



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.46

Thread confinement

 Language has no means of confining an object to a thread

 Thread confinement is an element of a program’s design

 Enforced by implementation

 Language and core libraries provide mechanisms to help with this

 Local variables and the ThreadLocal class



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.47

Stack confinement

 Object can only be reached through local variables

 Local variables are intrinsically confined to the executing thread

 Exist on executing thread’s stack

 Not accessible to other threads



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.48

Thread confinement of reference variables

public int loadTheArk() {

   SortedSet<Animal> animals;

   // animals confined to method don’t let 

   // them escape

  

   return numPairs;

}

If you were to publish a reference to animals, 
stack confinement would be violated



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.49

ThreadLocal

 Allows you to associate a per-thread value with a value-holding object

 Provides set and get accessor methods

 Maintains a separate copy of value for each thread that uses it

 get returns the most recent value passed to set

◼ From the currently executing thread



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.50

Using ThreadLocal for thread confinement

private static ThreadLocal<Connection> connectionHolder

   = new ThreadLocal<Connection>() {       

        public Connection initialValue() {

          return DriverManager.getConnection(DB_URL);

        }

      };

public static Connection getConnection() {

    return connectionHolder.get();

}

Each thread will have its own connection

When thread calls ThreadLocal.get for the first time? 
    initialValue() provides the initial value 



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.51

Common use of ThreadLocal 

 Used when a frequently used operation requires a temporary object

 Wish to avoid reallocating temporary object on each invocation

 Integer.toString()

 Before 5.0 used ThreadLocal to store a 12-byte buffer for formatting 

result



COMPUTER SCIENCE DEPARTMENT

IMMUTABLE OBJECTS

Things are falling down on me

Heavy things I could not see

When I finally came around

Something small would pin me down

When I tried to step aside

I moved to where they hoped I'd be

Heavy Things, Scott Herman;Tom Marshall;Trey Anastasio. Phish



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.53

Immutable objects

 State cannot be modified after construction

 All its fields are final

 Properly constructed

 The this reference does not escape during construction



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.54

Immutable objects

public final class ThreeStooges {

   private final Set<String> stooges = new HashSet<String>();

   

   public ThreeStooges() {

     stooges.add(“Moe”);

     stooges.add(“Larry”);

     stooges.add(“Curly”);

   }

  

   public boolean isStooge(String name) {

        return stooges.contains(name);

   }

}

Design makes it impossible to modify after construction

The stooges reference is final
   All object state reached through a final field



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.55

Safe publication of objects

 Storing reference to an object into a public field is not enough to 

publish that object safely

public Holder holder;

public void initialize() {

   holder = new Holder(42);

}

Holder could appear to be in an inconsistent state

   Even though invariants may have been established by constructor



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.56

Class at risk of failure if not published properly

public class Holder {

   private int n;

   public Holder(int n) {this.n = n}

   public void assertSanity() {

      if (n != n) {

         throw new AssertionError(“Statement is false”);

      }

   }

}

Thread may see a stale value first time it reads the field and 
    an up-to-date value the next time



COMPUTER SCIENCE DEPARTMENT

COMPOSING OBJECTS

Pearls and swine bereft of me

Long and weary my road has been

I was lost in the cities

Alone in the hills

No sorrow or pity for leaving, I feel, yeah

I am not your rolling wheels

I am the highway

I am not your carpet ride

I am the sky

I Am the Highway, Audioslave



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.58

Composing Objects

 We don’t want to have to analyze each memory access to ensure 

program is thread-safe

 We wish to take thread-safe components and compose them into 

larger components or programs



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.59

Basic elements of designing a thread-safe class

 Identify variables that form the object’s state

 Identify invariants that constrain the state variables

 Establish a policy for managing concurrent access to the object’s state



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.60

Synchronization policy

 Defines how object coordinates access to its state

 Without violating its invariants or post-conditions

 Specifies a combination of:

 Immutability

 Thread confinement

 Locking

To maintain 
Thread Safety



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.61

Looking at a counter

public final class Counter {

   private long value=0;

   public synchronized long getValue() {

        return value;

   }

   public synchronized long increment() {

     if (value == Long.MAX_VALUE) {

        throw new IllegalStateException(“Counter Overflow”);

     }

     value++;     

     return value;

   }

}



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.62

Making a class thread-safe

 Ensure that invariants hold under concurrent access

 We need to reason about state

 Object and variables have state space

 Range of possible states 

 Keep this small so that it is easier to reason about



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.63

Classes have invariants that tag certain states as 

valid or invalid

 Looking back at our Counter example

 The value field is a long

 The state space ranges from Long.MIN_VALUE to Long.MAX_VALUE

 The class places constraints on value

 Negative values are not allowed



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.64

Operations may have post conditions that tag state 

transitions as invalid

 Looking back at our Counter example

 If the current state of Counter is 17

 The only valid next state is 18

 When the next state is derived from the current state?

◼ Compound action

 Not all operations impose state transition constraints

 For e.g., if a variable tracks current temperature? Previous state doesn’t 

impact current state



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.65

Constraints and synchronization requirements

 If certain states are invalid?

 Underlying state variables should be encapsulated

◼ If not, client code can put it in an inconsistent state

 If an operation has invalid state transitions?

  It must be made atomic



THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L7.66

The contents of this slide-set are based on the 

following references

 Java Concurrency in Practice. Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, 

David Holmes, and Doug Lea. Addison-Wesley Professional. ISBN: 0321349601/978-

0321349606. [Chapters 1, 2, 3 and 4]

 https://www.javaspecialists.eu/archive/Issue192b.html


	Slide 1: CSx55: Distributed Systems  [Thread Safety]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: When should an object be thread-safe?
	Slide 5: How to make an object thread-safe
	Slide 6: Mechanisms for synchronization in Java
	Slide 7: Programs that omit synchronizations
	Slide 8: Thread-safety: Encapsulate your state
	Slide 9: Fixing access to mutable state variables from multiple threads
	Slide 10: Correctness of classes
	Slide 11: A Thread-safe class
	Slide 12: Really?
	Slide 13: Stateless objects are always thread-safe
	Slide 14: Stateless objects are always thread-safe
	Slide 15: Atomicity
	Slide 16: Initializing Objects
	Slide 17: Thread-safe initialization
	Slide 18: The final keyword
	Slide 19: Blank final instance variable of a class 
	Slide 20: Atomicity with compound operations
	Slide 21: Atomicity with compound operations
	Slide 22: Compound actions & thread-safety
	Slide 23: Locks & Reentrancy
	Slide 24: Reentrancy
	Slide 25: How reentrancy works                            [1/2]
	Slide 26: How reentrancy works                             [2/2]
	Slide 27: Does this result in a deadlock?
	Slide 28: Guarding state with locks
	Slide 29: Guarding state with locks
	Slide 30: Watch for indiscriminate use of synchronization
	Slide 31: Pitfalls of over synchronization
	Slide 32: Antidote for poor concurrency
	Slide 33: Sharing Objects
	Slide 34: What we will be looking at
	Slide 35: Synchronization
	Slide 36: Publication and Escape
	Slide 37: Pitfalls in publication
	Slide 38: Most blatant form of publication
	Slide 39: Allowing internal mutable state to escape
	Slide 40: Another way to publish internal state
	Slide 41: Abbreviated view of the classes generated by the javac
	Slide 42: Safe construction practices
	Slide 43: A common mistake is to start a thread from a constructor
	Slide 44: Thread Confinement
	Slide 45: Thread confinement
	Slide 46: Thread confinement
	Slide 47: Stack confinement
	Slide 48: Thread confinement of reference variables
	Slide 49: ThreadLocal
	Slide 50: Using ThreadLocal for thread confinement
	Slide 51: Common use of ThreadLocal 
	Slide 52: Immutable Objects
	Slide 53: Immutable objects
	Slide 54: Immutable objects
	Slide 55: Safe publication of objects
	Slide 56: Class at risk of failure if not published properly
	Slide 57: Composing Objects
	Slide 58: Composing Objects
	Slide 59: Basic elements of designing a thread-safe class
	Slide 60: Synchronization policy
	Slide 61: Looking at a counter
	Slide 62: Making a class thread-safe
	Slide 63: Classes have invariants that tag certain states as valid or invalid
	Slide 64: Operations may have post conditions that tag state transitions as invalid
	Slide 65: Constraints and synchronization requirements
	Slide 66: The contents of this slide-set are based on the following references

