
COMPUTER SCIENCE DEPARTMENT

CSX55: DISTRIBUTED SYSTEMS [THREAD SAFETY]

Shrideep Pallickara

Computer Science

Colorado State University

Retrospective on making a thread-safe class better!
You may extend, but not always
 Depends, it does, on the code maze

Is the fear of making things worse
 Making you scamper from that source?

Composition is the wind in your sails
 Use it, when all else fails

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.2

Frequently asked questions from the previous class

survey

 Does a more precisely regulated state ownership increase thread

safety?

 Can there be synchronized constructors? No

 Why is HashSet not thread-safe?

 Not designed to handle concurrent access without external (client-side)

synchronization?

 The 3 stooges

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.3

Topics covered in this lecture

 Composition

 Concurrent collections

 Synchronizers

COMPUTER SCIENCE DEPARTMENT

VEHICLE TRACKER APPLICATION

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.5

A Vehicle Tracker application

 Each vehicle

 Identified by a String

 Location represented by (x,y) coordinates

 VehicleTracker class

 Tracks the identity and location of all known vehicles

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.6

Viewer thread and Updater Thread

Map<String, Point> locations = vehicles.getLocations();

for (String key: locations.keySet())

 renderVehicle(key, locations.get(key));

public void vehicleMoved(VehicleMovedEvent evt) {

 Point loc = evt.getNewLocation();

 vehicles.setLocation(evt.getVehicleId(), loc.x, loc.y);

}

Viewer

Updater

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.7

The MonitorVehicleTracker
public class MonitorVehicleTracker {

 private final Map<String, MutablePoint> locations;

 public synchronized Map<String, MutablePoint> getLocations() {

 return deepCopy(locations);

 }

 public synchronized MutablePoint getLocation(String id) {

 MutablePoint loc = locations.get(id);

 return loc == null? null: new MutablePoint(loc);

 }

 public synchronized void setLocation(String id, int x, int y){

 MutablePoint loc = locations.get(id);

 if (loc == null) {throw IllegalArgumentException(...)}

 loc.x = x;

 loc.y = y;

 }

 private deepCopy() { ... }

}

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.8

The tracker class is thread-safe, even though

MutablePoint may not be

public class MutablePoint {

 public int x, y;

 public MutablePoint() {x=0; y=0;}

 public MutablePoint(MutablePoint p) {

 this.x = p.x;

 this.y = p.y;

 }

}

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.9

What the deepCopy() looks like

public class MonitorVehicleTracker {

 ...

 private Map<String, MutablePoint>

 deepCopy(Map<String, MutablePoint> m) {

 Map<String, MutablePoint> result =

 new HashMap<String, MutablePoint>();

 for (String id: m.keySet())

 result.put(id, new MutablePoint(m.get(id)));

 return Collections.unmodifiableMap(result);

 }

}

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.10

The Collections utility class

 List<String> readOnlyList =

 Collections.unmodifiableList(myList);

 Note:

 Nothing to differentiate this as a read-only list

 You have access to the mutator methods

◼ But calling them results in an UnsupportedException

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.11

Delegating thread-safety
public class DelegatingVehicleTracker {

 private final ConcurrentMap<String, Point> locations;

 private final Map<String, Point> unmodifiableMap;

 public DelegatingVehicleTracker(Map<String, Point>points {

 locations = new ConcurrentHashMap<String, Point>(points);

 unmodifiableMap = Collections.unmodifiableMap(locations);

 }

 public Map<String, Point> getLocations() {

 return unmodifiableMap;

 }

 public Point getLocation(String id) {return locations.get(id);}

 public void setLocation(String id, int x, int y) {

 if (locations.replace(id, new ImmutablePoint(x, y)) == null)

 throw new IllegalArgumentException(“Invalid Vehicle ID);

 }

}

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.12

Immutable Point

public class ImmutablePoint {

 public final int x, y;

 public ImmutablePoint(int x, int y) {

 this.x = x;

 this.y = y;

 }

}

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.13

When delegation fails
public class NumberRange {

 private final AtomicInteger lower = new AtomicInteger(0);

 private final AtomicInteger upper = new AtomicInteger(0);

 public void setLower(int i) {

 if (i > upper.get()) {

 throw IllegalArgumentException(“lower > upper!”);

 }

 }

 public void setUpper(int i) {

 if (i < lower.get()) {

 throw IllegalArgumentException(“upper < lower!”);

 }

 }

 public boolean isInRange(int i){

 return (i >= lower.get() && i <= upper.get());

 }

}

COMPUTER SCIENCE DEPARTMENT

ADDING FUNCTIONALITY TO

EXISTING THREAD-SAFE CLASSES

Good design to me is both appearance and functionality together.

It’s the experience that makes it good design.

Michael Graves

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.15

Adding functionality to existing thread-safe classes

 Sometimes we have a thread-safe class that supports almost all the

operations we need

 We should be able to add a new operation to it without undermining

its thread safety

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.16

Adding a put-if-absent function to a List

 The operation put-if-absent must be atomic

 If List does not have X and we add X twice?

 It’s a problem because the collection should only have one X

 But if put-if-absent is not atomic?

 Two threads could see that X is absent and the list then has 2 copies of X

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.17

Adding additional operations

① Safest way is to modify the original class

② Extend the class

 Often base classes do not expose enough of their state to allow this

approach

③ Place the extension code in a “helper class”

④ Composition

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.18

Extending Vector to have a put-if-absent method

public class BetterVector<E> extends Vector<E> {

 public synchronized boolean putIfAbsent(E x) {

 boolean absent = !contains(x);

 if (absent) {

 add(x);

 }

 return absent;

 }

}

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.19

Client side locking

 Sometimes extending a class or adding a method is not possible

 For e.g., if ArrayList is wrapped with a

Collections.SynchronizedList wrapper

 Client code does not even know the class of the List object

 In such situations, the 3rd strategy of using a helper class comes in

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.20

Client-side locking

public class ListHelper<E> {

 public List<E> list =

 Collections.synchronizedList(new ArrayList<E>());

 ...

 public synchronized boolean putIfAbsent(E x) {

 boolean absent = !list.contains(x);

 if (absent) {

 list.add(x);

 }

 return absent;

 }

}

Using the intrinsic lock of ListHelper to synchronize access to List

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.21

Client-side locking: Let’s try again …

public class ListHelper<E> {

 private List<E> list =

 Collections.synchronizedList(new ArrayList<E>());

 ...

 public boolean putIfAbsent(E x) {

 synchronized(list) {

 boolean absent = !list.contains(x);

 if (absent) {

 list.add(x);

 }

 return absent;

 }

 }

}

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.22

Contrasting extending a class AND client-side locking

 Extending a class to add an atomic operation?

 Distributes locking code over multiple classes in the object hierarchy

 Client-side locking is even more fragile

 We put locking code for a Class C in classes that are completely unrelated

to it

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.23

Composition: A less fragile alternative to adding an

atomic operation

public class ImprovedList<T> implements List<T> {

 private final List<T> list = new ArrayList<T>();

 ...

 public synchronized boolean putIfAbsent(T x) {

 boolean absent = !list.contains(x);

 if (absent) {

 list.add(x);

 }

 return absent;

 }

 }

 public synchronized void clear() {list.clear();}

 // delegate other list methods ...

}

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.24

More about the ImprovedList

 No worries even if the underlying List is not thread-safe

 ImprovedList uses its intrinsic lock

 Extra layer of synchronization may add small performance penalty

 But it is much better than attempting to mimick the locking strategy of

another object

COMPUTER SCIENCE DEPARTMENT

SYNCHRONIZED COLLECTIONS

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.26

Synchronized collections

 These include classes such as Vector and Hashtable

 There is also the synchronized wrapper classes

 Created by Collections.synchronizedX factory methods

◼ E.g., Collections.synchronizedList(List list),

Collections.synchronizedMap(Map m),

Collections.synchronizedSet(Set s)

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.27

Problems with synchronized collections

 Thread-safe but additional client-side locking needed to guard

compound actions

 Iteration

 Navigation

◼ Find the next element

 Conditional operations

◼ Put-if-absent

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.28

Compound actions producing confusing results

public Object getLast(Vector list) {

 int lastIndex = list.size() – 1;

 return list.get(lastIndex);

}

public void deleteLast(Vector list) {

 int lastIndex = list.size() -1;

 list.remove(lastIndex);

}

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.29

Interleaving of getLast and deleteLast

remove(9)

get(9) Uh oh!

size –> 10
A

size –> 10
B

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.30

Are there problems with this code?

for (int i=0; i < vector.size(); i++) {

 doSomething(vector.get(i));

}

There is chance that other threads may modify vector between
the calls to size() and get()

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.31

Compound actions using client-side locking

public Object getLast(Vector list) {

 synchronized(list) {

 int lastIndex = list.size() – 1;

 return list.get(lastIndex);

 }

}

public void deleteLast(Vector list) {

 synchronized(list) {

 int lastIndex = list.size() -1;

 list.remove(lastIndex);

 }

}

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.32

Iterators

 The standard way to iterate over a Collection is with an

Iterator

 Using iterators does not mean that you don’t need to lock the collection

 Iterators returned by synchronized collections are not designed for

concurrent modification

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.33

Iterators in synchronized collections

 Iterators of synchronized collections are fail-fast

 If they detect that the collection has changed since iteration began?

 Unchecked ConcurrentModificationException is thrown

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.34

Fail-fast iterators are not designed to be fool proof

 Designed to catch concurrency errors on a good-faith basis

 Associate a modification count with the collection

 If the modification count changes during iteration?

 hasNext() or next() throws
ConcurrentModificationException

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.35

Let’s look at this code snippet

List<Widget> widgetList =

 Collections.synchronizedList(new ArrayList<Widget>());

...

for (Widget w: widgetList)

 doSomething(w);

Internally javac generates code that uses Iterator and repeatedly calls
hasNext() and next() to iterate the List

//May throw ConcurrentModificationException

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.36

How to prevent the
ConcurrentModificationException

 Hold the collection lock for the duration of the iteration

 Is this desirable?

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.37

Issues with locking a collection during iteration

 Other threads that need to access the collection will block

 If the collection is large or if the task performed on each element is

lengthy?

 The wait could be really long

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.38

Locking collection and scalability

 The longer a lock is held

 The more likely it will be contended

 If many threads are waiting for a lock?

 Throughput and CPU utilization plummet

 ALTERNATIVE:

 Deep-copy the collection and iterate over the copy

 The copy is thread-confined

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.39

Hidden Iterators

public class HiddenIterator {

 private final Set<Integer> set = new HashSet<Integer>();

 public synchronized void add(Integer i) {set.add(i);}

 public synchronized void remove(Integer i) {set.remove(i);}

 public void diagnostics() {

 System.out.println(“DEBUG: Elements in set: “ + set);

 }

}

 Lock should have been acquired for the System.out

 Iterators are also invoked for hashCode and equals

COMPUTER SCIENCE DEPARTMENT

CONCURRENT COLLECTIONS

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.41

Locking strategies:

Hashtable & ConcurrentHashMap

 Hashtable

 Lock held for the duration of each operation

 Restricting access to a single thread at a time

 ConcurrentHashMap

 Finer-grained locking mechanism

 Lock striping

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.42

Lock striping: How it works

 ConcurrentHashMap uses an array of 16 locks

 Each lock guards 1/16th of the hash buckets

 Bucket N guarded by lock N mod 16

 Assuming hash functions provide reasonable spreading characteristics

 Demand for a given lock should reduce by 1/16

 Enables ConcurrentHashMap to support up to 16 (default)

concurrent writers

 A constructor that allows you to specify the concurrency level

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.43

Downsides of lock striping

 Locking the collection for exclusive access

 More difficult and costly than a single lock

 Done by acquiring locks in the stripe set

 When does ConcurrentHashMap need to do this?

 If the map needs to be expanded, values need to be rehashed into a larger

set of buckets

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.44

Concurrent collections and iterators

 Iterators are weakly consistent instead of fail-safe

 Do not throw ConcurrentModificationException

 Weakly consistent iterator

 Tolerates concurrent modification

 Traverses elements as they existed when the iterator was created

 May (no guarantees) reflect modifications after construction

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.45

But what are the trade-offs?

 Semantics of methods that operate on the entire Map have been

weakened to reflect nature of collection

 size() is allowed to return an approximation

 size() and isEmpty(): These are far less useful in concurrent

environments

 This allows performance improvements for the most important

operations

 get, put, containsKey, and remove

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.46

One feature offered by synchronized Map

implementations?

 Lock the map for exclusive access

 With Hashtable and synchronizedMap, acquiring the Map lock

prevents other threads from accessing it

 In most cases replacing Hashtable and synchronizedMap with

ConcurrentHashMap?

 Gives you getter scalability

 If you need to lock Map for exclusive access?

 Don’t use the ConcurrentHashMap!

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.47

Support for additional atomic Map operations

 Put-if-absent

 Remove-if-equal

 Replace-if-equal

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.48

ConcurrentMap interface

public interface ConcurrentMap<K,V> extends Map<K,V> {

 //Insert if no value is mapped from K

 V putIfAbsent(K key, V value);

 //Remove only if K is mapped to V

 boolean remove(K key, V value);

 //Replace value only if K is mapped to oldValue

 boolean replace(K key, V oldValue, V newValue);

 //Replace value only if K is mapped to some value

 V replace(K key, V newValue)

}

COMPUTER SCIENCE DEPARTMENT
SYNCHRONIZERS

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.50

Synchronizers

 Are objects that coordinate control flow of threads based on its state

 Examples

 Latches

 Semaphores

◼ Counting and binary

 Barriers

◼ Cyclic and Exchangers

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.51

Synchronizer: Structural properties

 Encapsulate state that determines whether threads arriving at the

synchronizer should:

 Be allowed to pass or wait

 Provide methods to manipulate state

 Provide methods to wait for the synchronizer to enter desired state

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.52

Latches

 Latch acts as a gate

 Until latch reaches terminal state; gate is closed and no threads can pass

 In the terminal state: gate opens and allows all threads to pass

 Once the latch reaches terminal state?

 Cannot change state again

 Remains open forever

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.53

When to use latches

 Ensure that a computation does not proceed until all resources that it

needs are initialized

 Service does not start until other services that it depends on have

started

 Waiting until all parties in an activity are ready to proceed

 Multiplayer gaming

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.54

CountDownLatch

 Allows one or more threads to wait for a set of events to occur

 Latch state has a counter initialized to positive number

 This is the number of events to wait for

 countDown() decrements the counter indicating that an event has

occurred

 await() method waits for the counter to reach 0

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.55

U
si

ng
 C

o
un

tD
o
w

nL
a
tc

h
public class TestHarness {

 public long timeTasks(int nThreads, final Runnable task)

 throws InterruptedException {

 final CountDownLatch startGate = new CountDownLatch(1);

 final CountDownLatch endGate=new CountDownLatch(nThreads);

 for (int i=0; i < nThreads; i++) {

 Thread t = new Thread() {

 public void run() {

 try {

 startGate.await();

 task.run();

 } finally {

 endGate.countDown();

 }

 }

 };

 t.start();

 }

 long start = System.nanoTime();

 startGate.countDown();

 endGate.await();

 long end = System.nanoTime();

 return end-start;

}

THREAD SAFETY
COMPUTER SCIENCE DEPARTMENT

Professor: SHRIDEEP PALLICKARA
L9.56

The contents of this slide-set are based on the

following references

 Java Concurrency in Practice. Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer,

David Holmes, and Doug Lea. Addison-Wesley Professional. ISBN: 0321349601/978-

0321349606. [Chapters 1, 2, 3 and 4 and 13]

	Slide 1: CSx55: Distributed Systems [Thread Safety]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: Vehicle tracker application
	Slide 5: A Vehicle Tracker application
	Slide 6: Viewer thread and Updater Thread
	Slide 7: The MonitorVehicleTracker
	Slide 8: The tracker class is thread-safe, even though MutablePoint may not be
	Slide 9: What the deepCopy() looks like
	Slide 10: The Collections utility class
	Slide 11: Delegating thread-safety
	Slide 12: Immutable Point
	Slide 13: When delegation fails
	Slide 14: Adding functionality to existing thread-safe classes
	Slide 15: Adding functionality to existing thread-safe classes
	Slide 16: Adding a put-if-absent function to a List
	Slide 17: Adding additional operations
	Slide 18: Extending Vector to have a put-if-absent method
	Slide 19: Client side locking
	Slide 20: Client-side locking
	Slide 21: Client-side locking: Let’s try again …
	Slide 22: Contrasting extending a class And client-side locking
	Slide 23: Composition: A less fragile alternative to adding an atomic operation
	Slide 24: More about the ImprovedList
	Slide 25: Synchronized Collections
	Slide 26: Synchronized collections
	Slide 27: Problems with synchronized collections
	Slide 28: Compound actions producing confusing results
	Slide 29: Interleaving of getLast and deleteLast
	Slide 30: Are there problems with this code?
	Slide 31: Compound actions using client-side locking
	Slide 32: Iterators
	Slide 33: Iterators in synchronized collections
	Slide 34: Fail-fast iterators are not designed to be fool proof
	Slide 35: Let’s look at this code snippet
	Slide 36: How to prevent the ConcurrentModificationException
	Slide 37: Issues with locking a collection during iteration
	Slide 38: Locking collection and scalability
	Slide 39: Hidden Iterators
	Slide 40: Concurrent Collections
	Slide 41: Locking strategies: Hashtable & ConcurrentHashMap
	Slide 42: Lock striping: How it works
	Slide 43: Downsides of lock striping
	Slide 44: Concurrent collections and iterators
	Slide 45: But what are the trade-offs?
	Slide 46: One feature offered by synchronized Map implementations?
	Slide 47: Support for additional atomic Map operations
	Slide 48: ConcurrentMap interface
	Slide 49: Synchronizers
	Slide 50: Synchronizers
	Slide 51: Synchronizer: Structural properties
	Slide 52: Latches
	Slide 53: When to use latches
	Slide 54: CountDownLatch
	Slide 55: Using CountDownLatch
	Slide 56: The contents of this slide-set are based on the following references

