CSXx55: DISTRIBUTED SYSTEMS [THREAD SAFETY]

Retrospective on making a thread-safe class better!
You may extend, but not always
Depends, it does, on the code maze

Is the fear of making things worse
Making you scamper from that source?

Composition is the wind in your sails
Use it, when all else fails Sh rideep Pallickara

Computer Science
Colorado State University

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY

Frequently asked questions from the previous class

survey

Does a more precisely regulated state ownership increase thread

safety?

Can there be synchronized constructors?¢ No

Why is HashSet not thread-safe?

Not designed to handle concurrent access without external (client-side)

synchronization?

The 3 stooges

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.2

Topics covered in this lecture
N

1 Composition
1 Concurrent collections

1 Synchronizers

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.3

VEHICLE TRACKER APPLICATION

COMPUTER SCIENCE DEPARTMENT (®%%) COLORADO STATE UNIVERSITY

A Vehicle Tracker application

Each vehicle
|dentified by a String

Location represented by (x, y) coordinates

VehicleTracker class

Tracks the identity and location of all known vehicles

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.5

Viewer thread and Updater Thread

Viewer

Map<String, Point> locations = vehicles.getLocations() ;

for (String key: locations.keySet())
renderVehicle (key, locations.get(key));

Updater

public void vehicleMoved (VehicleMovedEvent evt) {
Point loc = evt.getNewLocation() ;
vehicles.setLocation (evt.getVehicleId (), loc.x, loc.y);

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.6

The MonitorVehicleTracker

public class MonitorVehicleTracker {

private final Map<String, MutablePoint> locations;

public synchronized Map<String, MutablePoint> getLocations () {

return deepCopy (locations);

}

public synchronized MutablePoint getLocation (String i1d)
MutablePoint loc = locations.get (id);

return loc == null? null: new MutablePoint (loc);

}

public synchronized void setlocation (String i1d, 1int x,
MutablePoint loc = locations.get (id);

{

int y) {

if (loc == null) {throw IllegalArgumentException(...) }
loc.x = x;
loc.y = vy;
}
private deepCopy () { ... }
}
COLORADO STATE UNIVERSITY o rer SCIENCE DEPARTMENT THREAD SAFETY

L9.7

The tracker class is thread-safe, even though

MutablePoint may not be
—

public class MutablePoint {
public int x, y;

public MutablePoint () {x=0; y=0;}

public MutablePoint (MutablePoint p) {
this.x = p.x;
this.y = p.y;

}

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.8

What the deepCopy () looks like

public class MonitorVehicleTracker {

private Map<String, MutablePoint>
deepCopy (Map<String, MutablePoint> m) {
Map<String, MutablePoint> result =
new HashMap<String, MutablePoint>();

for (String id: m.keySet())

return Collections.unmodifiableMap (result);

result.put (id, new MutablePoint (m.get(id))

) ;

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY

9.9

The Collections utility class

List<String> readOnlyList =

Collections.unmodifiablelList (myList)

Note:

Nothing to differentiate this as a read-only list

You have access to the mutator methods

But calling them results in an UnsupportedException

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.10

Delegating thread-safety

public class DelegatingVehicleTracker {
private final ConcurrentMap<String, Point> locations;
private final Map<String, Point> unmodifiableMap;

public DelegatingVehicleTracker (Map<String, Point>points {

}

public Map<String, Poilnt> getLocations() {
return unmodifiableMap;

}

public void setLocation(String id, int x, 1int vy) {

locations = new ConcurrentHashMap<String, Point>(points);
unmodifiableMap = Collections.unmodifiableMap (locations);

public Point getlLocation (String id) {return locations.get (id);}

1f (locations.replace(id, new ImmutablePoint (x, y)) == null)
throw new IllegalArgumentException (“Invalid Vehicle 1ID);

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY

L9.11

Immutable Point

public class ImmutablePoint {
public final int x, y;

public ImmutablePoint (int x, int y)
this.x = x;
this.y = y;

{

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

THREAD SAFETY

19.12

When delegation fails

}

public class NumberRange {

private final AtomicInteger lower = new AtomicInteger (0);
private final AtomicInteger upper new AtomicInteger (0);

public void setLower (int 1) {
if (1 > upper.get()) {
throw IllegalArgumentException (“lower > upper!”);

}

public voilid setUpper (int 1) {
if (1 < lower.get()) {
throw IllegalArgumentException (“upper < lower!”);

}

public boolean isInRange (int 1) { ;4;\§5.

return (i >= lower.get () && 1 <= upper.get());

} =

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY

L9.13

, Good design to me is both appearance and functionality together.
- It’s the experience that makes it good design.
Michael Graves

o

ADDING FUNCTIONALITY TO
EXISTING THREAD-SAFE CLASSES

Adding functionality to existing thread-safe classes
S

- Sometimes we have a thread-safe class that supports almost all the
operations we need

7 We should be able to add a new operation to it without undermining
its thread safety

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.15

Adding a put-if-absent function to a List

The operation put-if-absent must be atomic

If 1.1 st does not have X and we add X twice?

It's a problem because the collection should only have one X

But if put-if-absent is not atomic?

Two threads could see that X is absent and the list then has 2 copies of X

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.16

Adding additional operations

(1) Safest way is to modify the original class

(2) Extend the class

Often base classes do not expose enough of their state to allow this
approach

(3) Place the extension code in a “helper class”

(4) Composition

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.17

public class BetterVector<E> extends Vector<iE> {

public synchronized boolean putlIfAbsent (E x)
boolean absent = !contains (x);

i1f (absent) {
add (x) ;
}

return absent;

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY 5uPUTER SCIENCE DEPARTMENT THREAD SAFETY

{

Extending vector to have a put-if-absent method

L9.18

Client side locking

Sometimes extending a class or adding a method is not possible

For e.g., if ArrayList is wrapped with a
Collections.SynchronizedList wrapper

Client code does not even know the class of the L.ist object

In such situations, the 3" strategy of using a helper class comes in

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.19

Client-side locking

public class ListHelper<iE> {

public List<E> list =
Collections.synchronizedList (new ArrayList<E>());

public synchronized boolean putlIfAbsent (E x) {
boolean absent = !list.contains(x);

i1f (absent) {
list.add(x);

}

return absent;

}

Using the intrinsic lock of ListHelper to synchronize access to List
Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY

S
=9

L9.20

Client-side locking: Let’s try again ...

public class ListHelper<iE> {

private List<E> list =

Collections.synchronizedList (new ArrayList<E>())

14

public boolean putlIfAbsent (B x) {
synchronized(list) {

boolean absent = !list.contains(x);

1f (absent) {
list.add(x) ;
}

return absent;

} J
Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

THREAD SAFETY L9.21

Contrasting extending a class AND client-side locking

Extending a class to add an atomic operation?

Distributes locking code over multiple classes in the object hierarchy

Client-side locking is even more fragile

We put locking code for a Class C in classes that are completely unrelated
to it

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.22

Composition: A less fragile alternative to adding an
atomic operation

public class ImprovedList<T> implements List<T> {
private final List<T> 1list = new ArrayList<T>();

public synchronized boolean putlfAbsent (T x) {
boolean absent = !list.contains(x);

if (absent) {
list.add (x);
}
return absent;
}
}

public synchronized void clear () {list.clear():;}
// delegate other list methods

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.23

More about the ImprovedList

No worries even if the underlying List is not thread-safe
ImprovedList uses its intrinsic lock

Extra layer of synchronization may add small performance penalty

But it is much better than attempting to mimick the locking strategy of
another object

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.24

Synchronized collections

These include classes such as Vector and Hashtable

There is also the synchronized wrapper classes

Created by Collections.synchronizedX factory methods

E.g., Collections.synchronizedList (List list),
Collections.synchronizedMap (Map m),
Collections.synchronizedSet (Set s)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.26

Problems with synchronized collections

T
o Thread-safe but additional client-side locking needed to guard
compound actions
lteration
Navigation
® Find the next element

Conditional operations

® Put-if-absent

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.27

public Object getlLast (Vector list) {
int lastIndex = list.size() - 1;
return list.get (lastIndex);

public void deletelast (Vector list) {
int lastIndex = list.size() -1;
list.remove (lastIndex) ;

\ N

TN
%g

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

THREAD SAFETY

Compound actions producing confusing results

L9.28

Interleaving of getLast and deletelast
N

A
—> size -> 10 —> remove(9)

—> size -> 10 ————> get(9) ——> Uh ohl

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.29

Are there problems with this code?
—

for (int 1=0; 1 < vector.size(); 1++) {
doSomething (vector.get (1)) ;
}

There is chance that other threads may modify vector between
the calls to size () and get ()

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.30

Compound actions using client-side locking

public Object getlast (Vector 1list) {
synchronized(list) {
int lastIndex = list.size() - 1;
return list.get (lastIndex);

}

public void deletelast (Vector list) {
synchronized(list) {
int lastIndex = list.size() -1;
list.remove (lastIndex);

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.31

lterators

The standard way to iterate over a Collection is with an
lterator

Using iterators does not mean that you don’t need to lock the collection

Iterators returned by synchronized collections are not designed for
concurrent modification

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.32

lterators in synchronized collections

lterators of synchronized collections are fail-fast

If they detect that the collection has changed since iteration began?

Unchecked ConcurrentModificationException is thrown

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.33

Fail-fast iterators are not designed to be fool proof

Designed to catch concurrency errors on a good-faith basis
Associate a modification count with the collection

If the modification count changes during iteration?

hasNext () or next () throws
ConcurrentModificationException

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY 1L9.34

Let’s look at this code snippet

List<Widget> widgetList =
Collections.synchronizedlList (new ArrayList<Widget>()) ;

for (Widget w: widgetList) <
doSomething (w) ; ‘—5“‘~\\

//May throw ConcurrentModificationException ——’///

Internally javac generates code that uses Iterator and repeatedly calls
hasNext () and next () to iterate the List

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.35

How to prevent the

ConcurrentModificationException
S 1 —

1 Hold the collection lock for the duration of the iteration

1 |s this desirable?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.36

Issues with locking a collection during iteration

Other threads that need to access the collection will block

If the collection is large or if the task performed on each element is

lengthy?
The wait could be really long

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.37

Locking collection and scalability

The longer a lock is held

The more likely it will be contended

If many threads are waiting for a lock?

Throughput and CPU utilization plummet

ALTERNATIVE:
Deep-copy the collection and iterate over the copy

The copy is thread-confined

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY

L9.38

Hidden lterators

public class HiddenIterator {
private final Set<Integer> set = new HashSet<Integer>() ;

public synchronized void add(Integer 1) {set.add(i);}
public synchronized void remove (Integer 1) {set.remove (i)}

public void diagnostics () {
System.out.println ("DEBUG: Elements 1in set: “ + set);

5 oY
9

Lock should have been acquired for the System.out

Iterators are also invoked for hashCode and equals

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.39

Locking strategies:

Hashtable & ConcurrentHashMap
]

1 Hashtable

Lock held for the duration of each operation

Restricting access to a single thread at a time

1 ConcurrentHashMap

Finer-grained locking mechanism

Lock striping

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.41

Lock striping: How it works

ConcurrentHashMap uses an array of 16 locks
Each lock guards 1/16™ of the hash buckets
Bucket N guarded by lock N mod 16

Assuming hash functions provide reasonable spreading characteristics

Demand for a given lock should reduce by 1/16

Enables ConcurrentHashMap to support up to 16 (default)
concurrent writers

A constructor that allows you to specify the concurrency level

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY 1L9.42

Downsides of lock striping

Locking the collection for exclusive access
More difficult and costly than a single lock

Done by acquiring locks in the stripe set

When does ConcurrentHashMap need to do this?

If the map needs to be expanded, values need to be rehashed into a larger
set of buckets

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.43

Concurrent collections and iterators

lterators are weakly consistent instead of fail-safe

Do not throw ConcurrentModificationException

Weakly consistent iterator
Tolerates concurrent modification
Traverses elements as they existed when the iterator was created

May (no guarantees) reflect modifications after construction

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.44

But what are the trade-offs?

Semantics of methods that operate on the entire Map have been
weakened to reflect nature of collection
size () is allowed to return an approximation

size () and isEmpty () : These are far less useful in concurrent
environments

This allows performance improvements for the most important

operations

get, put, containsKey, and remove

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.45

One feature offered by synchronized Map
implementations?

Lock the map for exclusive access

With Hashtable and synchronizedMap, acquiring the Map lock
prevents other threads from accessing it

In most cases replacing Hashtable and synchronizedMap with

ConcurrentHashMap?

Gives you getter scalability

If you need to lock Map for exclusive access?

Don’t use the ConcurrentHashMap!

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.46

Support for additional atomic Map operations
N

0 Put-if-absent
1 Remove-if-equal

1 Replace-if-equal

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.47

ConcurrentMap interface

public interface ConcurrentMap<K,V> extends Map<K,V> {

//Insert if no value 1s mapped from K
V putlfAbsent (K key, V value);

//Remove only if K i1s mapped to V
boolean remove (K key, V value);

//Replace value only if K is mapped to oldValue
boolean replace (K key, V oldValue, V newValue);

//Replace value only if K is mapped to some value
V replace (K key, V newValue)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY 1L9.48

Synchronizers

Are objects that coordinate control flow of threads based on its state

Examples

Latches

Semaphores

Counting and binary

Barriers

Cyclic and Exchangers

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.50

Synchronizer: Structural properties

Encapsulate state that determines whether threads arriving at the
synchronizer should:

Be allowed to pass or wait

Provide methods to manipulate state

Provide methods to wait for the synchronizer to enter desired state

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.51

Latches

Latch acts as a gate

Until latch reaches terminal state; gate is closed and no threads can pass

In the terminal state: gate opens and allows all threads to pass

Once the latch reaches terminal state?
Cannot change state again

Remains open forever

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.52

When to use latches

Ensure that a computation does not proceed until all resources that it
needs are initialized

Service does not start until other services that it depends on have
started

Waiting until all parties in an activity are ready to proceed

Multiplayer gaming

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.53

CountDownLatch

Allows one or more threads to wait for a set of events to occur

Latch state has a counter initialized to positive number

This is the number of events to wait for

countDown () decrements the counter indicating that an event has
occurred

await () method waits for the counter to reach 0

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.54

Using CountDownlLatch

COLOR/

&

public class TestHarness {
public long timeTasks (int nThreads, final Runnable task)
throws InterruptedException {
final CountDownlLatch startGate = new CountDownLatch (1) ;
final CountDownLatch endGate=new CountDownlLatch (nThreads);

for (int 1=0; i1 < nThreads; i++) {

Thread t = new Thread() {
public void run() {
try {

startGate.await () ;

task.run () ;

} finally {
endGate.countDown () ;

}
b

t.start () ;

}
long start = System.nanoTime() ;
startGate.countDown () ;
endGate.await () ;
long end = System.nanoTime () ;
return end-start;

L9.55

The contents of this slide-set are based on the

following references
——

= Java Concurrency in Practice. Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer,
David Holmes, and Doug Lea. Addison-Wesley Professional. ISBN: 0321349601 /97 8-
0321349606. [Chapters 1, 2, 3 and 4 and 13]

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.56

	Slide 1: CSx55: Distributed Systems [Thread Safety]
	Slide 2: Frequently asked questions from the previous class survey
	Slide 3: Topics covered in this lecture
	Slide 4: Vehicle tracker application
	Slide 5: A Vehicle Tracker application
	Slide 6: Viewer thread and Updater Thread
	Slide 7: The MonitorVehicleTracker
	Slide 8: The tracker class is thread-safe, even though MutablePoint may not be
	Slide 9: What the deepCopy() looks like
	Slide 10: The Collections utility class
	Slide 11: Delegating thread-safety
	Slide 12: Immutable Point
	Slide 13: When delegation fails
	Slide 14: Adding functionality to existing thread-safe classes
	Slide 15: Adding functionality to existing thread-safe classes
	Slide 16: Adding a put-if-absent function to a List
	Slide 17: Adding additional operations
	Slide 18: Extending Vector to have a put-if-absent method
	Slide 19: Client side locking
	Slide 20: Client-side locking
	Slide 21: Client-side locking: Let’s try again …
	Slide 22: Contrasting extending a class And client-side locking
	Slide 23: Composition: A less fragile alternative to adding an atomic operation
	Slide 24: More about the ImprovedList
	Slide 25: Synchronized Collections
	Slide 26: Synchronized collections
	Slide 27: Problems with synchronized collections
	Slide 28: Compound actions producing confusing results
	Slide 29: Interleaving of getLast and deleteLast
	Slide 30: Are there problems with this code?
	Slide 31: Compound actions using client-side locking
	Slide 32: Iterators
	Slide 33: Iterators in synchronized collections
	Slide 34: Fail-fast iterators are not designed to be fool proof
	Slide 35: Let’s look at this code snippet
	Slide 36: How to prevent the ConcurrentModificationException
	Slide 37: Issues with locking a collection during iteration
	Slide 38: Locking collection and scalability
	Slide 39: Hidden Iterators
	Slide 40: Concurrent Collections
	Slide 41: Locking strategies: Hashtable & ConcurrentHashMap
	Slide 42: Lock striping: How it works
	Slide 43: Downsides of lock striping
	Slide 44: Concurrent collections and iterators
	Slide 45: But what are the trade-offs?
	Slide 46: One feature offered by synchronized Map implementations?
	Slide 47: Support for additional atomic Map operations
	Slide 48: ConcurrentMap interface
	Slide 49: Synchronizers
	Slide 50: Synchronizers
	Slide 51: Synchronizer: Structural properties
	Slide 52: Latches
	Slide 53: When to use latches
	Slide 54: CountDownLatch
	Slide 55: Using CountDownLatch
	Slide 56: The contents of this slide-set are based on the following references

