
COMPUTER SCIENCE DEPARTMENT

CSX55: DISTRIBUTED SYSTEMS [THREAD SAFETY]

Shrideep Pallickara

Computer Science

Colorado State University

Retrospective on making a thread-safe class better!
You may extend, but not always
 Depends, it does, on the code maze

Is the fear of making things worse
 Making you scamper from that source?

Composition is the wind in your sails
 Use it, when all else fails

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.2

Frequently asked questions from the previous class

survey

 Must the value of the final variable be known at compile time?

 Can interface methods have the synchronized qualifier?

 Interfaces specify what classes must implement; they do not dictate ”how”

thread safety is achieved

 Are atomic operations restricted only to primitives?

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.3

Topics covered in this lecture

 State ownership

 Guarding state with private locks

 Adding functionality to thread safe classes

 Synchronized collections

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.4

Safe construction practices

 An object is in a predictable, consistent state only after its constructor

returns

 Publishing an object within its constructor?

 You are publishing an incompletely constructed object

 Even if you are doing so in the last line of the constructor

 RULE: Don’t allow this to escape during construction

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.5

A common mistake is to start a thread from a

constructor

 When an object creates a thread in its constructor

 Almost always shares its this reference with the new thread

◼ Explicitly: Passing it to the constructor

◼ Implicitly: The Thread or Runnable is an inner class of the owning object

 Nothing wrong with creating a thread in a constructor

 Just don’t start the Thread

 Expose an initialize() method

COMPUTER SCIENCE DEPARTMENT

THREAD CONFINEMENT

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.7

Thread confinement

 Accessing shared, mutable data requires synchronization

 Avoid this by not sharing

 If data is only accessed from a single thread?

 No synchronization is needed

 When an object is confined to a thread?

 Usage is thread-safe even if the object is not

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.8

Thread confinement

 Language has no means of confining an object to a thread

 Thread confinement is an element of a program’s design

 Enforced by implementation

 Language and core libraries provide mechanisms to help with this

 Local variables and the ThreadLocal class

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.9

Stack confinement

 Object can only be reached through local variables

 Local variables are intrinsically confined to the executing thread

 Exist on executing thread’s stack

 Not accessible to other threads

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.10

Thread confinement of reference variables

public int loadTheArk() {

 SortedSet<Animal> animals;

 // animals confined to method don’t let

 // them escape

 return numPairs;

}

If you were to publish a reference to animals,
stack confinement would be violated

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.11

ThreadLocal

 Allows you to associate a per-thread value with a value-holding object

 Provides set and get accessor methods

 Maintains a separate copy of value for each thread that uses it

 get returns the most recent value passed to set

◼ From the currently executing thread

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.12

Using ThreadLocal for thread confinement

private static ThreadLocal<Connection> connectionHolder

 = new ThreadLocal<Connection>() {

 public Connection initialValue() {

 return DriverManager.getConnection(DB_URL);

 }

 };

public static Connection getConnection() {

 return connectionHolder.get();

}

Each thread will have its own connection

When thread calls ThreadLocal.get for the first time?
 initialValue() provides the initial value

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.13

Common use of ThreadLocal

 Used when a frequently used operation requires a temporary object

 Wish to avoid reallocating temporary object on each invocation

 Integer.toString()

 Before 5.0 used ThreadLocal to store a 12-byte buffer for formatting

result

COMPUTER SCIENCE DEPARTMENT

IMMUTABLE OBJECTS

Things are falling down on me

Heavy things I could not see

When I finally came around

Something small would pin me down

When I tried to step aside

I moved to where they hoped I'd be

Heavy Things, Scott Herman;Tom Marshall;Trey Anastasio. Phish

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.15

Immutable objects

 State cannot be modified after construction

 All its fields are final

 Properly constructed

 The this reference does not escape during construction

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.16

Immutable objects

public final class ThreeStooges {

 private final Set<String> stooges = new HashSet<String>();

 public ThreeStooges() {

 stooges.add(“Moe”);

 stooges.add(“Larry”);

 stooges.add(“Curly”);

 }

 public boolean isStooge(String name) {

 return stooges.contains(name);

 }

}

Design makes it impossible to modify after construction

The stooges reference is final
 All object state reached through a final field

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.17

Safe publication of objects

 Storing reference to an object into a public field is not enough to

publish that object safely

public Holder holder;

public void initialize() {

 holder = new Holder(42);

}

Holder could appear to be in an inconsistent state

 Even though invariants may have been established by constructor

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.18

Class at risk of failure if not published properly

public class Holder {

 private int n;

 public Holder(int n) {this.n = n}

 public void assertSanity() {

 if (n != n) {

 throw new AssertionError(“Statement is false”);

 }

 }

}

Thread may see a stale value first time it reads the field and
 an up-to-date value the next time

COMPUTER SCIENCE DEPARTMENT

COMPOSING OBJECTS

Pearls and swine bereft of me

Long and weary my road has been

I was lost in the cities

Alone in the hills

No sorrow or pity for leaving, I feel, yeah

I am not your rolling wheels

I am the highway

I am not your carpet ride

I am the sky

I Am the Highway, Audioslave

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.20

Composing Objects

 We don’t want to have to analyze each memory access to ensure

program is thread-safe

 We wish to take thread-safe components and compose them into

larger components or programs

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.21

Basic elements of designing a thread-safe class

 Identify variables that form the object’s state

 Identify invariants that constrain the state variables

 Establish a policy for managing concurrent access to the object’s state

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.22

Synchronization policy

 Defines how object coordinates access to its state

 Without violating its invariants or post-conditions

 Specifies a combination of:

 Immutability

 Thread confinement

 Locking

To maintain
Thread Safety

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.23

Looking at a counter

public final class Counter {

 private long value=0;

 public synchronized long getValue() {

 return value;

 }

 public synchronized long increment() {

 if (value == Long.MAX_VALUE) {

 throw new IllegalStateException(“Counter Overflow”);

 }

 value++;

 return value;

 }

}

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.24

Making a class thread-safe

 Ensure that invariants hold under concurrent access

 We need to reason about state

 Object and variables have state space

 Range of possible states

 Keep this small so that it is easier to reason about

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.25

Classes have invariants that tag certain states as

valid or invalid

 Looking back at our Counter example

 The value field is a long

 The state space ranges from Long.MIN_VALUE to Long.MAX_VALUE

 The class places constraints on value

 Negative values are not allowed

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.26

Operations may have post conditions that tag state

transitions as invalid

 Looking back at our Counter example

 If the current state of Counter is 17

 The only valid next state is 18

 When the next state is derived from the current state?

◼ Compound action

 Not all operations impose state transition constraints

 For e.g., if a variable tracks current temperature? Previous state doesn’t

impact current state

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.27

Constraints and synchronization requirements

 If certain states are invalid?

 Underlying state variables should be encapsulated

◼ If not, client code can put it in an inconsistent state

 If an operation has invalid state transitions?

 It must be made atomic

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.28

Looking at a case where invariants constrain multiple

state variables
public class NumberRange {

 private final AtomicInteger lower = new AtomicInteger(0);

 private final AtomicInteger upper = new AtomicInteger(0);

 public void setLower(int i) {

 if (i > upper.get())

 throw IllegalArgumentException(“lower > upper!”);

 lower.set(i);

 }

 public void setUpper(int i) {

 if (i < lower.get())

 throw IllegalArgumentException(“upper < lower!”);

 upper.set(i);

 }

 public boolean isInRange(int i){

 return (i >= lower.get() && i <= upper.get());

 }

}

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.29

Problems with NumberRange

 Does not preserve invariant that constrains lower and upper

 The methods setLower and setUpper attempt this preservation

 But they do so poorly!

 They are check-then-act sequences that use insufficient locking that precludes

atomicity

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.30

Problems with NumberRange

 If the number range (0, 10) holds

 One thread calls setLower(5) while another calls setUpper(4)

 With unlucky timing?

 Both calls will pass checks in the setters

 Both modifications will be applied

 Range is now (5,4) … an invalid state

 AtomicInteger is thread-safe, the composite class is not

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.31

Multivariable invariants

 Related variables must be fetched or updated in an atomic operation

 Don’t:

 Update one

 Release and reacquire lock, and …

 Then update others

 The lock that guards the variables

 Must be held for the duration of any operation that accesses them

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.32

State-dependent operations

 Objects may have state-based pre-conditions

 E.g., cannot remove item from an empty queue

 In a single-threaded program

 Operations simply fail

 In a concurrent program

 Precondition may be true later because of the actions of another thread

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.33

State dependent operations:

Mechanisms

 wait()/notify()

 Supported by the JVM and closely tied with intrinsic locking

 Other possibilities

 Use classes such as blocking queues or semaphores

COMPUTER SCIENCE DEPARTMENT

STATE OWNERSHIP

This place is always such a mess

Sometimes I think I’d like to watch it burn

I’m so alone

Feel just like somebody else

Man, I ain’t changed, but I know I ain’t the same

One Headlight, Jakob Dylan, The Wallflowers

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.35

State ownership

 Defining which variables form an object’s state

 We wish to consider only that which the object owns

 Ownership

 Not explicitly specified in the language

 Element of program design

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.36

State ownership: Encapsulation and ownership go

together

 Object encapsulates the state it owns

 Owns the state it encapsulates

 Owner gets to decide on the locking protocol

 If you publish a reference to a mutable object?

 You no longer have exclusive control

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.37

Instance confinement

 Object may not be thread-safe

 But we could still use it in a thread-safe fashion

 Ensure that:

 It is accessed by only one thread

 All accesses guarded by a lock

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.38

Confinement and locking working together

public class PersonSet {

 private final Set<Person> mySet = new HashSet<Person>();

 public synchronized void addPerson(Person p) {

 mySet.add(p);

 }

 public synchronized boolean containsPerson(Person p) {

 return mySet.contains(p);

 }

}

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.39

Looking at our previous example

 State of PersonSet managed by HashSet, which is not thread-

safe

 But mySet is

 Private

 Not allowed to escape

 Confined to PersonSet

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.40

But we have made no assumptions about Person

 If it is mutable, additional synchronization is needed

 When accessing Person from PersonSet

 Reliable way to achieve this?

 Make Person thread-safe

 Less-reliable way?

 Guard Person objects with a lock

 Ensure that clients follow protocol of acquiring appropriate lock, before

accessing Person

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.41

Instance confinement is the easiest way to build

thread-safe classes

 Class that confines it state can be analyzed for thread-safety

 Without having to examine the whole program

COMPUTER SCIENCE DEPARTMENT

GUARDING STATE WITH

PRIVATE LOCKS

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.43

Guarding state with a private lock

public class PrivateLock {

 private final Object myLock = new Object();

 private Widget widget; //guarded by myLock

 public void someMethod() {

 synchronized(myLock) {

 //Access and modify the state of the widget

 }

 }

}

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.44

Why guard state with a private lock?

 Doing so encapsulates the lock

 Client code cannot acquire it!

 Publicly accessible lock allows client code to participate in its

synchronization policy

 Correctly or incorrectly

 Clients that improperly acquire an object’s lock cause liveness issues

 Verifying correctness with public locks requires examining the entire

program not just a class

COMPUTER SCIENCE DEPARTMENT

VEHICLE TRACKER APPLICATION

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.46

A Vehicle Tracker application

 Each vehicle

 Identified by a String

 Location represented by (x,y) coordinates

 VehicleTracker class

 Tracks the identity and location of all known vehicles

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.47

Viewer thread and Updater Thread

Map<String, Point> locations = vehicles.getLocations();

for (String key: locations.keySet())

 renderVehicle(key, locations.get(key));

public void vehicleMoved(VehicleMovedEvent evt) {

 Point loc = evt.getNewLocation();

 vehicles.setLocation(evt.getVehicleId(), loc.x, loc.y);

}

Viewer

Updater

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.48

The MonitorVehicleTracker
public class MonitorVehicleTracker {

 private final Map<String, MutablePoint> locations;

 public synchronized Map<String, MutablePoint> getLocations() {

 return deepCopy(locations);

 }

 public synchronized MutablePoint getLocation(String id) {

 MutablePoint loc = locations.get(id);

 return loc == null? null: new MutablePoint(loc);

 }

 public synchronized void setLocation(String id, int x, int y){

 MutablePoint loc = locations.get(id);

 if (loc == null) {throw IllegalArgumentException(...)}

 loc.x = x;

 loc.y = y;

 }

 private deepCopy() { ... }

}

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.49

The tracker class is thread-safe, even though

MutablePoint may not be

public class MutablePoint {

 public int x, y;

 public MutablePoint() {x=0; y=0;}

 public MutablePoint(MutablePoint p) {

 this.x = p.x;

 this.y = p.y;

 }

}

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.50

What the deepCopy() looks like

public class MonitorVehicleTracker {

 ...

 private Map<String, MutablePoint>

 deepCopy(Map<String, MutablePoint> m) {

 Map<String, MutablePoint> result =

 new HashMap<String, MutablePoint>();

 for (String id: m.keySet())

 result.put(id, new MutablePoint(m.get(id)));

 return Collections.unmodifiableMap(result);

 }

}

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.51

The Collections utility class

 List<String> readOnlyList =

 Collections.unmodifiableList(myList);

 Note:

 Nothing to differentiate this as a read-only list

 You have access to the mutator methods

◼ But calling them results in an UnsupportedException

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.52

Delegating thread-safety
public class DelegatingVehicleTracker {

 private final ConcurrentMap<String, Point> locations;

 private final Map<String, Point> unmodifiableMap;

 public DelegatingVehicleTracker(Map<String, Point>points {

 locations = new ConcurrentHashMap<String, Point>(points);

 unmodifiableMap = Collections.unmodifiableMap(locations);

 }

 public Map<String, Point> getLocations() {

 return unmodifiableMap;

 }

 public Point getLocation(String id) {return locations.get(id);}

 public void setLocation(String id, int x, int y) {

 if (locations.replace(id, new ImmutablePoint(x, y)) == null)

 throw new IllegalArgumentException(“Invalid Vehicle ID);

 }

}

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.53

Immutable Point

public class ImmutablePoint {

 public final int x, y;

 public ImmutablePoint(int x, int y) {

 this.x = x;

 this.y = y;

 }

}

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.54

When delegation fails
public class NumberRange {

 private final AtomicInteger lower = new AtomicInteger(0);

 private final AtomicInteger upper = new AtomicInteger(0);

 public void setLower(int i) {

 if (i > upper.get()) {

 throw IllegalArgumentException(“lower > upper!”);

 }

 }

 public void setUpper(int i) {

 if (i < lower.get()) {

 throw IllegalArgumentException(“upper < lower!”);

 }

 }

 public boolean isInRange(int i){

 return (i >= lower.get() && i <= upper.get());

 }

}

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L8.55

The contents of this slide-set are based on the

following references

 Java Concurrency in Practice. Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer,

David Holmes, and Doug Lea. Addison-Wesley Professional. ISBN: 0321349601/978-

0321349606. [Chapters 1, 2, 3 and 4]

 https://www.javaspecialists.eu/archive/Issue192b.html

	Slide 1: CSx55: Distributed Systems [Thread Safety]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: Safe construction practices
	Slide 5: A common mistake is to start a thread from a constructor
	Slide 6: Thread Confinement
	Slide 7: Thread confinement
	Slide 8: Thread confinement
	Slide 9: Stack confinement
	Slide 10: Thread confinement of reference variables
	Slide 11: ThreadLocal
	Slide 12: Using ThreadLocal for thread confinement
	Slide 13: Common use of ThreadLocal
	Slide 14: Immutable Objects
	Slide 15: Immutable objects
	Slide 16: Immutable objects
	Slide 17: Safe publication of objects
	Slide 18: Class at risk of failure if not published properly
	Slide 19: Composing Objects
	Slide 20: Composing Objects
	Slide 21: Basic elements of designing a thread-safe class
	Slide 22: Synchronization policy
	Slide 23: Looking at a counter
	Slide 24: Making a class thread-safe
	Slide 25: Classes have invariants that tag certain states as valid or invalid
	Slide 26: Operations may have post conditions that tag state transitions as invalid
	Slide 27: Constraints and synchronization requirements
	Slide 28: Looking at a case where invariants constrain multiple state variables
	Slide 29: Problems with NumberRange
	Slide 30: Problems with NumberRange
	Slide 31: Multivariable invariants
	Slide 32: State-dependent operations
	Slide 33: State dependent operations: Mechanisms
	Slide 34: State Ownership
	Slide 35: State ownership
	Slide 36: State ownership: Encapsulation and ownership go together
	Slide 37: Instance confinement
	Slide 38: Confinement and locking working together
	Slide 39: Looking at our previous example
	Slide 40: But we have made no assumptions about Person
	Slide 41: Instance confinement is the easiest way to build thread-safe classes
	Slide 42: Guarding state with private locks
	Slide 43: Guarding state with a private lock
	Slide 44: Why guard state with a private lock?
	Slide 45: Vehicle tracker application
	Slide 46: A Vehicle Tracker application
	Slide 47: Viewer thread and Updater Thread
	Slide 48: The MonitorVehicleTracker
	Slide 49: The tracker class is thread-safe, even though MutablePoint may not be
	Slide 50: What the deepCopy() looks like
	Slide 51: The Collections utility class
	Slide 52: Delegating thread-safety
	Slide 53: Immutable Point
	Slide 54: When delegation fails
	Slide 55: The contents of this slide-set are based on the following references

