CSXx55: DISTRIBUTED SYSTEMS [THREAD SAFETY]

Retrospective on making a thread-safe class better!
You may extend, but not always
Depends, it does, on the code maze

Is the fear of making things worse
Making you scamper from that source?

Composition is the wind in your sails
Use it, when all else fails Sh rideep Pallickara

Computer Science
Colorado State University
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Frequently asked questions from the previous class

survey

Does a more precisely regulated state ownership increase thread

safety?

Can there be synchronized constructors?¢ No

Why is HashSet not thread-safe?

Not designed to handle concurrent access without external (client-side)

synchronization?

The 3 stooges
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Topics covered in this lecture
N

1 Composition
1 Concurrent collections

1 Synchronizers
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VEHICLE TRACKER APPLICATION
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A Vehicle Tracker application

Each vehicle
|dentified by a String

Location represented by (x, y) coordinates

VehicleTracker class

Tracks the identity and location of all known vehicles
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Viewer thread and Updater Thread

Viewer

Map<String, Point> locations = vehicles.getLocations() ;

for (String key: locations.keySet())
renderVehicle (key, locations.get(key) );

Updater

public void vehicleMoved (VehicleMovedEvent evt) {
Point loc = evt.getNewLocation() ;
vehicles.setLocation (evt.getVehicleId (), loc.x, loc.y);
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The MonitorVehicleTracker

public class MonitorVehicleTracker {

private final Map<String, MutablePoint> locations;

public synchronized Map<String, MutablePoint> getLocations () {

return deepCopy (locations);

}

public synchronized MutablePoint getLocation (String i1d)
MutablePoint loc = locations.get (id);

return loc == null? null: new MutablePoint (loc);

}

public synchronized void setlocation (String i1d, 1int x,
MutablePoint loc = locations.get (id);

{

int y) {

if (loc == null) {throw IllegalArgumentException(...) }
loc.x = x;
loc.y = vy;
}
private deepCopy () { ... }
}
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The tracker class is thread-safe, even though

MutablePoint may not be
—

public class MutablePoint {
public int x, y;

public MutablePoint () {x=0; y=0;}

public MutablePoint (MutablePoint p) {
this.x = p.x;
this.y = p.y;

}
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What the deepCopy () looks like

public class MonitorVehicleTracker {

private Map<String, MutablePoint>
deepCopy (Map<String, MutablePoint> m) {
Map<String, MutablePoint> result =
new HashMap<String, MutablePoint>();

for (String id: m.keySet())

return Collections.unmodifiableMap (result);

result.put (id, new MutablePoint (m.get(id))

) ;
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The Collections utility class

List<String> readOnlyList =

Collections.unmodifiablelList (myList)

Note:

Nothing to differentiate this as a read-only list

You have access to the mutator methods

But calling them results in an UnsupportedException
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Delegating thread-safety

public class DelegatingVehicleTracker {
private final ConcurrentMap<String, Point> locations;
private final Map<String, Point> unmodifiableMap;

public DelegatingVehicleTracker (Map<String, Point>points {

}

public Map<String, Poilnt> getLocations() {
return unmodifiableMap;

}

public void setLocation(String id, int x, 1int vy) {

locations = new ConcurrentHashMap<String, Point>(points);
unmodifiableMap = Collections.unmodifiableMap (locations);

public Point getlLocation (String id) {return locations.get (id);}

1f (locations.replace(id, new ImmutablePoint (x, y)) == null)
throw new IllegalArgumentException (“Invalid Vehicle 1ID);
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Immutable Point

public class ImmutablePoint {
public final int x, y;

public ImmutablePoint (int x, int y)
this.x = x;
this.y = y;

{
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When delegation fails

}

public class NumberRange {

private final AtomicInteger lower = new AtomicInteger (0);
private final AtomicInteger upper new AtomicInteger (0);

public void setLower (int 1) {
if (1 > upper.get() ) {
throw IllegalArgumentException (“lower > upper!”);

}

public voilid setUpper (int 1) {
if (1 < lower.get() ) {
throw IllegalArgumentException (“upper < lower!”);

}

public boolean isInRange (int 1) { ;4;\§5.

return (i >= lower.get () && 1 <= upper.get());

} =
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, Good design to me is both appearance and functionality together.
- It’s the experience that makes it good design.
Michael Graves

o

ADDING FUNCTIONALITY TO
EXISTING THREAD-SAFE CLASSES



Adding functionality to existing thread-safe classes
S

- Sometimes we have a thread-safe class that supports almost all the
operations we need

7 We should be able to add a new operation to it without undermining
its thread safety
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Adding a put-if-absent function to a List

The operation put-if-absent must be atomic

If 1.1 st does not have X and we add X twice?

It's a problem because the collection should only have one X

But if put-if-absent is not atomic?

Two threads could see that X is absent and the list then has 2 copies of X
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Adding additional operations

(1) Safest way is to modify the original class

(2) Extend the class

Often base classes do not expose enough of their state to allow this
approach

(3) Place the extension code in a “helper class”

(4) Composition
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public class BetterVector<E> extends Vector<iE> {

public synchronized boolean putlIfAbsent (E x)
boolean absent = !contains (x);

i1f (absent) {
add (x) ;
}

return absent;
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Client side locking

Sometimes extending a class or adding a method is not possible

For e.g., if ArrayList is wrapped with a
Collections.SynchronizedList wrapper

Client code does not even know the class of the L.ist object

In such situations, the 3" strategy of using a helper class comes in
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Client-side locking

public class ListHelper<iE> {

public List<E> list =
Collections.synchronizedList (new ArrayList<E>());

public synchronized boolean putlIfAbsent (E x) {
boolean absent = !list.contains(x);

i1f (absent) {
list.add(x);

}

return absent;

}

Using the intrinsic lock of ListHelper to synchronize access to List
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Client-side locking: Let’s try again ...

public class ListHelper<iE> {

private List<E> list =

Collections.synchronizedList (new ArrayList<E>())

14

public boolean putlIfAbsent (B x) {
synchronized(list) {

boolean absent = !list.contains(x);

1f (absent) {
list.add(x) ;
}

return absent;

} J
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Contrasting extending a class AND client-side locking

Extending a class to add an atomic operation?

Distributes locking code over multiple classes in the object hierarchy

Client-side locking is even more fragile

We put locking code for a Class C in classes that are completely unrelated
to it
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Composition: A less fragile alternative to adding an
atomic operation

public class ImprovedList<T> implements List<T> {
private final List<T> 1list = new ArrayList<T>();

public synchronized boolean putlfAbsent (T x) {
boolean absent = !list.contains(x);

if (absent) {
list.add (x);
}
return absent;
}
}

public synchronized void clear () {list.clear():;}
// delegate other list methods
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More about the ImprovedList

No worries even if the underlying List is not thread-safe
ImprovedList uses its intrinsic lock

Extra layer of synchronization may add small performance penalty

But it is much better than attempting to mimick the locking strategy of
another object
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Synchronized collections

These include classes such as Vector and Hashtable

There is also the synchronized wrapper classes

Created by Collections.synchronizedX factory methods

E.g., Collections.synchronizedList (List list),
Collections.synchronizedMap (Map m),
Collections.synchronizedSet (Set s)
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Problems with synchronized collections

T
o Thread-safe but additional client-side locking needed to guard
compound actions
lteration
Navigation
® Find the next element

Conditional operations

® Put-if-absent
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public Object getlLast (Vector list) {
int lastIndex = list.size() - 1;
return list.get (lastIndex);

public void deletelast (Vector list) {
int lastIndex = list.size() -1;
list.remove (lastIndex) ;

\ N

TN
%g
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Interleaving of getLast and deletelast
N

A
—> size -> 10 —> remove(9)

—> size -> 10 ————> get(9) ——> Uh ohl
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Are there problems with this code?
—

for (int 1=0; 1 < vector.size(); 1++) {
doSomething (vector.get (1)) ;
}

There is chance that other threads may modify vector between
the calls to size () and get ()
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Compound actions using client-side locking

public Object getlast (Vector 1list) {
synchronized(list) {
int lastIndex = list.size() - 1;
return list.get (lastIndex);

}

public void deletelast (Vector list) {
synchronized(list) {
int lastIndex = list.size() -1;
list.remove (lastIndex);
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lterators

The standard way to iterate over a Collection is with an
lterator

Using iterators does not mean that you don’t need to lock the collection

Iterators returned by synchronized collections are not designed for
concurrent modification
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lterators in synchronized collections

lterators of synchronized collections are fail-fast

If they detect that the collection has changed since iteration began?

Unchecked ConcurrentModificationException is thrown
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Fail-fast iterators are not designed to be fool proof

Designed to catch concurrency errors on a good-faith basis
Associate a modification count with the collection

If the modification count changes during iteration?

hasNext () or next () throws
ConcurrentModificationException
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Let’s look at this code snippet

List<Widget> widgetList =
Collections.synchronizedlList (new ArrayList<Widget>()) ;

for (Widget w: widgetList) <
doSomething (w) ; ‘—5“‘~\\

//May throw ConcurrentModificationException ——’///

Internally javac generates code that uses Iterator and repeatedly calls
hasNext () and next () to iterate the List
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How to prevent the

ConcurrentModificationException
S 1 —

1 Hold the collection lock for the duration of the iteration

1 |s this desirable?
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Issues with locking a collection during iteration

Other threads that need to access the collection will block

If the collection is large or if the task performed on each element is

lengthy?
The wait could be really long
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Locking collection and scalability

The longer a lock is held

The more likely it will be contended

If many threads are waiting for a lock?

Throughput and CPU utilization plummet

ALTERNATIVE:
Deep-copy the collection and iterate over the copy

The copy is thread-confined
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Hidden lterators

public class HiddenIterator {
private final Set<Integer> set = new HashSet<Integer>() ;

public synchronized void add(Integer 1) {set.add(i);}
public synchronized void remove (Integer 1) {set.remove (i)}

public void diagnostics () {
System.out.println ("DEBUG: Elements 1in set: “ + set);

5 oY
9

Lock should have been acquired for the System.out

Iterators are also invoked for hashCode and equals
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Locking strategies:

Hashtable & ConcurrentHashMap
]

1 Hashtable

Lock held for the duration of each operation

Restricting access to a single thread at a time

1 ConcurrentHashMap

Finer-grained locking mechanism

Lock striping
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Lock striping: How it works

ConcurrentHashMap uses an array of 16 locks
Each lock guards 1/16™ of the hash buckets
Bucket N guarded by lock N mod 16

Assuming hash functions provide reasonable spreading characteristics

Demand for a given lock should reduce by 1/16

Enables ConcurrentHashMap to support up to 16 (default)
concurrent writers

A constructor that allows you to specify the concurrency level
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Downsides of lock striping

Locking the collection for exclusive access
More difficult and costly than a single lock

Done by acquiring locks in the stripe set

When does ConcurrentHashMap need to do this?

If the map needs to be expanded, values need to be rehashed into a larger
set of buckets
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Concurrent collections and iterators

lterators are weakly consistent instead of fail-safe

Do not throw ConcurrentModificationException

Weakly consistent iterator
Tolerates concurrent modification
Traverses elements as they existed when the iterator was created

May (no guarantees) reflect modifications after construction
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But what are the trade-offs?

Semantics of methods that operate on the entire Map have been
weakened to reflect nature of collection
size () is allowed to return an approximation

size () and isEmpty () : These are far less useful in concurrent
environments

This allows performance improvements for the most important

operations

get, put, containsKey, and remove
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One feature offered by synchronized Map
implementations?

Lock the map for exclusive access

With Hashtable and synchronizedMap, acquiring the Map lock
prevents other threads from accessing it

In most cases replacing Hashtable and synchronizedMap with

ConcurrentHashMap?

Gives you getter scalability

If you need to lock Map for exclusive access?

Don’t use the ConcurrentHashMap!
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Support for additional atomic Map operations
N

0 Put-if-absent
1 Remove-if-equal

1 Replace-if-equal
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ConcurrentMap interface

public interface ConcurrentMap<K,V> extends Map<K,V> {

//Insert if no value 1s mapped from K
V putlfAbsent (K key, V value);

//Remove only if K i1s mapped to V
boolean remove (K key, V value);

//Replace value only if K is mapped to oldValue
boolean replace (K key, V oldValue, V newValue);

//Replace value only if K is mapped to some value
V replace (K key, V newValue)
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Synchronizers

Are objects that coordinate control flow of threads based on its state

Examples

Latches

Semaphores

Counting and binary

Barriers

Cyclic and Exchangers
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Synchronizer: Structural properties

Encapsulate state that determines whether threads arriving at the
synchronizer should:

Be allowed to pass or wait

Provide methods to manipulate state

Provide methods to wait for the synchronizer to enter desired state
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Latches

Latch acts as a gate

Until latch reaches terminal state; gate is closed and no threads can pass

In the terminal state: gate opens and allows all threads to pass

Once the latch reaches terminal state?
Cannot change state again

Remains open forever
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When to use latches

Ensure that a computation does not proceed until all resources that it
needs are initialized

Service does not start until other services that it depends on have
started

Waiting until all parties in an activity are ready to proceed

Multiplayer gaming
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CountDownLatch

Allows one or more threads to wait for a set of events to occur

Latch state has a counter initialized to positive number

This is the number of events to wait for

countDown () decrements the counter indicating that an event has
occurred

await () method waits for the counter to reach 0

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.54



Using CountDownlLatch

COLOR/

&

public class TestHarness {
public long timeTasks (int nThreads, final Runnable task)
throws InterruptedException {
final CountDownlLatch startGate = new CountDownLatch (1) ;
final CountDownLatch endGate=new CountDownlLatch (nThreads);

for (int 1=0; i1 < nThreads; i++) {

Thread t = new Thread() {
public void run() {
try {

startGate.await () ;

task.run () ;

} finally {
endGate.countDown () ;

}
b

t.start () ;

}
long start = System.nanoTime() ;
startGate.countDown () ;
endGate.await () ;
long end = System.nanoTime () ;
return end-start;
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The contents of this slide-set are based on the

following references
——

= Java Concurrency in Practice. Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer,
David Holmes, and Doug Lea. Addison-Wesley Professional. ISBN: 0321349601 /97 8-
0321349606. [Chapters 1, 2, 3 and 4 and 13]
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