CSXx55: DISTRIBUTED SYSTEMS [THREAD SAFETY]

Retrospective on making a thread-safe class better!
You may extend, but not always
Depends, it does, on the code maze

Is the fear of making things worse
Making you scamper from that source?

Composition is the wind in your sails
Use it, when all else fails Sh rideep Pallickara

Computer Science
Colorado State University

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

Frequently asked questions from the previous class
survey

Must the value of the £inal variable be known at compile time?

Can interface methods have the synchronized qualifier?

Interfaces specify what classes must implement; they do not dictate "how”
thread safety is achieved

Are atomic operations restricted only to primitives?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.2

Topics covered in this lecture

State ownership
Guarding state with private locks
Adding functionality to thread safe classes

Synchronized collections

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.3

Safe construction practices

An object is in a predictable, consistent state only after its constructor
returns

Publishing an object within its constructor?
You are publishing an incompletely constructed object

Even if you are doing so in the last line of the constructor

RULE: Don’t allow this to escape during construction

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.4

A common mistake is to start a thread from a
constructor

When an object creates a thread in its constructor

Almost always shares its this reference with the new thread

Explicitly: Passing it to the constructor

Implicitly: The Thread or Runnable is an inner class of the owning object

Nothing wrong with creating a thread in a constructor
Just don'’t start the Thread

Expose an 1nitialize () method

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.5

THREAD CONFINEMENT

S — e S

Thread confinement

Accessing shared, mutable data requires synchronization

Avoid this by not sharing

If data is only accessed from a single thread?

No synchronization is needed

When an obiject is confined to a thread?

Usage is thread-safe even if the object is not

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.7

Thread confinement

Language has no means of confining an object to a thread

Thread confinement is an element of a program’s design

Enforced by implementation

Language and core libraries provide mechanisms to help with this

Local variables and the ThreadlLocal class

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.8

Stack confinement

Obiject can only be reached through local variables

Local variables are intrinsically confined to the executing thread

Exist on executing thread’s stack

Not accessible to other threads

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.9

Thread confinement of reference variables

public int loadTheArk () {
SortedSet<Animal> animals;

// animals confined to method don’t let
// them escape

return numPairs;

If you were to publish a reference to animals,
stack confinement would be violated

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.10

ThreadLocal

Allows you to associate a per-thread value with a value-holding object

Provides set and get accessor methods

Maintains a separate copy of value for each thread that uses it

get returns the most recent value passed to set

From the currently executing thread

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.11

Using ThreadLocal for thread confinement

private static ThreadLocal<Connection> connectionHolder
= new ThreadLocal<Connection> () {
public Connection initialValue() {
return DriverManager.getConnection (DB URL) ;
}
I

public static Connection getConnection () {
return connectionHolder.get () ;

}

Each thread will have its own connection

When thread calls ThreadlLocal.get for the first time?
initialValue() provides the initial value

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.12

Common use of ThreadlLocal

Used when a frequently used operation requires a temporary object

Wish to avoid reallocating temporary object on each invocation

Integer.toString ()

Before 5.0 used ThreadLocal to store a 12-byte buffer for formatting
result

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.13

Things are falling down on me
Heavy things | could not see
When | finally came around
Something small would pin me down
When | tried to step aside
| moved to where they hoped I'd be
Heavy Things, Scott Herman;Tom Marshall;Trey Anastasio. Phish

— IMMUTABLE OBJECTS

— e

Immutable objects

State cannot be modified after construction
All its fields are final

Properly constructed

The this reference does not escape during construction

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.15

Immutable objects

public final class ThreeStooges {

public ThreeStooges () {
stooges.add (“Moe”) ;
stooges.add (“Larry”) ;
stooges.add (“"Curly”) ;

public boolean isStooge (String name) {
return stooges.contains (name) ;

private final Set<String> stooges = new HashSet<String> () ;

Design makes it impossible to modify after construction

The stooges reference is final
All object state reached through a final field

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY

L8.16

Safe publication of objects

Storing reference to an object into a public field is not enough to
publish that object safely

s
—

public Holder holder;

public void initialize() {
holder = new Holder (42);

}

Holder could appear to be in an inconsistent state

Even though invariants may have been established by constructor

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.17

Class at risk of failure if not published properly

A
W e

public class Holder {
private int n;

public Holder (int n) {this.n = n}

public void assertSanity () {
if (n !'= n) {
throw new AssertionError (“Statement is false”);

}

Thread may see a stale value first time it reads the field and
an up-to-date value the next time

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.18

Pearls and swine bereft of me

Long and weary my road has been

| was lost in the cities .
Alone in the hills

No sorrow or pity for leaving, #feel, yeah

| am not your rolling wheels
| am the highway
| am not your carpet ride

I the sk
am the sky

| Am the Highway, Audioslave

% N

Composing Objects

We don’t want to have to analyze each memory access to ensure
program is thread-safe

We wish to take thread-safe components and compose them into
larger components or programs

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.20

Basic elements of designing a thread-safe class
—

o Identify variables that form the object’s state
0 Identify invariants that constrain the state variables

o Establish a policy for managing concurrent access to the object’s state

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.21

Synchronization policy

Defines how object coordinates access to its state

Without violating its invariants or post-conditions

Specifies a combination of:

Immutability

To maintain

Thread confinement Thread Safety

Locking

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.22

Looking at a counter

public final class Counter {
private long value=0;

public synchronized long getValue ()
return value;

}

public synchronized long increment ()
if (value == Long.MAX VALUE) {

}

value++;
return value;

{

{

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

THREAD SAFETY

P

=

throw new IllegalStateException (“Counter Overflow”);

2

L8.23

Making a class thread-safe

Ensure that invariants hold under concurrent access

We need to reason about state

Object and variables have state space
Range of possible states

Keep this small so that it is easier to reason about

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.24

Classes have invariants that tag certain states as

valid or invalid

Looking back at our Counter example

The value field is a 1long

The state space ranges from Long.MIN VALUE to Long.MAX VALUE

The class places constraints on value

Negative values are not allowed

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.25

Operations may have post conditions that tag state
transitions as invalid

Looking back at our Counter example

If the current state of Counteris 17
The only valid next state is 18

When the next state is derived from the current state?

Compound action

Not all operations impose state transition constraints

For e.g., if a variable tracks current temperature? Previous state doesn’t
impact current state

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.26

Constraints and synchronization requirements

If certain states are invalid?

Underlying state variables should be encapsulated

If not, client code can put it in an inconsistent state

If an operation has invalid state transitions?

It must be made atomic

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.27

Looking at a case where invariants constrain multiple

state variables

public class NumberRange {
private final AtomicInteger lower = new AtomicInteger (0);
private final AtomicInteger upper = new AtomicInteger (0);

public void setlLower (int 1) {
if (1 > upper.get())
throw IllegalArgumentException (“lower > upper!”);
lower.set (1) ;

}

public void setUpper (int 1) {
1f (1 < lower.get())
throw IllegalArgumentException (“upper < lower!”);
upper.set (1)

}
public boolean isInRange (int i) { ;4;‘§5-

return (i >= lower.get() && 1 <= upper.get()):;
} @
) |

COLORADO STATE UNIVERSITY COMPU‘I:ER SCIENCE DEPARTMENT THREAD SAFETY 1L8.28

Problems with NumberRange

Does not preserve invariant that constrains 1ower and upper

The methods setLower and setUpper attempt this preservation

But they do so poorly!

They are check-then-act sequences that use insufficient locking that precludes
atomicity

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.29

Problems with NumberRange

If the number range (0, 10) holds

One thread calls setLower (5) while another calls setUpper (4)

With unlucky timing?
Both calls will pass checks in the setters

Both modifications will be applied

Range is now (5, 4) ... aninvalid state

AtomicInteger is thread-safe, the composite class is not

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.30

Multivariable invariants

Related variables must be fetched or updated in an atomic operation

Don’t:
Update one
Release and reacquire lock, and ...

Then update others

The lock that guards the variables

Must be held for the duration of any operation that accesses them

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.31

State-dependent operations

Objects may have state-based pre-conditions

E.g., cannot remove item from an empty queue

In a single-threaded program

Operations simply fail

In a concurrent program

Precondition may be frue later because of the actions of another thread

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.32

State dependent operations:
Mechanisms

wait () /notify ()
Supported by the JVM and closely tied with intrinsic locking

Other possibilities

Use classes such as blocking queues or semaphores

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.33

This place is always such a mess
Sometimes | think I'd like to watch it burn
I’m so alone
Feel just like somebody else
Man, | ain’t changed, but | know | ain’t the same
One Headlight, Jakob Dylan, The Wallflowers

STATE OWNERSHIP

IVERSITY .

State ownership

Defining which variables form an object’s state

We wish to consider only that which the object owns

Ownership
Not explicitly specified in the language

Element of program design

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.35

State ownership: Encapsulation and ownership go
together

Obiject encapsulates the state it owns

Owns the state it encapsulates
Owner gets to decide on the locking protocol

If you publish a reference to a mutable object?

You no longer have exclusive control

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.36

Instance confinement

Object may not be thread-safe

But we could still use it in a thread-safe fashion

Ensure that:
It is accessed by only one thread

All accesses guarded by a lock

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.37

Confinement and locking working together

public class PersonSet {
private final Set<Person> mySet

mySet .add (p) ;
}

return mySet.contains (p) ;

}

new HashSet<Person> () ;

public synchronized void addPerson (Person p) {

public synchronized boolean containsPerson (Person p)

{

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY

1L8.38

Looking at our previous example
—

0 State of PersonSet managed by HashSet, which is not thread-
safe

0 But mySet is
Private

Not allowed to escape

Confined to PersonSet

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.39

But we have made no assumptions about Person

If it is mutable, additional synchronization is needed

When accessing Person from PersonSet

Reliable way to achieve this?

Make Person thread-safe

Less-reliable way?
Guard Person objects with a lock

Ensure that clients follow protocol of acquiring appropriate lock, before
accessing Person

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.40

Instance confinement is the easiest way to build

thread-safe classes
R

o Class that confines it state can be analyzed for thread-safety

Without having to examine the whole program

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.41

GUARDING STATE WITH
PRIVATE LOCKS

- .
. »
- ¢ . .
s .
. . -
- ® !
\" - \]

Guarding state with a private lock

public class PrivateLock {
private final Object myLock = new Object() ;

private Widget widget; //guarded by myLock
public void someMethod () {

synchronized (myLock) ({
//Access and modify the state of the widget

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.43

Why guard state with a private lock?

Doing so encapsulates the lock

Client code cannot acquire it!

Publicly accessible lock allows client code to participate in its
synchronization policy

Correctly or incorrectly

Clients that improperly acquire an object’s lock cause liveness issues

Verifying correctness with public locks requires examining the entire

program not just a class

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.44

VEHICLE TRACKER APPLICATION

COMPUTER SCIENCE DEPARTMENT (®%%) COLORADO STATE UNIVERSITY

A Vehicle Tracker application

Each vehicle
|dentified by a String

Location represented by (x, y) coordinates

VehicleTracker class

Tracks the identity and location of all known vehicles

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.46

Viewer thread and Updater Thread

Viewer

Map<String, Point> locations = vehicles.getLocations() ;

for (String key: locations.keySet())
renderVehicle (key, locations.get(key));

Updater

public void vehicleMoved (VehicleMovedEvent evt) {
Point loc = evt.getNewLocation() ;
vehicles.setLocation (evt.getVehicleId (), loc.x, loc.y);

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.47

The MonitorVehicleTracker

public class MonitorVehicleTracker {

private final Map<String, MutablePoint> locations;

public synchronized Map<String, MutablePoint> getLocations () {

return deepCopy (locations);

}

public synchronized MutablePoint getLocation (String i1d)
MutablePoint loc = locations.get (id);

return loc == null? null: new MutablePoint (loc);

}

public synchronized void setlocation (String i1d, 1int x,
MutablePoint loc = locations.get (id);

{

int y) {

if (loc == null) {throw IllegalArgumentException(...) }
loc.x = x;
loc.y = vy;
}
private deepCopy () { ... }
}
COLORADO STATE UNIVERSITY o rer SCIENCE DEPARTMENT THREAD SAFETY

1L8.48

The tracker class is thread-safe, even though

MutablePoint may not be
—

public class MutablePoint {
public int x, y;

public MutablePoint () {x=0; y=0;}

public MutablePoint (MutablePoint p) {
this.x = p.x;
this.y = p.y;

}

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.49

What the deepCopy () looks like

public class MonitorVehicleTracker {

private Map<String, MutablePoint>
deepCopy (Map<String, MutablePoint> m) {
Map<String, MutablePoint> result =
new HashMap<String, MutablePoint>();

for (String id: m.keySet())

return Collections.unmodifiableMap (result);

result.put (id, new MutablePoint (m.get(id))

) ;

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY

L8.50

The Collections utility class

List<String> readOnlyList =

Collections.unmodifiablelList (myList)

Note:

Nothing to differentiate this as a read-only list

You have access to the mutator methods

But calling them results in an UnsupportedException

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.51

Delegating thread-safety

public class DelegatingVehicleTracker {
private final ConcurrentMap<String, Point> locations;
private final Map<String, Point> unmodifiableMap;

public DelegatingVehicleTracker (Map<String, Point>points {

}

public Map<String, Poilnt> getLocations() {
return unmodifiableMap;

}

public void setLocation(String id, int x, 1int vy) {

locations = new ConcurrentHashMap<String, Point>(points);
unmodifiableMap = Collections.unmodifiableMap (locations);

public Point getlLocation (String id) {return locations.get (id);}

1f (locations.replace(id, new ImmutablePoint (x, y)) == null)
throw new IllegalArgumentException (“Invalid Vehicle 1ID);

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY

1L8.52

Immutable Point

public class ImmutablePoint {
public final int x, y;

public ImmutablePoint (int x, int y)
this.x = x;
this.y = y;

{

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

THREAD SAFETY

L8.53

When delegation fails

}

public class NumberRange {

private final AtomicInteger lower = new AtomicInteger (0);
private final AtomicInteger upper new AtomicInteger (0);

public void setLower (int 1) {
if (1 > upper.get()) {
throw IllegalArgumentException (“lower > upper!”);

}

public voilid setUpper (int 1) {
if (1 < lower.get()) {
throw IllegalArgumentException (“upper < lower!”);

}

public boolean isInRange (int 1) { ;4;\§5.

return (i >= lower.get () && 1 <= upper.get());

} =

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY

L 8.54

The contents of this slide-set are based on the
following references

Java Concurrency in Practice. Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer,

David Holmes, and Doug Lea. Addison-Wesley Professional. ISBN: 0321349601 /97 8-
0321349606. [Chapters 1, 2, 3 and 4]

https: / /www.javaspecialists.eu/archive /Issue 192b.html

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L8.55

	Slide 1: CSx55: Distributed Systems [Thread Safety]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: Safe construction practices
	Slide 5: A common mistake is to start a thread from a constructor
	Slide 6: Thread Confinement
	Slide 7: Thread confinement
	Slide 8: Thread confinement
	Slide 9: Stack confinement
	Slide 10: Thread confinement of reference variables
	Slide 11: ThreadLocal
	Slide 12: Using ThreadLocal for thread confinement
	Slide 13: Common use of ThreadLocal
	Slide 14: Immutable Objects
	Slide 15: Immutable objects
	Slide 16: Immutable objects
	Slide 17: Safe publication of objects
	Slide 18: Class at risk of failure if not published properly
	Slide 19: Composing Objects
	Slide 20: Composing Objects
	Slide 21: Basic elements of designing a thread-safe class
	Slide 22: Synchronization policy
	Slide 23: Looking at a counter
	Slide 24: Making a class thread-safe
	Slide 25: Classes have invariants that tag certain states as valid or invalid
	Slide 26: Operations may have post conditions that tag state transitions as invalid
	Slide 27: Constraints and synchronization requirements
	Slide 28: Looking at a case where invariants constrain multiple state variables
	Slide 29: Problems with NumberRange
	Slide 30: Problems with NumberRange
	Slide 31: Multivariable invariants
	Slide 32: State-dependent operations
	Slide 33: State dependent operations: Mechanisms
	Slide 34: State Ownership
	Slide 35: State ownership
	Slide 36: State ownership: Encapsulation and ownership go together
	Slide 37: Instance confinement
	Slide 38: Confinement and locking working together
	Slide 39: Looking at our previous example
	Slide 40: But we have made no assumptions about Person
	Slide 41: Instance confinement is the easiest way to build thread-safe classes
	Slide 42: Guarding state with private locks
	Slide 43: Guarding state with a private lock
	Slide 44: Why guard state with a private lock?
	Slide 45: Vehicle tracker application
	Slide 46: A Vehicle Tracker application
	Slide 47: Viewer thread and Updater Thread
	Slide 48: The MonitorVehicleTracker
	Slide 49: The tracker class is thread-safe, even though MutablePoint may not be
	Slide 50: What the deepCopy() looks like
	Slide 51: The Collections utility class
	Slide 52: Delegating thread-safety
	Slide 53: Immutable Point
	Slide 54: When delegation fails
	Slide 55: The contents of this slide-set are based on the following references

